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DISPLACEMENT STRUCTURE: THEORY AND APPLICATIONS *
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Abstract. In this survey paper, we describe how strands of work important in two different fields,
matrix theory and complex function theory, have come together in some work on fast computational
algorithms for matrices with what we have called displacement structure. In particular, a fast
triangularization procedure can be developed for such matrices, generalizing in a striking way an
algorithm presented by Schur (1917) in a paper on checking when a power series is bounded in the
unit disc. This factorization algorithm has a surprisingly wide range of significant applications going
far beyond numerical linear algebra. We mention, among others, inverse scattering, analytic and
unconstrained rational interpolation theory, digital filter design, adaptive filtering, and state-space
least-squares estimation.

Key words. Displacement structure, structured matrices, generalized Schur algorithm, trian-
gular matrix factorization, interpolation theory, time-variant structures, state-space models, Kalman
filtering, adaptive filtering.

AMS subject classifications. 15A23, 15A06, 30C15, 30D50, 30E05, 47A57, 60G35, 93A20,
93C50, 93C55, 93E11, 93E24.

Abbreviated title. Displacement Structure.

1. Introduction. We describe how two strands of work from matrix theory and
function theory have come together in interesting ways in some work on fast computa-
tional algorithms for matrices with what we have called displacement structure. This
structure can be identified in a surprising variety of applications in engineering, math-
ematics, and physics. However, we may mention that, as so often happens, we came
to the matrix problems quite indirectly, starting with work in 1972-1973 [106, 107] on
certain nonlinear matrix Riccati and Chandrasekhar differential equations [45], going
on to scattering theory in radiative transfer and transmission lines [116, 140, 164, 195],
and then to Fredholm- and Wiener-Hopf-types of linear integral equations [117]. Two
recent surveys [110, 111] elaborate on these early developments.

The discrete-time analogues of these results were developed somewhat in parallel
(see [118, 122, 144, 146, 147, 186]), but with more initial effort, and it took some
time to focus on the purely algebraic problems of structured matrices. Here we had
available various famous results on Toeplitz matrices, especially the Levinson algo-
rithm [137, 196], the Szegd polynomials orthogonal on the unit circle [85, 192], the
Gohberg-Semencul formulas for inverses of Toeplitz matrices [86, 92], and a difference
form of these formulas, discovered earlier by Trench [193]; these results were discussed,
along with their somewhat lesser-known continuous-time analogues, in the survey pa-
per [121]. It became clear through the above work that the Toeplitz structure was
encompassed by a more general concept of displacement structure, though going from
continuous-time to the right definitions in discrete-time took a while [114, 115].
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Moreover on the algorithmic side, the initial efforts focused on generalizations
of the Levinson algorithm [66, 79, 122] and the equivalent problem of fast trian-
gular factorization of the inverses of matrices with displacement structure (see also
[63, 78, 79, 144]). The direct factorization problem, even for Toeplitz matrices, was
less studied, though algorithms for the Toeplitz case existed, e.g., [22, 144]; the refer-
ences [129, 166] gave derivations for the Toeplitz case that started with the Levinson
algorithm and [144] did the same for more general matrices. In 1976-1977, our work
on scattering theory [110] led to a collaboration with P. Dewilde, whose background
in circuit theory led him to recognize that an algorithm of I. Schur (1917) [185] on a
problem in complex function theory was relevant to these problems - see the paper
[70]. Dewilde, Fokkema, and Widya [69] and Bruckstein and Kailath [34, 35] noted
that the Schur algorithm arose naturally in studying inverse scattering problems for
discrete transmission lines (and by extension for Schrodinger equations [36]).

Schur’s work was closely studied and extended by Lev-Ari and Kailath [130, 133,
134] via the use of generating functions and Schur complements. Chun, Kailath,
and Lev-Ari [48, 52, 113] showed the further power of the Schur complement concept
by noting that problems such as triangular and orthogonal (QR) factorization for
composite (Toeplitz- and Hankel-derived) matrices such as T, 7175, Ty — T2T3_1T4,
HiH,, etc, where {T;, H;} are Toeplitz and Hankel matrices themselves, could be
efficiently solved by first considering these composite matrices as Schur complements
in suitable Toeplitz or Hankel block matrices, then introducing a further generalization
of displacement structure and developing a generalized Schur algorithm in a so-called
array or square-root form. This refers to the fact that the generic form of the algorithm
is the triangularization by a J—unitary matrix (and for a recursive solution, a sequence
of elementary circular and hyperbolic rotations/reflections) of a suitably defined pre-
array. Such algorithms were first proposed, for numerical reasons, in least-squares
theory [93, 146] and were introduced for Levinson-type algorithms in [122]. They now
are the main focus of many computationally effective and recursive filtering algorithms
(see, e.g., [179]). This focus was given further impetus by the rederivation [135],
using state-space concepts and some embedding results [83], of an even more general
Schur algorithm originally presented in [130, Chapter 8]. These results were further
simplified and generalized by Sayed and Kailath in [120, 173, 182], [171, Ch. 2] using
purely matrix-based arguments. This work made clear that the various generalized
Schur algorithms arose by using various definitions of displacement structure to speed
up the classical (Gauss/Jacobi/Cholesky) procedures for triangular factorization of
a matrix. Tt also made clear that a lossless cascade network/transmission line was
naturally associated with every generalized Schur algorithm. Such lossless systems
have certain “blocking properties” (see Sec. 6.1.1) which immediately lead to new
recursive solutions of many (constrained and unconstrained) rational interpolation
problems [29, 171, 173, 182]. Rational interpolation is a subject with a very rich
history of its own; here we refer only to the recent books [20, 71, 76, 100, 169] and
their many references.

Recently, we have returned to the original problems that led to the concept of dis-
placement structure. The Chandrasekhar recursions derived in 1972-1973 [106, 107,
118, 146, 147] are now seen to be a consequence of combining state-space structure and
displacement structure. This connection, known to us for many years, recently led us
to generalize the original Chandrasekhar recursions to certain time-variant state-space
systems [178], which then led us to a definition of time-variant displacement structure
[171, 172, 173, 174, 184]. This not only allowed us to extend our earlier approach to
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now obtain recursive solutions to certain time-variant interpolation problems [174],
studied in [19, 68], but also led to new algorithms for several types of matrix comple-
tion problems [56, 173], and for adaptive filtering and instrumental-variable problems
[170, 172, 184].

This brief historical review has noted some of the highlights of our now two-decade
long study of the role of displacement structure in deriving efficient computational
algorithms for a variety of problems in engineering and mathematics. Many other
authors have worked on closely related topics and we have profited from interactions
of various kinds with them. It would be impossible to review all these contributions
here or to make a list of acknowledgment without risk of omitting some. The richness
of this field makes many different perspectives possible and valuable, and we hope
that our survey will encourage other authors to offer similar unique perspectives on
the variety of problems described below.

The following is a brief outline of the paper. We first review some early results
on matrices with displacement structure and highlight connections with a classical
algorithm of Schur and with inverse scattering problems. We then introduce several
generalizations of the notion of displacement structure, along with examples that
motivate the need for such extensions and justify the importance of direct factorization
algorithms. A hierarchy of generalized Schur algorithms is derived and exhibited in
several different forms, including the so-called proper and generating-function forms.
As mentioned before, the term generalized Schur algorithm will be used in a generic
sense for fast algorithms for computing Schur complements (and thereby obtaining
triangular factors) of matrices with displacement structure. Connections with lossless
systems, embedding relations, and transmission zeros are highlighted and shown to
be relevant to the solution of interpolation problems. Generalized Schur algorithms
are then studied in the presence of state-space structure, with immediate applications
to problems in state-space estimation and adaptive filtering. We conclude with a
brief account of extensions of the notion of displacement structure to time-variant
matrices and with even briefer remarks on other results, applications and some open
problems. A table of contents may be helpful in giving a flavor of the variety of topics
encountered here, and as a guide to judicious browsing in this long survey paper.

2. Some Early Results. The concept of displacement structure is perhaps
best introduced by considering the much-studied special case of a symmetric (or
even Hermitian) Toeplitz matrix, T = [Ci_j]zj_:lo. Since T' depends only on n pa-
rameters rather than n2, it may not be surprising that matrix problems involving
T (such as triangular factorization, orthogonalization, inversion) have complexity
O(n?) rather than O(n®) operations. But what about the complexity of such prob-
lems for inverses, products, and related combinations of Toeplitz matrices such as
T, T1Ts, Ty — ToT5 ' Ty, (T1T5)~*T3,...? Though these are not Toeplitz, they are
certainly structured and the complexity of inversion and factorization may be ex-
pected to be not much different from that for a pure Toeplitz matrix, 7. It turns out
that the appropriate common property of all these matrices is not their “Toeplitz-
ness”, but the fact that they all have low displacement rank in a sense first defined
in [114, 115] and later much studied and generalized. Our first aim is to give a quick
illustration of this claim.

The displacement of an n xn Hermitian matrix R was originally defined by Kailath
et al. (1979) [114, 115] as

(2.1a) VR = R- ZRZ* ,
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where the * stands for Hermitian conjugation (complex conjugation for scalars), and Z
is the n x n lower shift matrix with ones on the first subdiagonal and zeros elsewhere;
ZRZ* then corresponds to shifting R downwards along the main diagonal by one
position, explaining the name displacement for VR. If VR has low rank, say r,
independent of n, then R is said to be structured with respect to the displacement
defined by (2.1a), and r is referred to as the displacement rank of R. The definition
can be extended to non-Hermitian, and in fact non-square matrices, and this will be
briefly described later. Here we may note that in the Hermitian case, VR is Hermitian
and therefore has further structure: its eigenvalues are real and so we can define the
displacement inertia of R as the pair {p, ¢}, where p (resp. ¢) is the number of strictly
positive (resp. negative) eigenvalues of VR. Of course, the displacement rank is
r = p+ q. Therefore, we can write

(2.1b) VR=R-ZRZ* =GJG" ,

where J = J* = (I, ®—1,;), p+q =r, and G is an n x r matrix. [ This representation
is clearly not unique; the nonuniqueness will be completely characterized below. ].

The pair {G, J} will be called a generator of R, since it contains all the information
on R. In fact, we can write down an explicit and interesting representation for R in
terms of the columns of G. Using the fact that Z is nilpotent, viz., Z™ = 0, we can
check that the unique solution of (2.1b) for a given {G, J} is

n—1
(2.2a) R=) Z'GIG"Z*".

i=0

q—1

Let us partition the columns of G into two sets {x;}?_) and {y:}?,,

G:[XO X3 ...-Xp-1 Yo Y1 -.-. yq_l] , pPtqg=r.

It is then easy to see that (2.2a) is equivalent to the representation

(2.2b) R=> L(x)L*(x;) — > L(y)L*(v:) ,
1=0 =0

where the notation L(x) denotes a lower triangular Toeplitz matrix whose first column
is x. [ We may remark that the representation (2.2b) allows us to replace the O(n?)
operations usually required to form a matrix-vector product, say Ra, by 2(p + q)
convolutions, each requiring only O(n logn) operations; for more on such applications
see, e.g., [12, 81, 88, 89, 121]. |.

The choice of a generator matrix in (2.1b) is not unique, since, for example, GO
is also a generator for any J—unitary matrix © (0J0* = J). More generally, there
are two other ways of obtaining an alternative G from a minimal G (i.e., a G with a
number of columns equal to the displacement rank, r). These are

(i) Replace G by [ G Gi1 Gi |, and J by J @ Ig & —Ig, where G; is any
matrix, and 3 is the number of columns of G;. The resulting generator is said to be
a neutral extension of the original minimal generator {G, J}.

(ii) Replace G by [ G Gp ], and J by J @ 0g. The resulting generator is said

to be a trivial extension of {G, J}.
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These facts can be proved in various ways, but it is interesting to note that such
results can be traced back to the work, in very different contexts, of Livsic [139] on
colligations and of Potapov [159] on J—contractive complex matrix functions.

Returning to the basic definitions, the reader will find it interesting to check

that a symmetric Toeplitz matrix T' = [C\i—jl]?;:lo ,co = 1, has displacement rank 2

(except when all ¢;,7 # 0, are zero, a case we shall exclude), and a generator for T is
{%0,¥0,(1® —1)}, where x¢o = col{1,¢1,...,cp—1} and yo = col{0,c1,...,cn_1} (the
notation col{-} denotes a column vector with the specified entries),

*

1 0 1 0
c1 c1 1 0 1 C1
(2.3a) T-2TZ* = , . , .
: : 0 -1
Cpn—1 Cn—1 Cpn—1 Cn-1

Now a very interesting and quite early result on the inverse of a Toeplitz matrix
is a celebrated formula of Gohberg and Semencul [92] (see also [86] and [121] for
more accessible references), a special case of which states that the inverse of a real
symmetric Toeplitz matrix T has the form

(2.3b) T-! = L(a)L*(a) — L(b)L*(b) ,

for certain vectors {a, b} (whose exact form is not relevant at the moment). But from
(2.1b) and (2.2b) we now see that 7! satisfies a displacement equation,

_ 1% " " 1 0 a*
(2.3¢) T '-ZT 'Z*=aa*—bb*=[ a b][o —1][b*]'

In other words, though T~ is (in general) not Toeplitz, it has the same displacement
rank and inertia as T, viz., both T and T—! have low displacement rank. As we men-
tioned earlier, it is this fact that is preserved under inversion and not the Toeplitzness
of the matrix.

The striking fact is that this is a special case of a more general result on matrices
with displacement structure.

LEMMA 2.1. The displacement inertia of a Hermitian nonsingular matriz R with
respect to R — ZRZ* is equal to the displacement inertia of its inverse with respect to
R™'— Z*R71Z. That is, Inertia (R — ZRZ*) = Inertia (R~ — Z*R™'Z).

Proof. Consider the identities

R 7z ] _ I o0][R 0 I 07
Z* R'|“|2*R' 1 || 0 R'-Z*R'Z || Z*R' I

_[I ZR][R-2ZRZ* 0 I ZR "
“lo I 0 R'|[|lo I |~

The required result now follows by invoking Sylvester’s theorem that congruence trans-
formations preserve inertia. d

An immediate consequence of the above lemma is a simple justification of the form
of the Gohberg-Semencul formula (2.3b): we know from (2.3a) that for a symmetric
Toeplitz matrix, Inertia (T — ZTZ*) = (1,1). It then follows from Lemma 2.1 that
the inertia of (T~1 — Z*T1Z) is also (1,1). But IT 1] = T~ (since ITI = T)
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and IZ*I = Z, where I is the reverse identity matrix with ones on the antidiagonal
and zeros elsewhere. Hence, Inertia (T~! — ZT~'Z*) = (1,1), which shows that we
can factor T~ — ZT 1 Z* as in (2.3c), for some column vectors {a,b}. Formulas for
{a,b} can be determined with a little more calculation (see, e.g., [49]); numerical
(rather than analytical) procedures for this and more general calculations will be
described in Section 5. However we should remark that there can be many forms of
the Gohberg-Semencul formulas since the generator matrix [ a b | can be replaced
by [ @ b | ©, where © is any matrix such that 0J0* = J, J = (1® —1).

But a more striking aspect of the proof of Lemma 2.1 is that it is independent
of the exact form of the matrix Z! This fact has several interesting implications, of
which the most important is the following result, deliberately first stated in somewhat
vague terms:

The Schur complements of a structured matriz R inherit its displacement struc-
ture. Moreover, a so-called generalized Schur algorithm yields the generators of the
Schur complements.

The second statement will be elaborated at length later (beginning in Section 4). A
more precise form of the first statement (and a generalization of Lemma 2.1) is the
following. First let us replace Z with a general matrix F'.

THEOREM 2.2. The displacement inertia of a Hermitian nonsingular matriz R
with respect to R— F RF™ is equal to the displacement inertia of its inverse with respect
to R~1 — F*R™1F. That is,

Inertia (R — FRF*) = Inertia (R — F*R™'F).

Moreover, if we further assume that F' is block-lower triangular,

[R o
r=|& &)

partition R accordingly with F,

Ri1 Rpo
R= ,
[ Ry1 Ry ]

assume Ry1 is invertible, and introduce the Schur complement S = Rgs — R21R1_11 Rio,
then it holds that

rank (R11 — FiR11 F)) < rank (R — FRF™)
rank (S — F3SF;) < rank (R — FRF™).

Remark: The reader may get more insight into this result by focusing on the special
case | = Z = F5 and F; = 0, which was studied by Morf [144] and Bitmead and
Anderson [26].

Proof. The proof of the first statement of the theorem is similar to that of
Lemma 2.1 with Z replaced by F.
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A proof of the second part of the theorem is as follows: the first inequality follows
immediately since R;; is a submatrix of R. For the second inequality we first note
that

rank (R™! — F*R™'F) = rank (R — FRF*).

We now invoke a block matrix formula for R~1,

—1 -1 _ -1
Rl = [ Ry +ES P ES , E=R{'Ri2, P=RuR,

S-ip st
and observe that S~! is a submatrix of R~1. Hence,
rank (S7!' — FyS™'F3) < rank (R™' — F*R7'F).
But by the first result in the theorem we have
rank (S — F3SFy) = rank (S™' — FyS™'F3).

We thus conclude that rank (S—F3SF5) < rank (R—FRF™*). This proof is patterned
on one in Morf [145], which assumed F' = Z; see also [26]. O

While choices of F' other than Z were noted even in the early papers on dis-
placement structure [114, 115], and further choices were later studied in [11, 24, 30,
75, 81, 88], this freedom was apparently first exploited in the work of Chun and
Kailath [48, 52, 113] on fast factorization algorithms for Toeplitz- and Hankel-like
matrices (see Section 5 below); later we used this freedom for various other problems
in interpolation theory, matrix completion problems, and adaptive filtering (see, e.g.,
[29, 56, 120, 173, 176, 182]).

At this point we might note another early definition of matrix structure. Inspired
by some work of Sakhnovich on integral operators, Heinig and Rost [99] studied
matrices for which VR = FR + RA* had low rank for suitable matrices {F, A}.
Their monograph has many interesting results and references and we shall explore it
in some detail later (Sections 7.2 and 8). One reason for this postponement is that we
shall, in stages, introduce a more general definition that includes both the definitions
mentioned so far. Another reason is that the two definitions are in many senses
equivalent. Thus, in linear system theory, expressions of the form R — FRF* and
FR+ RF* are associated with the Lyapunov equations for discrete- and continuous-
time systems, and these can be transformed into each other by well-known formulas
(e.g., [108, p. 180]); another way of stating this is to say that in the function domain,
these two expressions correspond to systems (operators) studied with respect to the
unit circle or to the (left) half-plane. More on this later in Sections 7 and 8.

Our development of more general definitions of displacement structure arose via
function theory, through a remarkable paper of Schur [185], which entered our work
through the previously mentioned collaboration with P. Dewilde (see [70]). The care-
ful reader will note, as we progress in our discussion, that the links between Schur
complements, complex function theory, and structured matrices become increasingly
strong.

3. The Classical Schur Algorithm. In his paper, Schur was concerned with
checking whether a power series is analytic and bounded in the unit disc. While several
interesting matrix results are also given in the paper (including the famous formula
for the determinant of block matrices), matrix factorization is not really considered;
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rather Schur speaks about reducing a quadratic form to a sum of squares by what he
calls the Jacobi procedure. In fact, this is just Gaussian elimination on the coefficient
matrix, as we shall explain in Section 4 below.

Schur’s paper [185] was motivated by the earlier work of Toeplitz and Carathéodoryj]
on the classical trigonometric moment problem [3]. Toeplitz (1907) showed that
{co,c1,¢2,...} is a moment sequence (i.e., {c;}i>0 are Fourier coefficients of a power

spectral density function) if, and only if, the Toeplitz matrices T} = [c“, jl]fj:o are
positive semi-definite for all k. Carathéodory (1911) connected this condition with

function theory by defining the power series
oo
c(z) =co + 2Zciz’ ,
i=1

and showing that T} > 0 for every k if, and only if, ¢(z) is positive real in the open
unit disc (|z| < 1), i.e., ¢(2) is analytic and Re c¢(z) > 0 in |z| < 1. Schur (1917)
considered the bilinear transformation

_c(2)—co
s(z) = c(2) +co

and noted that c(z) is positive-real if, and only if, s(z) is analytic and bounded by
unity in |2z| < 1 (such functions will be referred to as Schur functions). Moreover,
and strikingly for the times, Schur presented a recursive test (rather than large de-
terminantal expressions) for checking if a scalar function s(z) is of Schur type or
not.

THEOREM 3.1. Consider the following recursive algorithm that starts with a given
function s(z),

(3.1) sit1(z) = % % , so(z) =s(2), and v = s;(0) .
Then the following statements hold [185]
e 5(z) is analytic and bounded by unity in |2| <1 <= || <1 for all i.
e |vi| <1 for0<i<n and|y,| =1 for somen if, and only if, s(z) is a finite
Blaschke product of degree n.
e Starting with a Schur function s(z), each function s;(2) is also of Schur type.

Of course, positive-definite matrices and functions such as ¢(z) and s(z) are en-
countered in many applications. We may remark that the foundations of mathematical
circuit theory were laid in 1931 when Brune [37] characterized the impedance func-
tions of passive circuits as Carathéodory functions c¢(z). Later, especially in micro
wave theory, it was found to be more useful to use the equivalent scattering function
descriptions, which are just the Schur functions, s(z). The coefficients {7;} that char-
acterize Schur functions also have physical significance, leading to the name reflection
coefficients — see Section 3.2. Positive definite (Toeplitz) matrices arise as covariance
matrices of (stationary) random processes, and in this context the coefficients {y;} can
be interpreted as partial correlation coefficients. This interpretation is usually pur-
sued in the context of the Levinson algorithm (see, e.g., [141, 142]); for a discussion in
the Schur context see, e.g., [18, 136, 168]. For reasons of space, in this paper we shall
focus only on the algebraic and function theoretic implications and generalizations of
Schur’s algorithm.



STRUCTURED MATRICES 9

3.1. Array Form of the Schur Algorithm. The function recursion (3.1) is
nonlinear in s;(2), so it is computationally convenient to consider an alternative form,
which will play a key role in later discussions. The alternative representation is often
referred to as an array form [109], because it consists of a sequence of elementary
operations, such as rotations and shifts on an array of columns.

Let us first write, without loss of generality, s;(2) as the ratio of two power series
that are analytic in |2| < 1 and have no common zeros,

For example, we may choose z;(z) = 1 and y;(2) = s;(z). It then follows easily that
(3.1) can be rewritten in the form

vir1(2) _ wi(2) — vizi(2)

zir1(z)  z[2i(2) = wwi(2)] 7

so that we may write

Yir1(2) = o [yi(2) — yiwi(2)]
(3.2) Tiv1(2) = oz [i(2) = v/vi(2)]

where q; is an arbitrary nonzero complex scalar. This additional degree of freedom
in choosing a; can be favorably exploited in order rewrite the update expressions for
Yit+1(2) and z;41(2) in different forms (see, e.g., [25]). But for our purposes here a
most interesting choice is to set

1
&= ——,
V1=l

provided all the {v;} are less than unit-magnitude, an important special case. The
more general case will be studied later in Sections 4.3.1 and 7 (see also [1, 2]) where
s(z) is not assumed analytic in the unit circle).

A justification for the above particular choice follows by noting that we can now
combine the expressions in (3.2) into the form

(3.3a) 2[ 2i11(2) i (2) | = [ 2i(2) wil2) ] O [ g (1) ] ’

where O; is an elementary hyperbolic rotation determined by the coefficient ;,

(3.30) o= 2| 2 ] wmtim 2EL

JimpP L 1 2 2,(2)

[ The name arises from the fact that [ a b ]©; = [ ¢ d | implies |a|? — |b]*> =
lc|*—|d|*>,i.e.,[ @ b ]and [ ¢ d ] areboth on the hyperbola |z|*> — |y|* =constant.
]. The rotation matrix ©; is well defined only when the reflection coeflicients are
strictly less than one in magnitude. If we introduce the signature matrix J = (1&—1),
it is then straightforward to verify that ©; is a J-unitary matrix, viz., ©;J0} = J.
This is a consequence of the above special choice for «;.
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Expression (3.3a) can be given an array interpretation by invoking the power
series expansions of z;(z) and y;(z), say
2i(2) = Tii + Tig1,i2 + Tiy2,i2° + ...
Yi(2) = Yii + Yiy1,i2 + yz’+2,iz2 +....

Let us introduce the two-column (semi-infinite) matrix G; composed of the power
series coeflicients of z;(z) and y;(2), viz.,

Ti; Yii
Titl,i Yi+l,d
(3-4) Gi= | Ziyoi Yiros =[x yi].

The matrices G; will be called generator matrices, for reasons that will be made clear
later, in Section 4.2. Recursion (3.3a) starts by multiplying the prearray Gy by Oy.
Because of the way 79 was defined, this results in a zero element in the first entry of
the second column of the postarray, denoted by Go. That is, with yo = %2¢

oo’

Zoo Yoo Too O
10 Y10 Z10 Y10
GoOg=| T20 Y20 [ @y= | %20 Y20 | =G,.

T30 Y30 Z30 Y30

Next multiplying by

o 1]

corresponds to shifting down the first column of the postarray G by one element
while keeping unaltered the second column, which leads to

Zoo O 0 o0 0 0
Ti0 Y10 ) Zoo Y10 11 Y11

Go=| T20 F20 | | Tio Foo | = | T Yn :[ OGO ]
4 T 1

Z30 Yso Z20 Y30 T31 Y31

Notice that we have, for convenience, renamed the entries of the resulting matrix and
defined G;. It is also easy to see that the entries of the i** row of G; depend only on
the entries of rows 0 through ¢ of Gy = G.

This completes the first step of (3.3a). The recursive procedure now continues as
follows: compute 7y; as the ratio of y;1;1 and z11, multiply the prearray G; by ©; in
order to introduce a zero in the first entry of the second column of the postarray Gy,
shift down the first column of G; and so on. Schematically, we have the following
simple array picture:

r X
(3'53,) G; = P 61—(7;) rog Sﬂ)t 1" ; :[ 00 ]

Git1
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In words:
e Use the top row of G; to define a J—unitary matrix ©; that transforms this
row to the form [ ' 0 |;
e Multiply G; by ©; and keep the second column;
e Shift down the first column of G;0;;
e These two operations result in G-
In matrix language, (3.5a) can be stated as

00 1 0 0 0
(3.5b) [ Cins ]:zci@i[o 0]+Gi®i[0 1],G0=[X0 Yo |,

where Z denotes the (semi-infinite) lower triangular shift matrix with ones on the
first subdiagonal and zeros elsewhere.

We have thus presented three different ways of writing the Schur recursion: the
nonlinear form (3.1) given by Schur, the linearized function form (3.3a), which can
also be rewritten in the so-called generating function form (more on this later in
Section 8),

(363,) ZGH_l (Z) = G,(z)@,(z) ,
where we have defined
(3.6b) Gi(z) = [ 2:(2) wi(2) ] and ©;(z) = O; [ : 0 ] ,

and finally the array or matrix form (3.5b), which will be greatly extended in future
sections.

We have described the generating function and matrix array forms of the Schur
algorithm in some detail for two reasons. First, the array form, (3.5a) or (3.5b), can
be used to show (a result implicit in Schur’s paper) that the Schur algorithm directly
yields the triangular factorization, not only of positive-definite Toeplitz matrices, but
of a more general class of structured matrices. More specifically, and for notational
convenience, if we also denote the first n entries of the semi-infinite columns xo and
Yo by x¢ and yyg, respectively, then the first n steps of Schur’s recursion will be shown
(in the next section) to provide the triangular factorization of n x n positive-definite
structured matrices R of the form

(3.7) R = L(x0)L*(x0) — L(yo)L*(y0) ,

which we may recall (cf. (2.1b)—(2.2b)) corresponds to R having displacement inertia
{1,1}, ie.,

R —ZRZ* = xox§ — Yoy -
In the special case,
xo = col{l,¢c1,¢2,...,¢n-1}, Yo =col{0,c1,¢2,..-,¢n-1},

we saw earlier (see (2.3a)) that R = [c,-_j]:;:lo is Toeplitz, so that (3.7) is a natural
generalization of Toeplitz matrices, which we have called quasi-Toeplitz [130]. Another
reason for the name is an identity also found in Schur’s paper that R in (3.7) can be
expressed in the form

R =L(x0 — yo) T L*(x0 — ¥o) ,
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where T is the easily determined Toeplitz matrix,

T = L L (x0 - y0)L(%0 + ¥0) + L*(x0 + y0)L (%0 — ¥0)] -

2
That is, every R in (3.7) is congruent, via a special congruence relation, to a Toeplitz
matrix. The paper [65] contains more on such matrices.

In fact, we can generalize the various forms of the Schur algorithm to show that the
algorithm and the associated matrix factorization result can be extended to matrices
with any displacement inertia {p, ¢}, and in fact to even more general cases where Z
is replaced by an arbitrary lower-triangular matrix F'. Perhaps the most direct way of
doing this is to consider afresh the problem of triangular matrix factorization, which
is basically effected by the Gaussian elimination technique. Adding displacement
structure allows one to speed up the Gaussian elimination procedure and can be
shown to lead to the above algorithm of Schur and to various generalizations.

3.2. Cascade/Transmission Line Interpretations and Inverse Scatter-
ing. Before proceeding to do that, however, it is worthwhile to draw attention to a
cascade network/transmission line interpretation of the Schur algorithm, discussed in
some detail in references [34, 35, 109]. We shall describe simple physical arguments
based on causality that show that the Schur algorithm arises as perhaps the most
natural way of solving the inverse scattering problem for discrete transmission lines.
For those familiar with the signal flow and block diagram representations used by
engineers, the transmission line interpretation gives a lot of insight, and suggests new
results and new proofs, for a surprisingly diverse set of problems. For example, ref-
erences [34, 35] show how the transmission line picture gives nice interpretations of
the classical Gelfand-Levitan, Marchenko and Krein equations, and in fact yields var-
ious generalizations thereof; reference [36] discusses discrete Schrodinger equations.
Several other applications will be indicated later.

We shall first explain how the generator recursion (3.5b) can be graphically de-
picted as a cascade of elementary sections as shown in Figure 3.1, where we have

defined v§ = /1 — |vi|%.

1 1
~c ~c
-+ T20, 10, L00 \/P’YO D } =D
—%0 N
* *
y y Y Y% ‘ —MN ‘
) 207 10) 00 /w T ‘ T
76 75

F1G. 3.1. The feedforward structure (cascade network) associated with Schur’s recursion.

Each section consists of a hyperbolic rotation ©; followed by a unit-time delay (or
storage) element denoted by D. The cascade represents a feedforward (and pipeline-
able) implementation of the array algorithm, where the entries of the two columns of
Go (x¢ and ygo) are available at the input lines of the first section. By reversing the
direction of flow in the lower line, we get a physical lossless discrete-time transmission-
line, as shown in Figure 3.2, where each section is now composed of a unitary gain
matrix X; (X;XF = I) followed by a unit-time delay element,

Zi:[ 75 ’YZ]
Y Y
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Yo T Vi '
-» 20, 10, Loo D D
o~ o~
7 . 7 -
-5 Y20, Y10, Yoo C& To CR/ n

Y Y

F1G. 3.2. The feedback structure (transmission line) associated with Schur’s recursion.

A physical motivation and derivation of a layered medium structure as in Fig-
ure 3.2 can be given by showing that it corresponds to a discretization of the wave
propagation (or telegrapher’s) equations in an electromagnetic medium with varying
local impedance; the relevant details can be found, for example, in [109]. The name
reflection coefficients for the Schur coefficients {7;} arises from the picture in Fig-
ure 3.2; at each section, a fraction v; of the incoming signal is reflected and the rest,
7§, is transmitted.

The following so-called inverse-scattering problem can then be associated with
such layered media: given an arbitrary pair of input-response sequences of a layered
medium as in Figure 3.2, say {..., Z20, %10, Zoo } and {...,¥20, Y10, Yoo }, determine the
medium (or reflection) parameters {7o,y1, Y2, - - -}, under the assumption that the line
was initially quiescent. As mentioned above, this is a prototype of a famous problem,
which has been attacked in many ways. The most widely known are methods using
special choices of input sequences, based on which the inversion problem is shown to
be equivalent to the solution of sets of linear equations, special forms of which are
famous as the Gelfand-Levitan, Marchenko and Krein equations of classical inverse
scattering theory (see [34, 35]). Here we wish to indicate how a very natural solution
of the inverse problem follows as a consequence of the easily verifiable “causality” of
the transmission-line; moreover that this is just the Schur algorithm.

First remark that the storage elements D in the upper line act as unit-time delay
elements between two successive layers. The subindexes in {z;o,y o} indicate that
these are the input and response samples available at the left-end of the line (or at
the first section Xg) at time j. Now, the output at time 0, ygo, is clearly equal to
YoZgo since no signal is fed back through the bottom line due to zero initial conditions
in the layered structure and to the presence of the delay element between the first
two sections. This argument can easily be extended to prove that, for a quiescent
transmission-line, the output at time j, namely y;9, depends only on the inputs up to
and iIlCllldiIlg time j, ViZ., {.’L‘jo, Zj—1,0,---,T10, xoo}.

Now consider again Figure 3.2 and assume that zgo enters the line at time 0. The
causality property shows that there will be no left-propagating wave response from
the line for at least one-time unit. Therefore, we can conclude that

Yoo
Yo=—.
)

At time 1, z19 will enter the line and, by definition, z11 will be the right-going input
of the second section of the discrete transmission line, and y;1 will be the left-going
output. (The subindexes in {z;;,y,;} indicate signals at time j that are available at
the left-end of the i*" section). As before, the line being initially at rest and the delay
structure will mean that there will be no left-going input to this (second) section until
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at least time 2. Therefore, we can conclude that

_um
4! 11 y
and in general y; = yi;/Zs;.

This is nice but, of course, we are only given the input-response sequences at the
left-most end of the line, viz., {z 0,y 0, j > 0} not the waves {z;;,y;i, j > i} at any
intermediate section i. Here is where we can appeal to the equivalent (direct) cascade
of Figure 3.1, which shows how to use the {©;} to propagate the {z;o,yj0, j > 0}
pair into the line. In other words, having 79, we can form ®( and then use it to obtain
(cf. (3.5b))

0 0 Too Yoo Too Yoo

T11 Y11 Z10 Y10 0 0 Z10 Y10 1o

T21 Y21 — T20 Y20 T20 Y20
90[01]+Z @0[00].

T31 Y31 T30 Y30 T30 Y30

With {z;1,y;1, j > 1} available, we can find 7, and then obtain {z;2,y,2, j > 2} by
applying ©; to {z;1,y;1, j > 1}, and so on.

In summary, this identification scheme takes the scattering data {z;o,y;j0} and
uses them to identify the first section of the medium; and it then replaces the original
data by a set of “synthetic” scattering data corresponding to the yet undetermined
part of the medium. Hence, the name layer peeling is often used for this procedure,
which the reader can check is precisely the array form of the Schur algorithm. It is
striking how naturally it arises as a direct physical solution of the inverse scattering
problem. Of course, it therefore may not be a surprise to learn that geophysicists had
already discovered this direct method, which they dubbed as dynamic deconvolution
or sometimes, as downward continuation (see, e.g., [38, 167]). The alternative linear
equations method turns out to have the physical interpretation of layer adjoining,
rather than layer peeling. However, we shall forego a description here, referring in-
terested readers to [34, 35], and to [162, 163] and [33, 54, 55|, where the ideas are
applied to problems in digital filter design and algebraic coding theory, respectively;
it is also explained why the layer-peeling algorithms are better suited to parallel im-
plementation. Transmission line interpretations will be encountered again in studying
interpolation problems in Sec. 6.1.1.

4. Several Extensions of the Array Form Schur Algorithm. We now re-
turn to our earlier claim that the classical Schur algorithm factors structured matrices
as in (3.7). The above transmission line picture can be used to give a physical proof
of this fact based on the energy conservation principle — see [109, 112]. However, for
further development, it will be better to pursue a more algebraic route. For this,
we shall first review the Gaussian elimination procedure and then proceed to show
that it collapses to Schur’s recursion when the structure implied by (3.7) is properly
incorporated into the calculations. Once this is established, we shall move on to grad-
ually generalize Schur’s recursion and to consider more general classes of structured
matrices.

4.1. Triangular Factorization. The well-known procedures for the triangular
factorization of a strongly regular (Hermitian) matrix (i.e., a matrix with nonzero
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leading minors), R = [rmj]:‘n_,jlzo , 80 by many names: Jacobi, Cholesky, Schur reduc-
tion, etc. In fact, they are all effectively just Gaussian elimination (see, e.g., [189]).

It is well-known that the assumption of strong regularity of R guarantees the
existence of a triangular factorization of the form R = LD~!'L*, where L is a lower-
triangular matrix with the same diagonal entries as the diagonal matrix D (see also
[82, 94]). Equivalently, if we introduce the normalization

L=LD,

then we can also express R in the alternative factored form R = LDL*, where the
lower triangular factor L now has unit diagonal entries. This latter factorization is
perhaps more common but, in any case, the columns of L and L are simply scaled
versions of each other and it therefore does not matter whether we work with L or L.
Here we prefer to work with L, because, as suggested by our later expression (6.3a),
its columns will have a natural interpretation as the states of first-order sections.

Now, the columns of L and the diagonal entries of D can be recursively computed
as follows. Let [y and dy denote the first column and the (0, 0) entry of R, respectively.
If we subtract from R the outer product lod; ‘I, we obtain a new matrix with an
identically zero first row and column. That is,

1% 0 o ~
(4.1a) R —1lody'ly = [ 0 R ] =R,
n—2
where R; = [TS;:I - is called the Schur complement of 799 in R. In the past (see,
m,]=
e.g., [133]), we have called (4.1a) a Schur reduction step; it can now be repeated to

n—3

compute the Schur complement Ry = [r%] of r(()}]) in Ry, and so on. Each

m,j=0
further step corresponds to a recursion of the form

0 o R
(41b) [ 0 Ri+1 ] —Rz lzd, lz ’

where d; = r(()zo) (the (0,0) entry of the i** Schur complement R;), and I; denotes the
first column of R;.

Hence, starting with the n X n matrix R and performing n consecutive Schur
complement steps, we obtain the triangular factorization of R, viz.,

*

0 0

(4.1c) R:lgd0‘113+[lo ]d;l [lo ] +10|d'| 0] ...=1LD'L",

1 1 I I
where D = diagonal{dp,...,d,—1}, and the (nonzero parts of the) columns of the
lower triangular matrix L are {lo, . . ., l,—1 }. This procedure requires O (n?®) elementary

operations (additions and multiplications).
The connection with triangular factorization can also be seen by rewriting (4.1a)
as

R = lod; 1§ + [g A ] ,

B 0 dyt o 1
o K | |
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If we partition the entries of Iy as lp = col{do,to}, where to is also a column
vector, then the last equality can be written as

ro| 1 0 do 1 o 1
| todyt Iy R tody' In_1 | 7

or, equivalently, as
1 0 _[do 01"
i ]2 R ]

This explains why (4.1a), which we called Schur reduction, is the same as Gaussian
elimination. We should note that the above procedure can readily be extended to
strongly-regular non-Hermitian matrices yielding the so-called LDU decompositions;
according to Stewart [189], it was Alan Turing who in 1948 first made explicit the
connection between Gaussian elimination and triangular factorization.

We may finally remark that the requirement of strong regularity can be relaxed.
Indeed, if it happens that the (0,0) entry of R; is zero and if the first column of
R; is also identically zero, for some 7, then we can still proceed with the Gaussian
elimination procedure by setting, for example, d; = 1 and [; = col{0,0}. This trivial
case will be excluded from our future discussions. Before proceeding, we note that
the quantities {d;, !;} will often be used below, so their definitions are worth keeping
in mind.

4.2. Incorporating Quasi-Toeplitz Structure. We now impose a quasi Toeplitzli
structure on R, as defined in (3.7). That is, we consider positive-definite matrices R
that satisfy the displacement equation

1 0

(42&) R—-ZRZ* = [ Xo Yo :| [ 0 -1

] [ X0 ¥o ]* = GoJG, say .
As expected from Theorem 2.2, we shall see that the Schur complement R; inherits
the displacement structure of R, i.e., that there exists G; of size (n —1) X 2 such that

(4.2b) Ry - ZR Z* = G, JGS,

where, by an excusable abuse of notation, the shift matrix Z is now of size n — 1.
Moreover, G; can be directly computed from Gy (without explicit knowledge of R),
which will require only O(n) elementary computations, unlike the O(n?) needed if we
work with R.

Finally, we shall see that the procedure for going from Gy to G is exactly that
given by the first step of the Schur recursion (3.5a), except that now we need only
work with the first n rows of Gg. It is to make this connection that we assume (in
this section) that R is positive-definite and so, of course, strongly regular.

The above claims can be proved in several different ways, e.g., by checking that
the first n rows of the recursion (3.5b) define a matrix G that satisfies (4.2b). We
shall proceed as follows. We first use the nonuniqueness of Gy in (4.2a) to replace it
by a matrix in what we shall call proper form; this will then simplify the calculation
of Gl.

More specifically note that we can replace G in (4.2a) by Go©¢, where QO is any
J-unitary matrix, i.e. , ©9JOg = J. In particular, we can choose

1 I =%
©g = \/ﬁ [ — 1 ] )
170l 0
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where 7y, is the ratio of the entries of the first row of Gy = [ Too Yoo ], i.€e.,

Yo = yoo/ﬁoo-

The fact that |yo| < 1 follows from the observation that the (0,0) entry of R can be
seen from (4.2a) to be equal to |zoo|® — |yoo|?, which has to be positive because R is
positive definite. It is now easy to verify that

[ oo oo |©@o=[d 0]

where [50|2 = |Z00|? — |yoo|?, so that Go®¢ = G will have the form

do 0
- T Yu o
Go©y =Gy = To1  Jo1 = [ Xo Yo ] , Say.

A generator of this form will be said to be proper. One consequence of properness is
that from the equation

R—ZRZ* = GoJG} = GoJ G

we can conclude that [y, the first column of R, is given by
*

lozéo[ 6)]2 0Xo

and also that dp, the (0,0) entry of R, is given by dy = |6|?>. Now we are ready to
explore the displacement structure of

=~ 1% 0 0

In fact,
Ri — ZRiZ* = R — lody 'l — Z(Ro — lodg *13) Z*
= GoJ Gy — lody 13 + Zlody '15 2
= XoXy — Yo¥o — XoXjy + ZXoXyZ*
=[2Z% §o]J| Z% 0]

0 01"
-la]ilal =

where the last equality uses the fact that the first entries of the columns {Z%o, ¥o}
are zero. Now from the definition of R; we we conclude that

Ry — ZR12* = G1JG?,

so that {G1,J} is a generator for the Schur complement R;. Note also that G is
obtained directly from Gq via the operations

~ _ _ 0 _ _
Go©o=Go=[ %0 o |, [Gl]Z[ZXO Yo |,
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or, equivalently,

But this is exactly what we get from the first n rows of the array form of Schur’s
recursion (3.5a) or (3.5b).

Now we can clearly repeat this procedure to get the next Schur complement and
so on. In summary, we have the following result.

THEOREM 4.1 (The Classical Schur Algorithm in Array Form). Consider an
n X n positive-definite quasi- Toeplitz matriz R,
1 0
0 -1
The successive Schur complements of R with respect to its leading i X i submatrices
are also quasi-Toeplitz,

R, — ZR,Z* = G;JG; , Zis now (n—1) x (n—1),

R—ZRZ*:G[ ]G*,Zisnxn.

with generator matrices G; obtained by the following recursive construction: start with
Go = G and repeat for i > 0:
1. Let g; = [ Tii Y ] denote the first row of G; and define the hyperbolic

rotation ©;,
1 — s .
®’L = [ 1 * 71 ] ) 71 = & ’
Vil -1 Tii
that rotates g; to the form
g,@i = [ 51 0 ] .

2. Multiply G; by ©; and keep the last column of G;0;;
3. Shift down the first column of G;0; by one position;
4. This provides Gi41.

In matrix form we have

0 1 0 0 0

Moreover, the (nonzero parts of the) columns of the triangular factor L of R =
LD7'L*, and of L in R = LDL*, are given by

* 1 o1 01
li = 51Gz@z [ 0 :| and li = E_G,@, [ 0 ] y
while
D = diagonal {d;} , d; =|6;* .

This theorem justifies our earlier claim that the classical Schur algorithm gives a
recursive procedure for the triangular factorization of (positive-definite) quasi-Toeplitz
matrices, and in particular, of Toeplitz matrices. In linear algebra, the special result
for Toeplitz matrices has been often rediscovered in different contexts, e.g., by Bareiss
[22], Morf [144], Rissanen [166], LeRoux and Gueguen [129]; the connection with
Schur’s work was first made in [70] and more explicitly in [133].
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4.3. Extensions of Displacement Structure. The striking fact is that the
above results can be extended to matrices with quite general displacement structure.
As first noted in [52], an extension that can be immediately handled by the arguments
given so far is that of n x n Hermitian positive-definite matrices R that obey the
displacement equation

R—-FRF*=G [ L 0
0 I,

| S ——
J

] G* , F strictly lower triangular.

The choice F = Z,p=1=gand G=[ X0 yo | corresponds to (4.2a). It turns out
that the procedure of Theorem 4.1 generalizes in a very natural way to this case: the
dimensions of the successive generators G; change from (n — 1) x 2 to (n — 1) x r,
r = p+ ¢, and the generator recursion changes to

0 1 0 0 0
(4.38,) [ Gi+1 ] = F;G;0; [ 0 0, , :| + G;0; [ 0 I, :| ,

where F; is the submatrix obtained from F; ; by deleting its first row and column
(with Fy = F), and ©; is any J—unitary rotation matrix that annihilates all the
entries of the top row of G;, denoted by g;, except for a single entry in the first
position,

(4.3b) 91912[61 0 ... 0].

Section 4.4 further expands on this particular point and shows that such a ©; can
always be found. That is, G;;1 in (4.3a) is obtained as follows:

1. Multiply G; by ©;;

2. Keep the last r — 1 columns of G;0;;

3. Multiply the first column of G;0; by F;.
Moreover, the columns of the triangular factor of R are given by

(4.3¢) li=6;G;0; [ (1) ] , di =167

The proof of the above facts follows precisely the same steps as in Theorem 4.1
and will not be given here. The only issue that remains to be explained is how to
achieve (4.3b). This can be done in several ways, with one method being described
in detail in Section 4.4.

4.3.1. Replacing Positive-Definiteness with Strong Regularity. The as-
sumption of positive-definiteness can be replaced in a fairly straightforward way by
the assumption of strong regularity. As one may expect, in this case (4.3b) will be
slightly modified (as in (4.5b) below). Somewhat more work is required to allow F'
to be lower-triangular rather than strictly lower triangular. So let us now consider
strongly regular n x n Hermitian matrices that obey the displacement equation

I, 0
0 -1,

J

(44a) R—-FRF*=( [ ] G*, p+q=r, F lower triangular ,

and where it is further assumed that the diagonal entries of F' satisfy

(4.4b) (1-fiff)#0
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for all 4, 7, so as to guarantee a unique solution R of (4.4a). The triangular factoriza-
tion of structured matrices as in (4.4a) can be obtained as follows.

THEOREM 4.2 (A Generalized Schur Algorithm in Array Form). Consider an
n X n strongly-reqular matriz R as in (4.4a) and (4.4b). The successive Schur com-
plements of R with respect to its leading i X i submatrices are also structured,

(4.5a) R, — F;R;F} = G;JG}, F;is (n—1i) x (n—1),

where F; is the submatrix obtained from F;_, by deleting its first row and column,
and the generator matrices G; obey the following recursive construction: start with
Go = G, Fy = F and repeat for i > 0:

1. At step i we have G; and F;. Let g; denote the top row of G;;

2. Choose any J—unitary rotation matriz ©; that annihilates all the entries of
gi except for a single entry: this entry has to be in the first p positions if g;Jg; > 0,
and in the last q positions if g;Jg; < 0 (strong regularity rules out the case g;Jg¥ = 0).
So let (this is further detailed in Section 4.4)

(4.5b) 9©;=[0 ... 0 6 0 ... 0],

where the nonzero entry is, say, in the j** position.
3. Compute Giy1 as follows:
3.1. Multiply G; by ©;;
3.2. Keep all columns of G;0; unchanged except for the j*" column;
3.3. Multiply the j** column of G;©; by ®;, where ®; is the “Blaschke”
matrix,

®; = (F; — filp—i)(In—s — f{ F})™".

3.4. This provides Giy1.
Note that for strictly lower F we have f; = 0 and, consequently, ®; collapses to F;.
In matrix notation, the procedure is

0 0, 0 0 I, 0 0
(4.5C) [ G, ] = &,G;0; 0 1 0 + G;0; 0 0 0
i+l 0 0 0, 0 0 I, ;4
4. The triangular factorization, R = LD~1L*, is determined by
0 55642
(4.5d) Li=6;(In_i — f{F;)7'Gi©®J | 1 | and dj = 21—
0 1- |fz|

Proof. The proof can be carried out by following similar steps to what we have
done before, as we readily demonstrate for the first Schur complement

_ [0 o0 L
Rl:[o Rl]:R_lodOIZO'

The claim is that R; is also structured with a generator equal to the matrix G1
obtained after the first step of (4.5c), viz., Ry — F1 R1 F} = G1JG%. We can do this
by showing that

Ry — FRUF* = (R—lodg'I3) — F (R — lody*I3) F* = [ ; ]J[ 0 ] ,
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or equivalently, replacing R — FRF™ by GJG*, that

* —1 7% —1 7% % 0 0 *
(4.6) GJG —lody 15 + Flodg ' I§F* = [ G ]J[ G ] :
GJG*

We may as well replace GJG* by the term GJG*, where G = GO is the so-called
proper generator matrix that results after applying © to G. Its first row has only one
nonzero entry and we denote its columns by

~ [ 0 0 _ 0 0 :|
G = _ cee _ W _ e _ s
w1 Wij—1 Wi+l Wptg

where the top entry of W; is nozero. This allows us to write

o pt+q 0 0 *
GIG =GJIG = Y [W ]J[w] + Wi w
i=1
L #

where J;; indicates the 7t diagonal entry of J: it is equal to 1 for the first p positions
and equal to —1 for the last ¢ positions. Moreover,

o= (I — fyF) "0y 03505 do = J1%0
0 293770 » 1— |f0|2

Substituting the above expressions for GJG*, [y and dy into the left-hand side of
(4.6) we obtain that it evaluates to the following

p+q 0 0 *

> [ &, ]J [ g ] + Bow; Wy,
i=1

i £

where &, = (F — foI)(I — f;F)~'. The above expression can be factored as
0 0]
e lela ]

[0 ]_[ 0 0 B 0 0
G1 w1 T Wil O Wi T W

where

This is clearly equivalent to the matrix description (4.5¢). O

We note again that the algorithm in Theorem 4.2 reduces to the classical Schur
algorithm when F' = Z,p = 1 = q. However, whether it is a fast O(n?) algorithm in
the general case depends upon the nature of the matrix F. If F' is such that matrix-
vector products F'x require only O(n) or O(nlogn) operations, then there will be
a computational reduction. Fortunately, this appears to be true in many important
applications. For example, in interpolation problems [29, 176, 182], F is usually in
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Jordan form, for which we may recall the following well-known formula: when F' is a
single Jordan block, with f; on the diagonal, then

B(fo)

B®) B
@ = (F— fol)(I — 7)™ = (o) B

BV (£,) BO(fo) B(fo)

where
2 — fo
B =
=17

is the elementary Blaschke function associated with fo, and B (z2) = d* B(2)/dz".

4.3.2. Terminology: Generalized Schur Algorithms. The above fast al-
gorithms for triangular factorization of strongly regular matrices were obtained by
combining the standard Gaussian elimination (also called Schur reduction) method
for triangular factorization with the concept of displacement structure. For simplicity
we presented a hierarchy of algorithms (for F' = Z, F strictly lower triangular, F' lower
triangular), each of which reduces to (the array form of) Schur’s original algorithm
when applied to (quasi-) Toeplitz matrices. We shall use the generic term “Generalized
Schur Algorithms” for all such algorithms (those above and several others to be pre-
sented later), because they are all based on the key fact that displacement structure
allows us to speed up the computation of Schur complements (and successive Schur
complementation is equivalent to triangular factorization).

This may be a good place to mention that the above results can be extended to
strongly regular non-Hermitian matrices obeying displacement equations of the form

R - FRA* = GJB*,

where F and A are n x n lower triangular matrices, and G and B are n X r (generator)
matrices. The r X r signature matrix J can be incorporated into either G or B. But we
often keep it explicit in order to make the analogy with the Hermitian case as close as
possible. Every such matrix admits a triangular factorization of the form R = LD U,
where L is lower triangular and U is upper triangular with identical diagonal entries,
equal to those of D. We shall not give the results at this time, because in Section 7 we
shall consider the more general displacement equation studied by Kailath and Sayed
[120, 175]

QRA* — FRA* = GJB",

where {Q, A, F, A} are lower triangular matrices.

Here instead, we shall take care of some unfinished business, viz., showing how to
obtain proper generators. However, we should remark here that the issue of properness
is important only because we wished to generalize the array form (3.5a) of the classical
Schur algorithm. The other forms of the Schur algorithm can be generalized as well,
and will give us algorithms that include the array algorithms as special cases — see
Section 7.
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4.4. Proper Generator Matrices. The first step in the algorithm of Theo-
rem 4.2 is to reduce the given generator G; to a so-called proper form, say G;, in
which the top row of G; contains only one nonzero element.

The existence of proper generators can be argued in several ways, one of which
is based on the following simple, yet powerful, matrix result that plays an important
role in the derivation of square-root algorithms (see, e.g., [173]). We include a simple
proof for completeness.

LEMMA 4.3. Consider two n x m (n < m) matrices A and B. If AJA* = BJB*
is of full rank, for some m x m signature matriz J = (I, ® —I;),p+q = m, then there
exists an m x m J—unitary matric © (0J0* = J) such that A = BO.

Proof. One proof follows by invoking the hyperbolic singular value decompositions
of A and B (see, e.g., [151]), viz.,

Say 0 0 O
0 0 T4 0

g+ 0 0 0

A=Ua 0 0 Sz_ 0

:| VX 5 B = UB [ Vg ’

where U4 and Up are m X n unitary matrices, V4 and Vg are m x m J—unitary

matrices, and ¥4 4,X4_, Xp 4, and X4 _, are p' x p', ¢' x ¢/, p' x p', and ¢' x ¢

diagonal matrices, respectively, with p’' + ¢/ = n. It further follows from the full rank

condition and the equality AJA* = BJB*, that ¥4, = ¥p 4, ¥4, = ¥p _, and

that we can choose Uy = Ug. Let © = JVpJV then ©JO* = J and BO = A. 0
Now assume we are given a generator G; for the i*" Schur complement R;,

R, — F;R;F} =G;JG;, J=(I, 1) .
Comparing the (0, 0) entry on both sides leads to the equality,
di(1 — |fi*) = giJg;

where g; is the top row of G; and d; is the (0,0) entry of R;. The strong regularity
of R guarantees d; # 0, which means that g;Jg;} is either a positive or a negative
real number. Let us first assume that g;Jg; > 0, which is certainly the case with the
algorithm of Section 4.3. It then follows that we can write

*

o3 "
[5z 0]J[6]=gi«79i,

where §; is a square-root of d;(1 — |f;|?). This fits into the statement of Lemma 4.3
and we conclude that there exists a J—unitary rotation matrix ©; that reduces g; to
the form

gz@,=[5z 0].

Consequently, the generator matrix G;0; will be proper. It is also clear that the
nonzero entry §; could have been placed in any of the first p positions of the prearray.

We now consider the case g;Jg; < 0, which may occur when R is strongly regular
but not necessarily positive-definite as in Section 4.3.1. It then follows that we can
write

0 .
[0 617] ;1 ] =aai.

7
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where §; is a square-root of —d;(1 — |fi|?). This again fits into the statement of
Lemma 4.3 and we conclude that there exists a J—unitary rotation matrix ©; that
reduces g; to the form

9©;i=[0 & |,

which again yields a proper generator G;0;. It is also clear that the nonzero entry
could have been placed in any of the last g positions of the prearray.

The rotation matrix ©; can be implemented in a variety of ways: by using a
sequence of elementary Givens and hyperbolic rotations [94], Householder transfor-
mations [161, 27], as well as square-root and division-free versions of the elementary
rotations (see, e.g., [84, 103]).

4.4.1. Elementary Circular and Hyperbolic Rotations. An elementary
2 x 2 unitary rotation © (also known as Givens or circular rotation) takes a row vector
x =[ a b | and rotates it to lie along the basis vector [ 1 0 ]. More precisely, it
performs the transformation

(4.7a) [a b]O=[£\[aP+[b]> 0 ].

The quantity +4/|a|? + |b|? that appears on the right-hand side is consistent with the
fact that the prearray, [ a b ], and the postarray, [ ++/]al2+ (b2 0 ], must have
equal Euclidean norms. An expression for © is given by

1 1 ¥ b
4. e — h = — .
(4.7b) (] EmE [ o1 ] where 7=, a £0

In the trivial case a = 0 we simply choose © as the permutation matrix,
01
o= [ 01 ] .

We should also note that, in the special case of real data, a general unitary rotation
as in (4.7b) can be expressed in the alternative form:

c s
o=[¢ =]

where the so-called cosine and sine parameters, ¢ and s, respectively, are defined by

1 Y
C=—F— , §= —F/———.
VIt V1t

This justifies the name circular rotation for O, since the effect of © is to rotate the
original vector x along the circle of equation z> + y? = |a|? + |b|?, by an angle 0
determined by the inverse of the above cosine and/or sine parameters, § = tan=! 1,
in order to align it with the basis vector [ 1 0 ]. The trivial case a = 0 corresponds
to a 90 degrees rotation in an appropriate clockwise (if b > 0) or anti-clockwise (if
b < 0) direction.

On the other hand, an elementary 2 x 2 hyperbolic rotation © takes a row vector
x = [ a b ] and rotates it to lie either along the basis vector [ 1 0 | (if |a| > [b])
or along the basis vector [ 0 1 ] (if |a] < |b]). More precisely, it performs either of
the transformations
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(4.8a) [a b]O=[£[aP-[p2 0] if |a|>[b],

(4.8b) [a b]O=[0 £/[p?—laf?> ] if |a| <|b].

The quantity 1/£(]a|? — |b|?) that appears on the right-hand side of the above ex-
pressions is consistent with the fact that the prearray, [ a b ], and the postarrays
must have equal J—norms. By the J—norm of a row vector x we mean the indefinite
quantity xJx*, which can be positive, negative, or even zero. Here,

J:[(l) _01]:(1@—1).

An expression for a J—unitary hyperbolic rotation © that achieves (4.8a) or (4.8b) is
given by

_ 1 1 —x b
(48C) 0= TW [ —’7* 1 ] where Y= E , a # 0 y |a| > |b| ,
— 1 1 =Y x_ a

We should also note that, in the case of real data, a general hyperbolic rotation as in
(4.8¢) or (4.8d) can be expressed in the alternative form:

ch —sh
6_[—sh ch] ’

where the so-called hyperbolic cosine and sine parameters, ch and sh, respectively,
are defined by

th=—= , sh=——=.

1=y L—|yl?
This justifies the name hyperbolic rotation for ©, since the effect of © is to rotate the
original vector x along the hyperbola of equation z? — y* = |a|> — |b|?, by an angle
0 determined by the inverse of the above hyperbolic cosine and/or sine parameters,
6 = tanh™* 7, in order to align it with the appropriate basis vector. Note also that the
special case |a| = |b| corresponds to a row vector x = [ a b | with zero hyperbolic
norm since |a|? — |b|> = 0. It is then easy to see that there does not exist a hyperbolic
rotation that will rotate x to lie along either bases vectors.

4.4.2. An Example. Consider, for example, a 4—column (real) generator ma-
trix G along with a 4 x 4 signature matrix J,

a b ¢ d
T T T T 1
G=|7 = z 2 J= 1
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and assume that we are interested in applying a J— unitary transformation © to G
in order to align its first row along the basis vector eg, viz., we want

6 0 0 O
xl
Go=|2 2 2 =

2 2 2 I

Then one way to achieve this, among many possible options, would be the following:
we first annihilate the b entry by using a circular rotation that leaves unchanged the
last two columns of the prearray,

@ @ c d ap 0 ¢ d
z z T z € S0 # # z oz
T z T T S0 —Co _| # # =z =z
1 .
1
T r T # # z oz

We then annihilate the d entry by using a second circular rotation that leaves un-
changed the first two columns of the prearray,

a0 [d] : jé i e 0
# # z oz *ook
# # ¢ =z 1 = | # # = x
. . . . C1 S1 .

T PR—— S
# # zx z # # ox x

We finally annihilate the c¢; entry by using a hyperbolic rotation, which leaves un-
changed the second and fourth columns of the prearray (assuming |c1| < |a1]),

0 0 5 0 0O
#o# ok x cha —sh y # y *
#o#F ok x 1 _ |y # y *
. —shy chy e
: : 1 Do
# # # oy *

The parameters that define the previous rotations are clearly given by
a b
=T, S0 Y/
Vlal? + b2 Vlal? + b2
c d
= ——F— 1= —F———s>
Vlel? + 1d]? Vlel? + 1d]?
ai C1

chi = ——= shi = —————.
ViaP =lal Ve —lal?
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4.4.3. Rotations for the Non-Hermitian Case. In future sections, especially
when we deal with non-Hermitian structured matrices, a pair of rotation matrices will
sometimes be needed in order to convert generators to proper form. We first focus on
elementary 2 x 2 rotation matrices that are required to satisfy the relation

(4.9a) or =1.

More specifically, consider two row vectors x = [a b ] andy = [ ¢ d ], and
suppose that we are interested in determining two matrices ® and I' that satisfy
(4.9a) and such that they perform the transformations

(4.9b) [a b]@=[a 0] , [c d]T=[8 0].

Tt follows from (4.9a) that the scalars o and 8 should satisfy the equality a8* =
ac* + bd*. We further assume that ac* + bd* # 0, which will be guaranteed by the
strong regularity assumption throughout the paper . Expressions for © and I' that
achieve (4.9b) can be chosen as follows:

(i) If a # 0 and ¢ # 0 then define v = b/a, A = d/c and write

_ 1 1y I I )
=1~ [A* —1]’ F_[’r* —1]'

(ii) If @ = 0 and ¢ # 0 then d is necessarily nonzero because of the condition
ac* + bd* # 0. We can, therefore, choose © and T as follows

a1 0 1 c
@-[ 1 O]’ I‘—[l —a]’ where a_g.

(iii) If a # 0 and ¢ = 0 then b is necessarily nonzero, and we choose

0 1 a* 1 a
@-[1 —a] ,F—[ 1 O],where a_g.

If we instead want to determine rotation matrices © and I that satisfy @JT™* = J,
where J is a signature matrix, and J2 = I, then this is equivalent to requiring

eUJrJ) =1,
——

T+

which shows that we can reduce the problem to that of determining two rotations ©
and T as in (4.9a).

4.4.4. Householder Reflections. We have described the use of elementary ro-
tations in some detail. As is well-known, elementary (Householder) reflections can
also be used (or a mixed sequence of rotations and reflections). Reference [61] dis-
cussed the use of Householder reflections in the Hermitian case. But since it is less
familiar, here we shall briefly describe non-Hermitian Householder matrices [48]. Let
u and v be two row vectors. A matrix of the form

O =1-2u'v, with uv* =1,

will be called an elementary Householder matrix; it reduces to the usual (unitary)
Householder matrix when u = v. Note also that ® = ©~!. Now consider two row
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vectors X and y and assume we want to determine a non-Hermitian Householder
matrix © so as to reduce them to two other vectors x' and y’, say

x' =x0, y =yo0*.

For this to be possible, it is clear that we must have x'y'* = xy* and x'y* = xy'”

We can determine © (i.e., u and v) as follows. Note that
x' =x—-26v and y =y —23nu,
with 8; = xu* and (B2 = yv*, so that

v=(x-x)/261, u=(y-y')/26.

Therefore,

Br=xu" =x(y —y')" /262, Bo=yv' =y(x—x")"/26:.

Now to satisfy uv* = 1, we must have 48762 = (y —y')(x — x')*, which collapses to
the requirement

26182 = y(x —x')".

Therefore, any choice of {81, 32} that satisfies this condition will work.

5. Some Applications in Matrix Computation. The generator recursions
that we presented so far will be further generalized in Section 7. But we are already
in a position to illustrate the applicability of the previous results to several matrix
computations. We shall start by showing the value of extending the definition of
displacement structure by replacing Z in (2.1b) by more general (strictly lower) tri-
angular matrices F'. We shall show that such extensions allow us to efficiently study
composite Toeplitz matrices such as Ty Ty, Ty, Ty — To Ty ' Ty, Ty To — T Ty, where the
{T;} are all Toeplitz matrices. We could always use the displacement representation
for T and T~ (cf. (2.3a) and (2.3c)) to obtain the displacement representations for
the above composite matrices, and then apply the generalized Schur algorithm. A
better technique is to find first an appropriate “Toeplitz-block” matrix in which the
above composite matrices appear as certain Schur complement matrices, and then
to study these Toeplitz-block matrices by introducing an appropriate definition of
displacement (see, e.g., [50, 52, 113]). The key fact then used is that displacement
structure is preserved under Schur complementation. The ideas are not restricted to
Toeplitz-block matrices alone — see [50].

Example 5.1: Study of T!.

First note that 7! is the Schur complement of the (1,1) block in the Toeplitz-
block matrix

(5.1a) M= [ T ]

I 0

Now by examining M — Z5,, M Z>,,, we can see that the displacement rank of M is less
than or equal to 4, where we have employed the notation Zs,, to denote the 2n x 2n
lower shift matrix. Therefore, by Theorem 2.2, the rank of the Schur complement,
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T, must also be less than or equal to 4. However, this is a weak conclusion, because
we know that the displacement rank of 77! is 2 (¢f. (2.3¢)).
If we instead employ the definition

Zn 0 Z, 01"
1) o[BS lu[% 2T

where we use F = (Z,, ® Z,,) in the definition R — FRF* rather than F' = Zs,,, then
it is easy to see that the displacement rank of M is now 2. In fact, the reader might
wish to check that for a symmetric Toeplitz matrix 7' = [c);_ j|]z;:10, co = 1, we obtain

M —FMF* =GJG*, F=Z2,® Zy,

where J = (1 —1) and

0 Cl ... Cp—1
1 C1 eee Cp_—1

T _ 1 0
(5.2) G = 1 0

Example 5.2: Simultaneous Factorization of T and T 1.

As we noted before, the classical Schur algorithm gives a fast O(n?) algorithm
for the triangular factorization of a Toeplitz matrix T. Now the triangular factors of
T—! cannot be formed just by inverting those of T — direct inversion of any, even
triangular, matrix in general requires O(n®) operations. The celebrated Levinson
algorithm [137] in fact gives an O(n?) algorithm for factoring T~ 1.

However, we shall see that by applying the generalized Schur algorithm to the
matrix M in Example 5.1, we can simultaneously factor both T and T~!. Thus
consider the situation after we apply n steps of the generalized Schur algorithm to the
generator G of M, viz., (5.2). Of course, we shall then get a generator, say {a, b}, of
the Schur complement 7! from which we can recover the matrix 7~ as

T-' = L(a)L*(a) — L(b)L*(b).

But what we want is not 7! but its triangular factors. One way of getting
these is applying the classical Schur recursion to the generator {a,b}. But in fact the
factors of T—! are already available from the results of the first n steps of the Schur
recursion (4.5¢) applied to the generator of M.

To clarify this, assume we apply the first n recursive steps of the Schur algorithm
(4.5¢) to a generator of the 2n x 2n matrix M, with F = (Z,, ® Z,,). This provides us
with the first n columns and the first n diagonal entries of the triangular factors of
M, which we denote by Lo, and Ds,. That is, we obtain the first n columns of Lo,
and the first n entries of Dy, in the factorization M = L,, D, L3,. Let us denote
the leading n x n block of D2, by D and let us partition the first n columns of Lo,
into the form

o]
U b

where L is n x n lower triangular, and U is an n X n matrix that we shall soon see
has to be upper triangular. It follows from the Schur reduction representation (4.1c)
that we must have



30 THOMAS KAILATH AND ALI H. SAYED

[‘IT é]:M:[é]D‘l[L* U*]+[g qu].

By equating terms on both sides of the above equality we conclude that U = L= *D,
—T-!' = UD'U*, and —T = LD 'L*. Hence, the first n recursive steps of the
algorithm provide not only the triangular factorization of T but also the triangular
factorization of T~1. This is an alternative to the use of the Levinson algorithm for
this problem. It has advantages in terms of parallel implementation because it has no
inner products in it, unlike the Levinson algorithm; however the Levinson algorithm
has somewhat fewer computations (though still O(n2?)). It may be noted that the
Levinson algorithm can also be derived from the generalized Schur recursion applied
to M in (5.1a) — see [48, p. 46].

Example 5.3: QR Factorization of Structured Matrices

Yet another popular algorithm in signal processing is the so-called lattice filtering
algorithm, which turns out to be equivalent to the so-called orthogonal triangular-
ization (QR factorization, @ orthogonal) of a particular rectangular Toeplitz matrix
(see, e.g., [69, 141]). The first algorithm for fast QR factorization of Toeplitz matrices
was given by [191]; later other algorithms were given by Bojanczyk, Brent and de
Hoog [17], and Cybenko [60]. Here we shall show, following [52], how displacement
ideas lead to an easily-described algorithm.

Let X be an n x n matrix. Form the displacement of

-I X 0
M=|Xx o Xx*|,
0 X 0

with F' = Z,, & Z,, ® Z,,, and find a generator for M. A general procedure for doing
this has been given in [48]; in many cases, e.g., when X is Toeplitz, one can obtain a
generator of length 5 almost by inspection.

After n steps of the generalized Schur algorithm applied to a generator of M, we
shall have a generator of

Mlz[XX X ]

X 0

After another n steps, we shall as in Example 5.2 have the partial triangularization
(where L is n x n lower triangular, and U is an n X n matrix)

Mlz[rlj’]D_l[L* U*]+[g _OI].

By equating terms on both sides of the above equality we conclude that
X*X — (LD—*/Z)(LD—*/ZZ)* , (UD—*/Z)(LD—*/2)* - X ,
and (UD~*/2)(UD~*/?)* = I. Therefore, we can identify

Q=UD"*? , R=(LD */?*.
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Here, D is a positive-definite diagonal matrix and D'/2 denotes a diagonal matrix
whose entries are the square-roots of the diagonal entries of D. In summary, the
QR factors of the structured matrix X can be obtained by applying the Schur re-
cursion to a properly defined extended structured matrix M. The interested reader
can check that one could compute R~! directly by performing the 2n steps of partial
triangularization of (compare with [60])

-I X 0
M=|X* 0 I
0 I 0

Example 5.4: Avoiding Back-Substitution

The previous examples all involved the Schur algorithm for Hermitian matrices.
Here is an example of a problem where this does not hold. The generalized Schur al-
gorithm for non Hermitian matrices is given later (Section 7.4), but it is not necessary
to know the exact algorithm in order to follow the present discussion.

Consider a linear system of equations of the form

Tr =10,

where T' is an n X n strongly regular Hermitian Toeplitz matrix, and b is a known
column vector. One possibility for determining the entries of z is the following:
compute the triangular factorization of T', say

T=LD'L*,
and then solve, via back-substitution, the triangular system of equations in y and z,
LD 'y=b and L*z=y.

A major drawback of a back-substitution step is that it involves serial operations and
does not lend itself to a parallelizable algorithm.

A way out of this is to employ a bordering (or embedding) technique (see, e.g.,
[113]). For this purpose, we define the extended matrix

=T b
=T 5]
and note that the Schur complement of —T in R is precisely 7~ 'b, which is equal to

the desired solution z. Now the matrix R itself is also structured since T is Toeplitz.
More precisely, we know that T — ZT Z* has rank 2 and it follows that

-T b z -T b |[Zz .

[ T 0]—[ Z][ T 0][ O] also has low rank.
Therefore, after n steps of partial triangularization of R, we shall have a generator of
its Schur complement, from which we can read out the solution z. Similar ideas can be
used for avoiding backsubstitution in finding least-squares solutions of overdetermined

linear equations — see [48, 113]. Applications in adaptive filtering and instrumental-
variable methods can be found in [172, 184].
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Example 5.5: More on Inverses: Admissible Generators

For Toeplitz matrices, T', the two problems of triangular factorization of 7" and
T~! are of the same order of complexity — both have displacement rank 2 and cor-
responding generators are not hard to find. The situation is more complicated for
arbitrary matrices.

Thus let R be an n xn Hermitian positive-definite matrix with a known generator,

R— Z,RZ: = GJG*, J= (I, ® —I,).

The matrix

w17

can be used to determine R~! via the generalized Schur algorithm applied to a gener-
ator of N with respect to F' = Z,, ® Z,,. When R =T, a generator is easy to find. In
general however the procedure is not as immediate. One way out is to use a generator
of length p + g + 2, not p + g. One such generator is easily checked to be

X1 e Xp e Y1 e yq e . B
0 e 0 91/2 0 e 0 —61/2 :| ) J—(Ip-‘rl@ Iq+1),
where G = [ Xt ... Xp Y1 --- Yq ] and e; is the first unit vector.

However if the given generator G satisfies a condition called admissibility, intro-
duced in [133], then we can obtain a generator of smaller length. A generator {G, J}
for a Hermitian matrix R is said to be admissible if e; belongs to the range of G, i.e.,
there is a linear combination of the columns of G that will give the unit vector, say

p q
Z HiX; + Z Viyi = e1.
i=1 i=1
Then it can be checked that the matrix
R I L
N EI IS o o
obeys
N, — FN,F* = BJB*,
where F = (Z, & Z,), J = (I, ® —1;) and

B= X1 e Xp Y1 e Yq
Hi1€1 ... HUp€1 —l1€1 ... —V4€;

Since the Schur complement of R in N; is n] — R™1, we see that the generator of R~!
obtained in this way will have length (p+¢q) if n=0o0r (p+ ¢+ 1) if n # 0. For a
more detailed study of admissibility, structured inverses and interesting relations to
generalized orthogonal polynomials and generalized Christoffel-Darboux formulas, we
refer to [130, 133].
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Here we note only that T*T, where T = [c;_;] is an m x n Toeplitz matrix of full
column rank, has an admissible minimal generator of length 4, with columns say

x1 =Tt /||t1]l2, X2 =t2, y1 = ZnZ)X1, Y2 = Zps1,

and
t1 = COI{C(), Clyeeny Cmfl}, to = COI{O, [ len},
s1=col{em—1,---ysCm-n}
where || - ||2 denotes the Euclidean norm. This explicit description is useful in many

problems, e.g., in Example 5.3.

Several other embedding examples can be found in [48, 113]. Further examples
that arise in adaptive filtering, instrumental-variable methods, system identification,
and in the design of decision feedback equalizers can be found in [4, 5, 46, 47, 172, 184].
Also, in Section 6.1 we shall consider applications with more general matrices F' (i.e.,
not necessarily strictly lower triangular), which arise in the study of interpolation
problems [182].

6. Generalized Cascade/Transmission Line Interpretations and Inter-
polation Problems. We examined earlier in Section 3.2 a cascade network inter-
pretation of the classical Schur algorithm, and pointed out connections with inverse
scattering problems. This interpretation is equally applicable to the generalized Schur
algorithm of Theorem 4.2, and to other extensions that are given in future sections.
As in Section 3.2, the cascade/transmission line interpretation can be used to obtain
nice solutions to various problems; here we shall use them to study some general
interpolation problems.

We shall begin with the special case of a positive-definite matrix R as in (4.4a),
which will be used later in Section 6.1 in the study of analytic interpolation problems.
The corresponding array recursion (4.5¢) can be written as

0 1 0 0 0
(6.13.) |: Giir ] = &,G;0; [ 0 0 ] + G;0; [ 0 I ] R

where ©; reduces the top row of G; to the form

Each step of (6.1a) can be depicted graphically as a cascade network of elementary
sections, one of which is shown in Figure 6.1; ©; is any J—unitary matrix that rotates
the first row of the ** generator to [ §; 0 |. The rows of G; enter the section one
row at a time. The left-most entry of each row is applied through the top line, while
the remaining entries are applied through the bottom lines. The Blasckhe matrix ®;
then acts on the entries of the top line. When F; = Z, the lower shift matrix, &; = Z,
a delay unit. In general, note that the first row of each ®; is zero, and in this sense
®; acts as a generalized delay element. To clarify this, observe that when the entries
of the first row of G; are processed by ©; and ®;, the values of the outputs of the
section will all be zero. The rows of G;41 will start appearing at these outputs only
when the second and higher rows of G; are processed by the section.

As in the case of the classical Schur algorithm, we can get a transmission line
equivalent of the cascade, i.e., a form in which the data flow in the lower ¢ lines
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[ QI
p—1 0; > 0
G; lines Gi1
— >
lines

F1G. 6.1. The feedforward structure of the generalized Schur recursion: The positive-definite case

can be reversed in direction; the J—unitary matrix ©; is now replaced by a unitary
matrix ;. We forego specifying the easily derived form of ¥; here; it will be given in
Section 6.1.1, when we discuss the application of the cascade to solving interpolation
problems. We also remark that for matrices R that are not necessarily positive-
definite, the feedforward structure of Figure 6.1 can be easily modified to reflect
the array form of the corresponding generator recursion. This simply corresponds
to modifying the position of the single line in the figure whose entries undergo a
transformation by ®;.

Moreover, a generalized cascade representation in the function domain can also be
derived as follows. In Theorem 4.2, the recursion starts with G; and gives as outputs
Giy1 via (4.5c) and also the (nonzero part of the) i** column [; of the triangular

factorization of R via (4.5d). The latter can be rewritten as

0
1
67 Jjj 0

We note that the update of the generator recursion at the it step (G; — Git1),
as well as the determination of the i** triangular factor of R, are determined by
transformations on the j** column of the proper generator G;0;. The remaining
columns of G;0; remain unchanged and thus do not explicitly contribute to the 5t*
step. Expressions (4.5¢) and (6.2) can now be combined into the following interesting
state-space form

fi &[0 1 0]

(6.3) [ l; GQ ] =[ Fli G;] 0 I 0 0
™ 6;J;;0: | 1 0,0 —f; O

0 0 0 I

More specifically, we can regard (6.3a) as defining a first-order system in state-space
form (see, e.g., [108]) with inputs from the left: the entries of F;l; can be regarded as
current states and the entries of [; can be regarded as the next states. Also, the rows
of G; can be regarded as current inputs and those of G;;1 as outputs.

In linear system theory, a very useful alternative to the above state-space descrip-
tion is the so-called transfer function from input to output (see, e.g., [108]). We shall
denote this as ©;(z) and straightforward calculation using 2~ !-transforms yields the
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formula
[I 0 0 0 5
i(z2)=0; | 0 —fi 0| +8J;;0;| 1 [[z* —fl-*]*ld—’ [0 1 0]
| 0 0 I 0 i
[T 0 0 it
(63b) = @z 0 B,(z) 0 , Bz(z) = 1 *z .
0o o0 I - fiz

Alternatively, from a purely mathematical point of view we can merely associate
the r x r function ©;(z) with (6.3a), noting for instance that it is unchanged by a
similarity transformation of the r x r so-called system matrix in (6.3a). In the early
mathematical work of Livsic, Brodskii, Potapov, and others (see, e.g., [125, 139]),
©,;(z) was called the characteristic function.

It further follows from the expression for ©;(z) that it satisfies the normalization
condition ©;(2)JO}(z) = J on |z| = 1 since B;(2)Bf(2) = 1 on |z| = 1. If we
additionally assume that |f;| < 1 then it follows that ©;(z) is analytic in |z| < 1 and
satisfies ©;(2)JOF(z) < J in |z| < 1. That is, the resulting ©;(z) will be what is called
a J—lossless matriz function (see, e.g., [71]). In summary, we have the following.

LEMMA 6.1. Consider the same setting as Theorem 4.2. Each step of the recursive
algorithm of the theorem then gives rise to an r—input r—output first-order (i.e., one-
dimensional) transfer matriz,

I, 0 0
@,(z) =0; 0 Bl(z) 0 )
0 0 I

which satisfies
0;(2)JO;(z)=J on |z|=1.

If it further happens that |f;| < 1 then it follows that ©;(z) is analytic in |z| <1 and
satisfies ©;(2)JOF(z) < J in |z| < 1. That is, ©;(2) is a J—lossless matriz function.

Thus our factorization algorithms are closely linked with a cascade of elementary
sections, generalizing the cascade associated with the classical Schur algorithm. The
cascade/transmission line picture was used in Section 3.2 to show that the classical
Schur algorithm (in array form) provided a natural direct solution of the inverse scat-
tering problem for discrete transmission lines. This inverse scattering problem actually
solves the so-called Carathéodory interpolation problem, which can be stated (in one
of its forms) as follows: Given a sequence {1,0,...,0} find all n—th order J—lossless
systems whose response to the input sequence {1,0,0,...} is {so,51,---,8n—1,---},
where the {s;} are the coefficients of the power series expansion of a Schur-type
function. The solution is that the classical Schur algorithm applied to the generator
matrix

1 0 ... 01F

S 81 ... 8p

GT =

will determine a cascade of n J—lossless sections that will have the desired behaviour;
all such solutions can then be obtained (in a standard way) by “loading” (or termi-
nating) the transmission-line form of this cascade with any Schur function.

It turns out that the generalized cascade described just above allows us to give a
similar solution to much more general interpolation problems.
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6.1. Applications to Interpolation Problems. Interpolation problems of
various types have a long history in mathematics and in circuit theory, control theory,
and system theory. Not surprisingly, this rich subject can be approached in many
ways and in different settings. We cannot give a full account of the many prior con-
tributions to this literature. The works of Krein and Nudelman [126], Nudelman
[149, 150], Foias and Frazho [76], Ball, Gohberg, and Rodman [20], Rosenblum and
Rovnyak [169], Landau [127, 128], Helton [100], Kovalishna and Potapov [125], and
Dym [71] may be consulted for this.

6.1.1. Analytic Interpolation Problems. In this section, we briefly describe
a recursive solution to rational analytic interpolation problems that has been recently
proposed by Sayed and Kailath [171, 176, 182]; reference [182] further elaborates on
connections with earlier work on the subject.

The basis for our approach is the generalized Schur algorithm of Theorem 4.2,
along with the result of Lemma 6.1. We shall shortly verify that the recursive algo-
rithm of the theorem, when applied to a conveniently chosen structured matrix, leads
to a cascade of J—lossless first-order sections, each of which has an evident interpola-
tion property. This is due to the fact that linear systems have “transmission zeros”:
certain inputs at certain frequencies yield zero outputs. More specifically, each section
of the cascade will be shown to be characterized by a (p+ ¢q) X (p+ ¢q) rational transfer
matrix, ©;(z) say, that has a left zero-direction vector g; at a frequency f;, viz.,

0; 0;
9:0i(fi) = [ ai bi ] [ @i’;i @z;z ](fi) =0,

which makes evident (with the proper partitioning of the row vector g; and the matrix
function ©;(z)) the following interpolation property: @;0;120;. 2o(fi) = —b;. This
suggested to us that one way of solving an interpolation problem is to show how
to construct an appropriate cascade so that the local interpolation properties of the
elementary sections combine in such a way that the cascade yields a solution to the
global interpolation problem. All possible interpolants can then be parametrized by
attaching various loads to the right-hand side of the cascade system.

The main feature of our derivation is that it approaches the subject from a matrix-
factorization point of view, and that it relies almost completely on matrix-based
arguments: we use the interpolation data to construct a so-called generator matrix;
the generator is then used to start a recursive algorithm for the computation of the
triangular factorization of an associated structured matrix; each step of the algorithm
yields a first-order J—lossless section with an intrinsic “blocking” or “transmission
zero” property; these local blocking relations are then shown to combine to yield the
desired interpolation conditions.

A condensed discussion of our approach follows. For this purpose, we focus on
the case of a positive-definite Hermitian matrix R that satisfies

I, 0

R~ FRF :G[ o I

]G* , r=((p+9q, R>0,
with a stable matrix F' (i.e., |fi| < 1). As stated in Theorem 4.2, and Lemma 6.1, the
triangular factorization of R can be recursively computed via the following procedure:
start with Gqg = G, Fy = F, and repeat:

1. At step ¢ we have F; and G;. Let g; denote the top row of G;.
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2. Choose a J—unitary rotation matrix ©; that reduces g; to the form ¢;0; =
[ 6; 0 ] with a single nonzero entry in the first position. This is always possible
since R is positive-definite.

3. The next generator is then computed via the expression

0 1 0 0 0
(6.4&) [ Gis :| = 9,;G;0; [ 0 0 ] + G;0; [ 0 I_, ] s

where ®; = (F; — filn—i)(In—i — [ F;) ™"
4. Each step of the algorithm also gives rise to a first-order (p + q) X (p + q)
J—lossless section

2—fi
(6.4b) ei(z)=@,{ gy O ] .
0 Ir—l

The relevant observation to make here is that each section ©;(z) has an obvious
blocking property, which results from the easily verified equality g;:0;(f:) = 0,

%Qxﬁ)zﬁei[g Lgl]:[di()][g Lgl]zo.

If we further partition the row vector g; and the transfer matrix ©;(z) accordingly
with J, we conclude that

©;11 912
i b ’ ’ i) = 0,
[ai bi] [ O;21 O;2 ] (£)

which makes evident the following interpolation property: @;0;120; L(f) = —b;
(The invertibility of ©; 22(2) inside the unit disc is guaranteed by the J—losslessness
of ©;(z).). Therefore, each first-order section satisfies a local blocking and/or inter-
polation property. This fact plays a central role in our approach to interpolation
problems. While one can use purely algebraic arguments, we think it is useful to
present a physical (network-theoretic) interpretation as well. The following exam-
ple illustrates the main points in our construction (for more involved examples and
for a detailed discussion on the approach described herein, the reader may consult
[171, 182)).

We consider the well-known tangential Nevanlinna-Pick problem where one is
interested in finding one (or even all) p x ¢ Schur matrix functions S(z) (i.e., analytic
and strictly bounded by unity in |z| < 1) that satisfy the tangential conditions

(6.5a) w;S(fi)=v;, for i=0,1,...,n—1 and |fi|]<1.

Here, u; and v; are 1 X p and 1 X ¢ row vectors, respectively. To solve this problem
we introduce the matrices F, G, and J: F = diagonal {fo,..., fn_1},

Ug Vo
Ul U1
(6.5b) G= } ) and J = [ L 0 ] ,

Up—-1 Un-1

and apply the recursive procedure (6.4a) to F' and G. The “Blaschke” matrix ®; is
now a diagonal matrix since F is also diagonal, viz.,
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fiv1 — fi Jno1— i
]-_fi-l,-lf;’.“,]-_fn—lfi*

This leads to a cascade ©(z) of n first-order J—lossless sections,

O(2) = 0p(2)01(2)...0,-1(2) .

@, = diagonal {0, }.

It is now instructive to see how the local blocking properties of the individual sections
combine together to impose a global blocking property on the entire cascade. We
start with the first section and invoke its blocking property: go®o(fo) = 0, where go
is the first row of G. It thus follows that

900(fo) = 9000 (fo) ©1(fo) .--On-1(fo) =0.

In system-theoretic terms this means that when the first row of G is fed into the
cascade ®(z) we get a zero-output at the ’frequency’ fo,

[UO Vo ]@(f0)=0

But what happens when the second row of G is fed into the cascade? To answer
this question, let us first check how does the first section of the cascade react to the
second row of G. That is, let us evaluate the quantity [ uy V1 ] ©o(f1). Using the
definition of ©¢(z) we see that

i -an[ M 0 a8 2 Jemum[} 8]

Therefore, [ u1  v1 | ©g(f1) is equal to

[ vl]GO[g IT°1]+[u1 vl]Bo(fl)@O[(l) g]

But if we compare the second rows on both sides of the generator recursion (6.4a) we
see that the above expression should be equal to the top row of G;. That is,

g=[wu UI]GO[g 2]+Bo(f1)[u1 Ul]QO[(l) g]=[“1 v ] ©o(f1) -

This shows that when the second row of G enters the cascade we get the top row of
G at the output of the first section at the ’frequency’ f;; thus leading to

[ur v []O(f1)=[ur v ]|Oo(f1)O1(f1)...On 1(f1),

~ vl

v

91
= 0101(f1) O2(f1) - - - On—1(f1)s
0
-0,

which shows that the second row of G also annihilates the entire cascade at the
frequency fi. This argument can be continued to show that the remaining rows of G
are also zero directions of the cascade ©(z) at the corresponding f;, viz.,

(6.5¢) [ui v |O(f;)=0.
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If we now partition the J—lossless cascade ©(z) accordingly with J,

_ | ®u(z) Oa(z)
@(Z)— @21(2) @22(2) ’

we then conclude from (6.5¢) that the p x ¢ Schur matrix function,
S(2) = —©12(2)©O3; () ,

is one solution that satisfies u;S(f;) = v;. That is, it solves the tangential Nevanlinna-
Pick interpolation problem. We again remark that the invertibility of @22(2) inside
the unit disc is guaranteed by the J—losslessness of @(z), which also allows us to
conclude that S(z) is of Schur type. Moreover, all solutions S(z) to the tangential
Nevanlinna-Pick problem are in fact given by a linear fractional transformation of a
Schur matrix function K (2) [20, 71, 182] (||K||ec < 1), viz.,

(6.6) S(2) = — [@11(2) K (2) + ©12(2)] [@21 (2) K (2) + O22(2)] "
p
lines::> ;l }
2(2) ()

F1G. 6.2. Scattering interpretation of the interpolating solutions.

The solutions S(z) in (6.6) have a scattering interpretation as shown in Figure 6.2,
where X(z) is the scattering matrix defined by

| ©11 - 91292_21@21 —91292_21
2(’z) - @2—2].@21 @2—21 (Z) .

That is, S(z) is the transfer matrix from the top left (1 x p) input to the bottom
left (1 x ¢) output, with a Schur-type load (—K(z)) at the right end. Here we only
remark that the scattering matrix 3(z) is a so-called inner dilation of —©,2(2)©5, (2)
and satisfies 3(2)X*(2) = I on |z2|] = 1. The X(z) can also be obtained as a
cascade of elementary sections X;(z), which are defined in terms of the ©;(z). In
the ¥;(z)-cascade, signals flow in both directions; this yields a so-called (generalized)
transmission line.

The same line of reasoning can be used to solve more involved interpolation
problems of the Hermite-Fejér type, as detailed in [171, 182]. But more important
perhaps is to stress that the arguments used in the solution of the above interpolation
problem are essentially matrix-based arguments. This has the nice feature of being
equally applicable to time-variant extensions of classical interpolation and matrix
completion problems, as detailed in [174].
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6.1.2. Unconstrained Interpolation Problems. Actually the arguments can
also be extended to the very old class of unconstrained interpolation problems. These
problems have a very long history, associated with many classical results of Lagrange,
Hermite, Prony, Padé, and other famous names. In recent years, several authors have
approached these problems from a system-theoretical point of view, where the main
idea was to find a global transfer matrix that provides a linear fractional parametriza-
tion of all solutions (see, e.g., [15, 21] and the references therein).

In [29, 28], we showed how a generalized Schur algorithm for non Hermitian ma-
trices [120, 171] (described in Section 7.4.2) can be used to give a recursive solution.
The discussion that follows can be extended to tangential interpolation problem [28],
along the same lines discussed in the previous section for the tangential Nevanlinna
Pick problem. But here, for simplicity, we shall illustrate the results by considering
a scalar example that reads as follows: given a set of complex pairs (f;, 3;), find all
irreducible rational interpolants s(z) = n(z)/d(z) such that s(f;) = 8;. In many ap-
plications the interpolants are also required to satisfy certain minimality constraints,
where the complexity of a rational solution s(z) is measured in terms of its McMillan
degree. This is defined as the maximum of the degrees of the numerator and de-
nominator. In these cases, we would also like to determine the admissible degrees of
complexity of the rational interpolants, as well as the minimal degree of complexity
and the minimal interpolant(s).

The approach we described earlier in the analytic case extends smoothly to the
unconstrained case [29]. Here we only briefly address the major points. Let us first
show how to determine an irreducible interpolant s(z). For this purpose, we consider
an appropriate non-Hermitian displacement structure of the form

(6.7) R—- FRA* =GJB*.
The interpolation data is collected into F, G and J as before, viz.,

F = diagonal{fo,..., fn-1},

1 B
]_ —_

é=1. :ﬁ1 ’J=[(1) —01]'
1 s

The matrices A and B are chosen freely so as to guarantee the strong regularity of R.
(Details on how to choose A and B are omitted here but can be found in [28]. Also,
the strong regularity condition may be relaxed but that is not of major consequence
to the argument that follows — see [28]). Though the non Hermitian case is only
treated later (Section 7.4.2), it suffices here to note that applying the array algorithm
to (F,G) and to (4, B) leads to two 2 x 2 cascades ©(z) and I'(z),

O(2) =09(2) ... On_1(2) , T(z) =To(2)...T'n-1(2),

which satisfy @(z)JT*(w) = J on zw* = 1. Moreover, each first-order section pos-
sesses a local blocking property,

9i0i(fi) =0, bil'i(a;) =0.
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As before, and following the same arguments as in the Nevanlinna-Pick case, the
cascades ®(z) and I'(z) also turn out to satisfy global blocking results. More pre-
cisely, the rows of G turn out to annihilate the output of the cascade ©(z) at the
corresponding frequencies f;,

[1 -8 ]©(fi)=0.

If we partition ®(z) accordingly with J, then all rational interpolants can be shown
to be parametrized as follows (see, e.g., [15, 21, 29]):

_ p(z) ©11(2) +¢(2) O12(2)
p(2) ©21(2) + q(2) O22(2) ’

where p(z) and ¢(z) are coprime polynomials such that p(f;) ©21(fi) +q(fi) ©22(fi) #
0. In particular, if ©;2(2) and ©12(2) are irreducible, which is always guaranteed in
the analytic case but not here, then s(z) = ©2(2)05, (2) is an irreducible interpolant.

The above unconstrained interpolation problem can also be solved by expressing
all interpolants in terms of the Lagrange interpolating polynomial as was done, for
example, in [15]. As a matter of interest, we now show how to obtain this solution via
the generalized Schur algorithm (of Section 7.4). Recall that we are essentially free to
choose A and B so as to guarantee the strong regularity of R. Fach such choice would
lead to a cascade ©(z) that parametrizes all solutions of the unconstrained problem
as in (6.8a). We now exhibit a particular choice for A and B that guarantees that the
particular solution s(z) = ©12(2)@5 (2) will coincide with the Lagrange polynomial.

We start by defining the Lagrange interpolating polynomial. Consider the n-
dimensional linear space of polynomials of degree at most n — 1, in which a basis
{Lo(2), L1(2),- .., Ln—1(2)} can be defined as follows:

(6.8a) s(z)

. 1 if j=1

That is, each basis polynomial L;(z) assumes the value 1 at f; and the value zero
at the other points f;, j # ¢. Now, a polynomial solution to the unconstrained
problem can be obtained as a linear combination of Lg(z), L1(z),-.., Ly_1(2) with
coefficients 5o, 81, - - -, Bn—1, viz., L(z) = E?:_Ol Bi Li(2). The polynomial L(z) is called
the Lagrange interpolating polynomial and it constitutes the unique interpolating
solution in the space of polynomials of order at most n — 1.

We can write down an explicit expression for each L;(z) as follows: L;(z) has
zeros at {fo, f1,---» fi—1, fi+1,---» fn—1}- Therefore,

LaG=0) _ 1 n()
Hj;éi(fi —f) 7)) = fi)°

where 7(z) = H;-:Ol (z — f;). Thus, we obtain the celebrated formula

Li(z) =

B, 1 )
L& =2 b o e-f

It is also known that all rational solutions can be parametrized in terms of L(z), viz.,

(6.8b) s(z) = L(z) + 7(2) ;&
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for coprime polynomials p(z) and ¢(z) such that ¢(f;) # 0.

The question is how do we choose A and B so as to obtain the Lagrange solution.
For this, we define A as the lower triangular shift matrix (A = Z) and choose B to
be equal to

g_[10 ... 0]"

- 0 ... 0 ’
It can be shown [29] that the resulting R is strongly regular and that the resulting
cascade ®(z) is a polynomial matrix of the form

which explicitly contains L(z). Observe that substituting the above expression for
©(z) into the linear fractional parametrization formula (6.8a) leads to (6.8b).

But what if we want to obtain a minimal degree interpolant? Following [14, 15, 21]
we have that, provided ©(z) is a column reduced polynomial matrix [108, p.387], the
McMillan degree of an interpolant is given by

max{deg n(z),degd(z)} = max{x; + deg p(z), k2 + degq(2)},

where k; and k2 > k; are the column indices of ®(z). Moreover, the minimal solution
of the unconstrained rational interpolation problem can be obtained by either

- @11(2)
 021(2)

Smin (z)

provided that ©11(z) and ©,1(z) are coprime, or

oy _ P(2) ©11(2) + ©12(2)
smin(2) = ) Om(z) + Oml2)

where deg p(z) < ka — k1 and p(f;) ©21(f;) + ©22(f;) # 0, when ©11(2) and Oz (2)
share some common roots. In the first case, there is a minimal solution with complex-
ity k1, while in the second case there exists a family of minimal interpolants whose
complexities are equal to k2. In both cases, there exist infinitely many interpolants
with complexity larger than «s.

To obtain a column reduced transfer matrix ®(z) via the non-Hermitian gener-
alized Schur algorithm we restrict A to an arbitrary lower triangular matrix whose
diagonal and first subdiagonal are zero and choose an arbitrary B so as to guarantee
the strong regularity of R. Then it can be verified [29] that the generalized Schur
algorithm yields a column reduced polynomial matrix @(z).

In concluding this section, we should remark that with the proper formulation,
many problems in circuit, control, computation, communications, and signal pro-
cessing can be reformulated as interpolation problems. One such application to the
so-called four-block problem in H*-control can be found in [58]. On the other hand,
it is also noteworthy that the solution of interpolation problems can be reduced to the
determination of an appropriate fast matrix triangularization algorithm. This con-
structive view provides a nice complement to the many abstract formulations (esp.
those connected with lifting theory) of the important topic of interpolation theory.
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7. Other Forms of Generalized Schur Algorithms. The generator recur-
sions that we exhibited in Section 4 were all based on first reducing a generator matrix
to proper form by employing appropriate J—unitary operators. The significance of
this step was that it allowed us to provide simple array interpretations for the var-
ied generator recursions. But it is not difficult to see that the array recursions only
provide one possibility for the update of the generators.

A greater level of generality is desirable for several reasons, among which we
highlight the following. First, it is important in its own right to exhibit the most
general form of the relation that might exist between generators of two successive
Schur complements of a structured matrix. Secondly, once this general relation is
established, it will allow us, in several instances, to verify that what may appear at
first glance to be a new generator recursion is in fact nothing but a special case of the
general result. Thirdly, a general recursion will also allow us to handle cases where
the propagation of the generators in proper (or array) form may not be necessarily
the most convenient. This occurs, for example, in the study of Bezoutian matrices
[132] (see Section 8.2), in extensions of the displacement structure theory to the
time-variant setting [174] (see Section 10), and in the solution of a general maximum
entropy problem [57]. It also occurs when the displacement equation does not uniquely
determine the matrix itself (see, e.g., the discussion after Theorem 7.4). Finally, and
perhaps a most important reason, is that the general result will further allow us to
make explicit connections with results in other places in the literature, especially
in the study of lossless embedding (or dilation) and of lossless systems (see, e.g.,
[20, 67, 71, 83, 124, 130, 135, 138]), where the results are often displayed in forms
that fit into our general expressions.

For all the above reasons, we now move to exhibit the general form of the generator
recursion, but always keeping in mind the desire to highlight connections with other
results, especially with the so-called embedding or dilation relations that are essential
in the study of lossless and J—lossless systems both in discrete as well as continuous
time. The derivation that follows is essentially based on the same ideas as before:
starting with a structured matrix R, we write down a displacement equation for its
first Schur complement R;, and then verify that it can be expressed, by completion
of squares, in the form G;1JGj, for some generator matrix G; that is related to
G, and so on. But we shall proceed gradually: we shall first consider Toeplitz-like
matrices, which lead to a discrete-time embedding result, followed by Hankel-like
matrices, which lead to a continuous-time embedding result, and we shall finish with
a generalized displacement that includes both Toeplitz- and Hankel-like matrices, as
well as other matrices, as special cases.

7.1. Discrete-Time Embedding Relations: Completion of Squares. The
reasoning given in this section invokes only matrix-based arguments (see, e.g., [171,
182, 184]), and is especially convenient for extensions of the displacement structure
concept to the time-variant setting, as discussed in [171, 174, 184].

We start with a Hermitian strongly regular n x n matrix R = [ij]z_’jl:o that
satisfies a displacement equation of the form

(7.1a) R— FRF* = GJG*,

where F' is an arbitrary lower triangular matrix with arbitrary diagonal entries that
are denoted by {f;}, G is an n x r generator matrix, and J = (I, ® —I;), p+ ¢ =r.

We say that R is a Toeplitz-like matrix with respect to (F, G, J); our purpose is
to characterize all (same size) generators of the Schur complements R;.
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First note that if [y and go denote the first column of R and the top row of G,
respectively, we can see from (7.1a) that lp and the top left-corner element 7o of R
obey the identities

(71b) lo = F’l()f(’)k + GJQS s do(]. — |f0|2) = g()JgS .

We can now form the Schur complement R; from Ry =R- lody lla. Let F; be the
submatrix obtained after deleting the first row and column of F. Using (4.1a) and
(7.1a) we can prove the following lemma.

LEMMA 7.1. Consider an n x n Hermitian strongly-regular matriz that satisfies
a displacement equation of the form

R — FRF* =GJG*,

where F is lower triangular with diagonal entries {f;}. Then the first Schur comple-
ment Ry satisfies

R, — AR F} = G1JGT,

where Gy is an (n — 1) X r matriz that is computed from G as follows
0 * *

(7.2a) [ G ] = FlohyJ + GJIkgJ
1

and hy and ko are, respectively, r X 1 and r x r arbitrary matrices chosen so as to
satisfy the following (do ® J)—unitary embedding (or dilation) relation

fo g do 0] fo g0 _[do O
O A R I R

Proof. The proof can be obtained via straightforward manipulations as follows:
using (4.1a) and (7.1b) we find that

R, — FRF* = —Fl, f690 jom _ oy 90J0 I3F* + Flg 90795 IGF* +

do do &
—hiJTko —kg JTho hJho
(7.3a) GJ {J - gfiﬂ} JG* .
%,0_/
k3 Jko

We now verify that the right-hand side of the above expression can be made into a
perfect square by introducing some auxiliary quantities. Consider an r x 1 column
vector hg and an r X r matrix ko that are defined to satisfy the following relations (in
terms of the quantities that appear on the right-hand side of the above expression.
We shall show later that this is always possible):

(7.3b)  h§Jho = 906‘;90 . kiko=J - 08 ki ho = - _lego :
0 0 0

Using {ho, ko}, we can rewrite the right-hand side of (7.3a) in the form

G Ik ThoJG* + GJIk; Thols F* + Flohi Jho JG* + Flohg JholiF*,
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which can be factorezd as C:’lJC;‘I, where Gy = FlohgJ +~GJ kgJ. Recall that the first
row and column of R; are zero. Hence, the first row of G is zero,

= 0
N
Moreover, it follows from (7.3b) (and the expression for dg in (7.1b)) that { fo, g0, ko, ko i
satisfy the relation

BRI E RN
ho ko 0o J ho ko o J |’
which is equivalent to (7.2b). O

Several remarks are due here. To begin with, the statement of the lemma requires
only the strong-regularity of R, thus assuring dyp # 0. But no condition is imposed
on the diagonal entries of F', as opposed to the array form of Theorem 4.2 where
(1= fif}) # 0is required in order to guarantee the existence of the successive Blaschke
matrices ®;. The ®; matrices are avoided here because the above completion-of-
squares argument allows us to update the generator matrix as in (7.2a), which is
expressed in terms of /; rather than ®;.

Note also how naturally the so-called embedding (or dilation) relation (7.2b) arises
in our framework. It will be seen in the next section that relations of this type play
a fundamental role in characterizing J—lossless transfer functions. Finally, observe
that the generator recursion (7.2a) and the identity (7.1b) for [y can be combined and
rewritten compactly into the following revealing expression

0 |_ fo heJ
(7.4) [lo G, ]—[Folo G][Jga Jka“J]'

This identifies a first-order system that arises in state-space form specified by the
system matrix

fi o mid
[ Jg5  JkiJ ] '

Hence, the rows of G and G; can be regarded as inputs and outputs of this system,

respectively. The entries of Fyly and [y can be regarded as the corresponding current

and future states. This explains the terms “discrete-time embedding” that appear in

the title of this section. Further clarification will be given in the next section.

Now the Schur complementation process can be repeated via the defining relation
(4.1b) where [; and d; denote the first column and the (0,0) entry of R;, respectively.
This leads to the following generalization of the result of Lemma 7.1 [171, 175].

LEMMA 7.2. Consider an nxn strongly-reqular Hermitian matriz R with Toeplitz-
like displacement as in Lemma 7.1. The successive Schur complements of R with
respect to its leading i X i submatrices are also structured,

R; — F;R;F} = G;JG},

where F; is the submatriz obtained by deleting the first row and column of F;_1, and
G; is an (n — 1) X r generator matriz that satisfies, along with l; (the 1%t column of
R;), the following recursion

0 B " . f hiJ
(7.52) |6 oo, |=tme | f B0
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where g; is the top row of G;, and h; and k; are arbitrary r X 1 and r X r matrices,
respectively, chosen so as to satisfy the embedding relation

N I L

Also, d; and l; satisfy the relations
(7.5¢) di(1 = |fil®) = 9:dg; » (In—i = [i Fi)li = GiJg; .

In order to apply the generator recursion (7.5a), we still need to show how to
choose the arbitrary parameters h; and k; so as to satisfy (7.5b). We shall see later
that all possible values of h; and k; are (almost) completely determined by the known
quantities {f;, gi,d; }-

7.1.1. Elementary Discrete-Time State-Space Sections. As noted earlier,
the significance of (7.5a) is that it can be regarded as specifying an r x r first-order
discrete-time system (in state-space form) that performs a state-space transformation
of the form

o prJ
(7.6a) [ Xjt1 Y ] = [ Xj Wj ] [ Jf;* J]:;;"J ] ’

where x; denotes the current state, y; the row output vector, and w; the 1 x r row
input vector at time j. In system theory, the transfer function is an important system
invariant and it can be seen to be given by the expression

(7.6b) 0i(z) = Jk; T+ Jgr [zt — f7] 7RI

Using the embedding relation (7.5b) (or the expressions similar to (7.3b) for h; and
k;) we readily conclude that

Jg:giJ zz*—1
di  (A—=zff)1=2fi)’

which shows that the transfer function ©;(z) satisfies the normalization condition
0;(2)JO;(z) =J on |z| = 1.

7.1.2. Generalized Schur Algorithm for Toeplitz-Like Matrices. The
generator recursion (7.5a) in Lemma 7.2 is still incomplete since we have not yet
shown how to choose the free parameters h; and k;.

LEMMA 7.3. All possible choices of h; and k; that satisfy the embedding relation
(7.5b), with d; # 0, can be expressed in terms of f;, g; and d; as follows:

_et Ll TS . oty 1 Jgg
(1.7 h;=0; {dil—Tifi*Jgi and k; = 0; S ey O

(7.6¢) 0;(2)JO;(z) = J +

for an arbitrary J—unitary matriz ©; and for an arbitrary scalar T; on the unit circle
(Iril =1).

Proof. Let 7; be an arbitrary point on the unit circle, and let us try to determine a
pair (h, k;) such that the corresponding transfer matrix, ©;(z) (as in (7.6b)), satisfies
©;(7; ") = I,. Note that this is consistent with the requirement that ©;(z) has to

? A~ ~
satisfy the normalization condition ©;(z)J0O}(z) = J for all |z| = 1.
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The condition (:)z-(T;*) = I, implies that k; + iLz(Tz — fi)7lg; = I.. But the
embedding relation (7.5b) implies that h;d;f} + k;Jg; = 0. Therefore, we can solve
for h; and k;, leading to

B = 17— fi

l—d—zwjgz and kz_ - .

The claim is that all other choices of h; and k; are related to ﬁz and Isz via h; = O liLz’
and k; = O] 1f;, for an arbitrary J—unitary matrix ©;. To check this, let ©;(z) be
the transfer matrix of any other valid choice (h;, k;). Clearly, ©;(7; *)JOI (1, *) = J,
since |7;| = 1. Hence, ©;(7; ) is invertible and we define a transfer matrix ©;(z) by
0,(2) = ©;(2)O;*(r;*). This function satisfies ©;(r; *) = I,. Using the fact that
this condition is satisfied by (hs, k;) as above, we readily conclude that

h; = @i_l(Ti_*)iL,', ki = @1_1(7'2_*)]%1

This proof is patterned on one in [135]. O

We are now in a position to state the generalized Schur algorithm for Toeplitz-
like matrices. For this purpose, we substitute the above expressions for h; and k; into
Lemma 7.2. This leads to the next theorem, which is a generalization of Theorem 4.2
in two important respects. First, it does not involve the intermediate step of reducing
generators to proper form and, secondly, it avoids the requirement (1 — f;f) # 0
for all ¢,5. But right after the statement of the theorem we shall see that if this
requirement is further imposed, then we can rewrite the result of the theorem in a
more compact form.

THEOREM 7.4. Consider an n X n strongly-regular Hermitian matriz R such that

(7.8a) R— FRF* = GJG*,

where F' is lower triangular, G isnxr and J = (I, ® —1,), p+q =, is a signature
matriz. The (arbitrary) diagonal entries of F are further denoted by {f;}.

The successive Schur complements of R with respect to its leading ¢ X1 submatrices
are also structured,

(7.8b) R; — F;R;F] = G;JG},

where F; is the submatriz obtained by deleting the first row and column of F;_1, and
G; is an (n—1) X r generator matriz that satisfies the following recursive construction:
start with Go = G, Fo = F, and repeat for i > 0:
(7.8¢) O | = {6 - Adtg:) o
Giy1 ¢
where ©; is an arbitrary r X r J—unitary matriz, 7; is an arbitrary unit-modulus
complez scalar (|7;) = 1), g; is the top row of G;, and
A LI “7)
i = ————(In—i — 7] F}).
SR R

Moreover, the d; and I; are the (0,0) entry and the first column of the it" Schur
complement R;, respectively, and they satisfy the equations

(7.8d) di(1 = |fil*) = gidg;, (In—i — f[FF)l; =GiJg; .
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The auxiliary parameters {h;, k;} were eliminated from the generator recursion
(7.8c). But it is still a function of the first column of ** Schur complement R;, I;,
and which is a solution of the linear system of equations

(In—s — f{ F3)l; = GiJg; .

If no restrictions are imposed on the diagonal entries of F', then the displacement
equation (7.8b) may not specify R uniquely and, consequently, the [; in the above
equation may not be uniquely defined. In other words, the recursion (7.8¢) is adequate
as long as the [; and d; can be uniquely determined from (7.8d) or from other available
information. More details on this issue are provided in Section 7.3.

7.1.3. The Special Case of a Unique R. But an important special case that is
of interest is when the displacement equation (7.8b) uniquely defines R. This happens
when the eigenvalues of F' (or equivalently its diagonal entries, since F is triangular)
satisfy the condition

1—fif; #0 for all i,j.
In this case, we can uniquely solve for /; and express it in the form
li = (In—i — fi F;) ' GiJg;.

If we now substitute this expression for I; into the generator recursion (7.8c), we
obtain the following alternative update for the generator matrices [120, 171, 175].
COROLLARY 7.5. Assume that, in Theorem 7.4, the diagonal entries of F' satisfy

(7.9a) L—fif; #0 for all i,3j.

Then the recursion (7.8c) simplifies to the following: start with Go = G, Fy = F, and
repeat for i > 0:

0 Jg’-kgz'}
7.9b =1G; ®, —I,_;)G; L 0; R
(7.90) oo, |~ {e+ )62t
where ®; is a “Blaschke” matriz of the form,
1-m7f] _
(7.9¢) ®; = %(Fi — filn—)(In—i — f{F))™"
Ti — Ji

O; is an arbitrary J—unitary matriz, and 7; is an arbitrary unit-modulus scalar. The
triangular factors of R are determined by

(7.94d) li=(In—i— fz‘*Fi)_lGiJg:’ di = 19—1J|%|2

Furthermore, each step of the algorithm gives rise to a first-order r-input r—output
section with transfer matriz

(7.9€) 0i(z) = {I+ [Bi(z) — 1] ;f’Jgg } ®;

where B;(z) is a Blaschke factor of the form

—fi 1=mnf]
(7.9%) Bi(z) = 7= zf;%
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We may remark that the completion-of-squares argument is not absolutely essen-
tial to the derivation of the generator recursions (7.8c) or (7.9b). Indeed, starting
with expression (7.3a) for the displacement of R, one can check that its right-hand

side is equal to
0 01"
a7l ]

where G is the matrix obtained via (7.8¢c) or (7.9b), without the need to explicitly
introduce the auxiliary parameters {hg, ko} and then eliminate them via the expres-
sions of Lemma 7.3. This is clearly a possible alternative to the arguments of the
previous sections, but one has to somehow foresee (7.8¢c) or (7.9b), or any other re-
lated special case. We have chosen to present the completion-of-squares argument in
order to highlight connections with other important results that arise in the study
of J—lossless systems, such as the embedding relation (7.5b), as well as the first-
order state-space representation (7.5a). In any case, the point is that the generator
recursions (7.8c) or (7.9b) can be derived and motivated in several different ways,
each of which has its own merits and highlights different connections and results. It
can even be written or presented in many different forms, such as the general form
(7.8¢) (or (7.9b)), the array form, which is rederived below in (7.10d), and the earlier
form (7.2a) in terms of the {h;, k;} that are specified by the expressions of Lemma 7.3.

Specialization to Array Form

To show that the array form is indeed a special case of (7.9b), we first note that
expression (7.9b) includes two free parameters, viz., ©; and 7;. Proper choices of
these quantities lead to the array interpretation of Theorem 4.2. A simple choice for
Tiis 7 = (1 + f;)/(1+ fF). In this case, the expressions for ®; and B;(z) collapse to

z—fi

(7.10a) ®; = (Fi — filn—i)(In—i — f{F;)"' and Bj(z) = 1—2fF "

A convenient choice for ©; is to choose it so as to reduce the top row of G; to the
special form

with a single nonzero entry, &;, say in the j** column. In this case, ©;(z) in (7.9e)
and the generator recursion (7.9b) reduce to

I; 0 0

J — f.
(1109 09=0,| 0 B() 0 |, Bz)= L
0 0 I, —2f;
0 0, 0 0 I; 0 0
(710(1)[ G. ] = &,G,;0; 0 1 0 + G;0; 0 0 0 ,
w1 0 0 0, 0 0 I,

which is the generalized array form that we presented earlier in Theorem 4.2. But
other choices are also possible and would lead to different forms for the generator
recursion, such as the simple choice ©; = I.
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The previous results can be extended rather immediately to the case of non-
Hermitian structured matrices as in (6.7). We shall not elaborate on this extension
here, only because it is a special case of the general discussion in Section 7.4, and can
thus be immediately obtained from the results in that section.

7.2. Continuous-Time Embedding Relations: Completion of Squares.
We have focused so far on Toeplitz-like matrices as in (6.7) and (7.1a). We now
discuss another important subclass of structured matrices, the so-called Hankel-like
matrices. It will become clear, as we proceed with our discussion in this section, that
the derivation of the associated Schur algorithm is considerably more immediate in
this case. The reason is that our completion-of-squares argument will also lead to an
embedding relation in terms of auxiliary quantities {h;, k; }; but it happens that this
relation is very immediate to solve in the Hankel-like case, thus avoiding the route we
had to take before in the Toeplitz-like case by solving for h; and k; as in Lemma 7.3.

But first let us exhibit several examples of Hankel and Hankel-like matrices; here
we should mention that though we had introduced the concept of Hankel-like matrices
independently and in fact somewhat earlier (see [114, 115, 130]), it was Heinig and
Rost [101] who first made a detailed study of such structure, e.g., explicitly iden-
tifying Vandermonde and Cauchy matrices as being in this class. However, as will
be illustrated soon (in Section 7.2.1), these matrices can also be regarded as being
Toeplitz-like; as mentioned earlier, it is possible to transform results for displacement
operators of the form R— F RA* to those for FR+ RA*. Nevertheless, in special cases,
it may be simpler to work in one or the other domain - see, e.g., the root-distribution
problem studied in Section 8.2 ahead.

7.2.1. Hankel, Vandermonde, Pick, Cauchy, Loewner Matrices. We start}j
with a Hankel matrix H = [hiﬂ-]i";:lo and note that

0 —hy —h1 ... —h,»
ho
(T11)VH=ZH-HZ* = hy O has rank 2.
hn—z

We thus say that H has displacement rank 2 with respect to the displacement ZH —
HZ*. A minor problem here is that H cannot be recovered from its displacement V H,
because the entries {h,_1, ..., han—2} do not appear in VH; this “difficulty” can be
fixed in various ways (see, e.g., [50, 99] and also Section 7.3). One is to border H with
zeros and then form the displacement, which will now have rank 4. Another method
is to form the 2n x 2n (triangular) Hankel matrix with top row {hq, ..., han_1}; now
the displacement rank will be two. Note that in both cases the generators have the
same number of entries.

Several examples of Hankel-like matrices occur in applications. For instance, the
so-called Loewner and Cauchy matrices arise in the study of unconstrained interpo-
lation problems and in system theory (see, e.g., [13, 74, 194]). The entries of an n xn
Cauchy-like matrix R have the form

R
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where u; and v; denote 1 x r row vectors, and the {f;,a;} are complex scalars that
satisfy the conditions f; —aj # 0 for all 4, j. The Loewner matrix is a special Cauchy
matrix that corresponds to the choicesr =2, u; =[ 8 1 ],andv;=[1 —&; |,
and consequently, u;v; = (; — &7,

R=

ﬂi _ ;~|n1

fi—aj

4,j=0

We also note that Cauchy matrices arise from the choicesr =1 and u; = 1 = v;.
It is easy to verify that the Cauchy-like matrix R satisfies

*

Uo Vo
u; V1
(7.12a) FR—RA*=| | . ,
Up—1 Vp—1

where F' and A are diagonal matrices,
F = diagonal { fo,..., fn—1}, A = diagonal{ag,...,an_1}.

We say that a Cauchy-like matrix R has displacement rank r with respect to the
displacement defined by FFR — RA*.

Another example is the so-called Pick matrix that arises in interpolation problems
for the right-half plane, for example,
n—1
1 - BiB;

s

1,j=0

where the §; are complex scalars and the f; are points in the right-half plane (Re (f;) >
0). For the same diagonal F' as above, we can check that

*

1 Bo 1 B
1 B 1 B
(7.12b) FR+ RF* = | . . [ (1] _01 ] .
1 :Bn—l 1 :Bn—l
A final example is that of a Vandermonde matrix, say
1z z3 zp
V= ! o ‘/B% :1:?71 ’
1 zpa 23, zn_1
which turns out to have displacement rank 1 since
1
5510
T1
(7.12¢) AV -V Z* = . O ,

Tn—1
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where A is the diagonal matrix (assuming z; # 0)

1 1
A = diagonal {—, ..., .
g {xo xn_l}
But note that we can as well write
1
1
V-FVZ*=| . O ,
1

where F' is now the diagonal matrix
F = diagonal {zo,...,Zn_1} .

This shows that the Vandermonde matrix also has displacement rank 1 with respect
to the structure defined by V' — FV Z*, which avoids the restriction that the z; be
nonzero. Similar statements can be made for the Pick and Cauchy matrices, as
well, and in fact for all classes of structured matrices, a point emphasized by V.
Pan in his interesting paper [156] and in his recent book with Bini [24], which con-
tains much additional material on displacement operators. Pan proposed to improve
Hilbert- and Vandermonde-type computations by reducing them to the more-studied
Toeplitz/Hankel-type computations. On the other hand, Heinig [97] proposed going
in the other direction in order to exploit the fact that the Cauchy structure is un-
affected by row or column interchanges, so that pivoting strategies can be employed
[97]. In [87, 89, 119] it was observed that partial pivoting could also be incorporated
into generalized Schur algorithms for larger classes of structured matrices — see also
Sec. 11.5.

7.2.2. Generalized Schur Algorithm for Hankel-Like Matrices. We now
consider strongly-regular Hermitian matrices R that satisfy displacement equations
of the form

(7.13) FR+RF*+GJG* =0,

where F is an arbitrary lower triangular matrix with diagonal entries {f; ?;01, G is
an n x r generator matrix, and J is any nonsingular matrix satisfying J2 = I, e.g., a
signature matrix J = (I, ® —1).

A short remark is due here. Note that in defining the Hankel-displacement (7.13)
we chose to write FR + RF™ rather than FR — RF*. One motivation for this is
that Pick matrices, as in (7.12b), are structured with respect to FFR+ RF*. Another
is that (7.13) is the standard form (at least when J = I) of the famous Lyapunov
equation for checking whether the eigenvalues of F' have negative real parts. The form
(7.13) is also more convenient for comparing the associated Schur algorithm with that
of the Toeplitz-like case (7.1a), as will become clear further ahead. In any case, all
these forms, as well as the non-Hermitian counterpart, are special cases of the general
structure (7.24) that is considered in a future section.

We say that R in (7.13) is a Hankel-like matrix with respect to (F,G,J), and
our purpose is to show that the Hankel-like structure is preserved under Schur com-
plementation. That is, if R; is the Schur complement of rgo in R then R; is also
Hankel-like. To check this, we let lg and go denote the first column of R and the top
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row of G, respectively. We then conclude from (7.13) that the first column /y and the
top left-corner element r99 of R obey the identities

(7.14) Flo+1lof; +GJgs =0, do(fo+ f3)+g0Jgs =0.

Using (4.1a) and (7.13) we can prove the following lemma.
LEMMA 7.6. Consider an nxn strongly-reqular Hermitian matriz R that satisfies
the displacement equation

(7.15a) FR+RF*+GJG* =0,

where the diagonal entries of F' are denoted by {f;}. The first Schur complement Ry
satisfies

PRy + Ry Ff + G JGE =0,

where Fy is the submatrix obtained after deleting the first row and column of F, and
G, is computed from G as follows

0 _
(7.15b) [ a ] =G —lody g0 -

Moreover, dy and lo are the (0,0) entry and the first column of R, respectively, and
they satisfy the equations

(7.15¢) Flo+lofs +GJgs =0 , do(fo+ fo)+ g0Jg5 =0.

Proof. The proof can be obtained via straightforward manipulations as follows:
using (4.1a) and (7.14) we find that

FRy + R F* = —GJG* + GJg3dy 15 + lody g0 JG* + lody 15 (fo + f3) -

Now the right-hand side of the above expression is easily seen to be a perfect square
since we can express it as

—[G = lodyt90] T [G = lody90]"

and the result is established. O

If we define the quantities ho = —Jgjd, ~ and ko = I (the identity matrix), then
(7.15b) takes a form similar to the generator recursion (7.2a) in the Toeplitz-like case.
More precisely, we can rewrite (7.15b) as

1

0 \ ;
[ &, ] = lohiJ + Gk .

It can also be easily seen that for any other J—unitary choice ko, viz., koJkg = J,
and for hg = —koJggdy 1 we also get

— [GTkT + lohy J) T [GTkST + lohyJ]" = FRy + Ry F* .

We are, therefore, led to the following generalization of Lemma 7.6.
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LEMMA 7.7. Consider the same setting as Lemma 7.6. The Schur complement
R, satisfies

FiRy +R1F1* + GlJGI =0,

where

(7.16) [ 6(1‘]1 ] — loh3J + GIKSJ

and hg and ko are, respectively, r x 1 and r x r arbitrary matrices chosen so as to
satisfy, along with {do, fo, go}, the embedding relations

fodo +dofg +90J95 =0
hodo + kngg =0
ko ke = J .

The argument can now be repeated for the successive Schur complements and
leads to the following theorem, which is the counterpart in the Hankel-like case of
Lemma 7.2 and Theorem 7.4. [ We may note here that solving the embedding relations
for (hg, ko) in the Hankel-like case is rather trivial, thus allowing us to avoid the
intermediate route of first determining hg and k¢ as in Lemma 7.3 in the Toeplitz-like
case].

THEOREM 7.8. Consider an n xn strongly-regular Hermitian matriz R that obeys
the displacement equation

(7.17a) FR+RF*+GJG* =0,

where F' is lower triangular, G is n X r, J is an r X r signature matriz satisfying
J? = I, and the diagonal entries of F' are denoted by {f;}. The Schur complements
R; are also structured with generator matrices G;, viz., F;R; + R;F} + G;JG} = 0,
where F; is the submatriz obtained after deleting the first row and column of F;_1,
and G; is an (n — i) X r generator matriz that satisfies, along with l; (the 1°¢ column
of R;), the following recursion

(7.17b) [ o ] — LRIT + GiTk:T
i+1

where h; and k; are, respectively, r X 1 and r X r arbitrary matrices that satisfy, along
with {d;, fi, gi}, the embedding relation

fidi +dif +9iJg; =0
h;d; + k‘iJg;’ =0
(7.17¢) kiJk; =J.

Moreover, d; and l; are the (0,0) entry and the first column of R;, respectively, and
they satisfy the relations

(7.17d) di(fi + 1) + 9:Jgi =0, Fili +1if; +GiJg; =0.
A simple choice for h; and k; is

k’z:I ) hz:_Jg::dz_la
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which leads to the simplified generator recursion

(7.18) [ 0 ] =Gi—lid; 'g; -

Giy1
For any other choice k;, and defining ©; = k;l, the generator recursion can be re-
expressed as

0 -1
(7.19) [ Gint ] ={G; —lid;"g:} O,
where ©; is an arbitrary r X r J—unitary matriz.
Note again that the auxiliary parameters {h;, k;} were eliminated from the gen-
erator recursion (7.19). But it is still a function of the first column of i** Schur
complement R;, which is a solution of the linear system of equations

(Fi + fiLii)l; = —GiJg;.

If no restrictions are imposed on the diagonal entries of F', then the displacement
equation (7.17a) may not specify R uniquely and, consequently, the /; in the above
equation may not be uniquely defined. In other words, the recursion (7.19) is adequate
as long as the [; and d; can be uniquely determined from (7.17d) or from other available
information. More details on this issue are provided in Section 7.3.

7.2.3. The Special Case of a Unique R. But an important special case that
is of interest is when the displacement equation (7.17a) uniquely defines R. This
happens when the eigenvalues of F' (or equivalently its diagonal entries, since F is
triangular) satisfy the condition

fi+ ff #0 forall i,j.
In this case, we can uniquely solve for [; and express it in the form
li = —(Fz + fi*In,i)_lGiJg:.

If we now substitute this expression for /; into the generator recursion (7.19), we
obtain the following alternative update for the generator matrices [120, 171, 175].
COROLLARY 7.9. Assume that, in Theorem 7.8, the diagonal entries of F' satisfy

(7.20a) fi+ 7 #0 for all i,j.

Then the generator recursion (7.19) reduces to the following: start with Go = G,
Fy = F, and repeat for i > 0:

0 Jg; gi
.20b = i Qz _Inf'i 1 : i
(7.200) [ Gita ] {G * )¢ giJg’-*}@

where ®; is a “Blaschke” matriz of the form,
(7.20c) & = (F; = fil, ) (Fi+ fi Lia) ",

and ©; is an arbitrary J—unitary matriz. The triangular factors are given by

- 9iJ 95
7:20d li=~(Fi+ f{ 1) ' Gidgf, di= -7
(7.20d) (Fi + f7 i) ' GiJg e
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Specialization to Array Form

Assume, without loss of generality, that the signature matrix J has the form
J = (I, ® —1,). If we now choose ©; so as to reduce g; to the form

(7.21) 9:9; = [ 0 6 O ] )

with a single nonzero entry, §;, say in the j** column, it is then easy to verify that
the above generator recursion reduces to the following array form

0 0, 0 0 I; 0 0
el 0 0 0, 0 0 I,

We may add that in several instances, the simple choices ©; = I or ©; = J (rather
than as hyperbolic rotations to achieve (7.21)) are also of interest and often lead to
alternative convenient forms for the generator recursion — see, e.g., the calculations
in Section 8.2.1.

7.2.4. Elementary Continuous-Time State-Space Sections. It is again in-
teresting to note how the so-called embedding (dilation) relation (7.17¢) arises nat-
urally in our framework. It plays a fundamental role in characterizing J—lossless
transfer functions over the left-half plane. Indeed, if we define the first-order section

0, () =ki+hi(s—fi) 'gi= [T+ hi(s— fi) ] k; ",

and use the proper choice for ©; = ki_l, as in (7.21), we get

I 0 o0
0i(s)=0; | 0 =k 0
0o o0 I

This transfer function clearly satisfies
0;(s)JO;(s) =J on Re(s) =0.

If we further assume that Re(f;) < 0, it then follows that: (i) ©;(s) is analytic in the
left-half plane (Re(s) < 0), (ii) J—unitary on the imaginary axis, ©;(s)JO}(s) = J
on Re(s) = 0, and (iii) ©;(s)JO(s) < J in Re(s) < 0. We thus say that ©;(s) is a
J—lossless transfer function.

7.2.5. A Note on the Non-Hermitian Case. The same arguments extend to
the non-Hermitian case,

(7.22) FR+RA*+GJB* =0,

where F' and A are lower triangular matrices with diagonal entries {f;,a;}7-,, G and
B are an n X r generator matrices, and J is a signature matrix. Such matrices admit
a triangular factorization of the form R = LD~'U, where L is lower triangular and
U is upper triangular with identical diagonal entries, and which are equal to those
of D. In what follows, we denote the (nonzero parts of the) columns and rows of L
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and U by {l;,u;}, respectively. The arguments of the previous section extend rather
immediately to the non-Hermitian case, thus leading to the following result.

THEOREM 7.10. Consider an n x n strongly-reqular non-Hermitian matriz R that
satisfies

(7.23a) FR+RA*+GJB* =0,

where the diagonal entries of the lower triangular matrices F' and A are arbitrary and
denoted by {fi,a;}, respectively. Then the successive Schur complements R; satisfy

(7.23b) F;R; + R,A: + GZJB: =0,

where F; and A; are the submatrices obtained after deleting the first row and column
of Fi_1 and A;_1, respectively, and G; and B; are (n —1i) X r generator matrices that
satisfy, along with l; and u; (the first column and row of R;), the following recursions

[ 0 ]:qu+GﬂwJ,
Gi1

(7.23¢) [ BO ] =uic;J+ B;JsJ,
i+1

where {h;,c;} and {ki,s;} are, respectively, r x 1, r x 1, r x r, and r X r arbitrary
matrices that satisfy, along with {d;, f,a;, gi, b}, the embedding relations

h,d: + kiJg;-’ =0

c;d; + SZJb: =0
(7.23d) kiJs; =J,
A simple choice for {h;,c;} and {k;,s;} is

ki=5i:I ) hi:—Jgikdi_*, Cz':—Jb?di_l,

which leads to the simplified generator recursions
0 = 0 -
7.23 =G;—l;d; "g;, = B; —ud; *b; .
(7:23¢) [ Git1 ] i 9 [ Bit1 ] Ui Gi
Moreover, d; = (—g;Jb})/(fi + a}),
l; = —(Fi + G;In_i)_lGin; , Uj = —g,JB:‘(A;k + fiIn_i)_l .

For any other choices k; and s;, and defining ©; = k[l and T'; = s;l, the generator
recursions can be re-expressed in the form

0 _

where ©;JI'f = J.

These recursions, as well as all the recursions presented so far in the paper, are
special cases of a general algorithm for matrices with generalized displacement struc-
ture introduced by Kailath and Sayed [120, 171, 175], as detailed in Section 7.4.

0

i1 :| = {Bz —uzd: bz}F, ,
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7.3. More on Nonunique R. We mentioned earlier that the generator recur-
sion (7.19) is adequate as long as the I/; and d; can be uniquely determined from
(7.17d) or from other available information. A sufficient condition is clearly to as-
sume that the diagonal entries f; satisfy (f; + f;) # 0 for all 4,j. This guarantees
that we can uniquely solve for /; and d; and leads to the generator recursion (7.20b).

While the uniqueness condition (f; + f;) # 0 is met in many applications, there
are various instances where it is not; as mentioned above, we now will need additional
information to carry on the recursion. No useful universal prescription seems to be
available, but in important cases special methods can be used to address the problems
arising from nonuniqueness. We illustrate this by considering two examples.

Our first example follows [50] in studying the Hankel matrix in (7.11). We re-
marked earlier that H cannot be recovered from its displacement VH, because the
entries {hn_1,...,han—2} do not appear in VH. More fundamentally, the issue is
that the columns of the triangular factors of H, satisfy linear equations of the form
Zil; = G;J g, with a singular coefficient matrix Z;. The elements in the nullspace of

Z; are column vectors of the form [ 0 ... 0 « ]T, with a single nonzero entry in
the last position and (i — 1) leading zeros (Z; stands for the (i x i) shift matrix).

Hence, the nonuniqueness only affects the last entry of [;. This suggests the
following method around this difficulty: border H by a row and column of zeros, say
H 0 ]

M:[o 0

where H is a leading submatrix of M. The extended matrix M also has structure
with respect to the displacement operation Z,,, M — M Z} ,,,

0 —ho ... —hp_a —hp_1
h() _hn
VM = 0 has rank 4.
hn72 _h2n72
hn_]_ hn “ e h2n_2 0

Now, the nullspace of Z,,11 is the set of all (n + 1) x 1 column vectors of the form

[0 ... 0 « ]T , for arbitrary scalar o,

and the columns of the triangular factors of M are orthogonal to the above nullspace,
since their last entries are zero. We can thus uniquely determine the columns of
the triangular factor of M, and by deleting their last entries we obtain those of the
triangular factors of H.

Another way out of the nonuniqueness problem is to simply assume that we are
also given the entries that are not uniquely specified by the displacement equation.
While this assumption is not always natural in matrix factorization problems (e.g.,
in the Hankel case), it happens in certain interpolation problems that this extra
information is available in the form of what are called coupling numbers (see, e.g.,
[20, 91]). To illustrate this, we consider a 3 x 3 Cauchy-like strongly-regular matrix
R= [r,-j]f,jzo that satisfies the displacement equation

FR - RA* =GJB*,

with F' = diagonal{ fo, f1, f2} and A = diagonal{ag,a1,as2}. Assume a} = f1. It then
follows that the r15 entry of R can not be recovered from the displacement equation.
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Therefore, the matrix R is completely described by the generator matrices {G, B}, the
displacement matrices {F, A}, and by its (1, 2) entry, r12. This entry is assumed to be
known and is referred to as a coupling number, pg) = r15. The generator recursion
for R can now be updated as follows:
(i) Recover from the generator matrices and from the coupling data the first

column [y and the first row ug of R;

(i) Compute G; and B; using (7.23f);

(iii) Update the coupling numbers via a standard Schur reduction procedure, viz.,

pis = P13 —riomg Toz.

These steps can now be repeated for the higher-order Schur complements. We
may remark that, unlike the bordering technique for the Hankel example, which suc-
cessfully exploits the underlying Hankel structure, the third step in the above coupling
procedure updates the coupling numbers via a standard Schur reduction procedure.
More study of the nonunique case is possible.

7.4. Generalized Schur Algorithm for Generalized Displacement Struc-
ture. To clarify our claim that the varied algorithms that were presented in earlier
sections are special cases of a more general definition of displacement structure, we
now consider matrices that are structured with respect to the following definition
[120, 171, 175)

(7.24) QRA* — FRA* = GJB*

where Q, A, F, and A are n x n lower triangular matrices whose diagonal entries will
be denoted by {w;}'=', {6}, {fi}?=), and {a;}!'-), respectively, G and B are

n X r generator matrices, and J is an r x r signature matrix. We further assume here
that, for each ¢, at least one of the following conditions is satisfied

(7.25a) wid; #0 or fial #0 or f;6; #0 or w;a} #0.

This means that, for each i, w; and f; are not zero simultaneously, and also a; and
d; are not zero simultaneously. These conditions are weaker than requiring (7.24)
to have a unique solution R, which would be the case had we instead required the
diagonal entries {w;, d;, fi, a; } to satisfy the condition

(7.25b) w;6; — fija; #0 for all 4, .
Special cases of (7.24) include Hankel-like matrices such as,
QR+ RA® =GJB”",

which corresponds to the choice A = —F = I and, therefore, satisfies (7.25a) since
fi6f = —1 # 0. Expression (7.24) also includes Toeplitz-like matrices such as,

R—-FRA*=GJB*,

which corresponds to @ = A = I; thus satisfying (7.25a) since w;6; = 1 # 0. We
now proceed to verify that the generalized structure is also preserved under Schur
complementation. The argument depends on which condition in (7.25a) is satisfied.
So we proceed gradually, and the final result is stated in Theorem 7.14.

To begin with, assume wydi # 0, which is in accordance with (7.25a). (Due to
the symmetry of equation (7.24), the arguments that follow are equally applicable if
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we instead had foaf # 0). It follows from the displacement equation (7.24) that the
(0,0) entry of R, its first column [y, and its first row wug, satisfy the following relations
ngé{'j = Floaé + GJbS,
(7.26) woupA* = fougA* + goJ B*,
do(wodg — foag) = goJbg,

where go and by denote the first rows of G and B, respectively. Let {Q, Ay, Fi, A1 } de-
note the submatrices obtained after deleting the first row and column of {Q, A, F, A},
respectively. The following result is the immediate extension of Lemma 7.1.

LEMMA 7.11. Consider an n x n strongly reqular matriz that satisfies (7.24) and
assume wg # 0 and §g # 0. The first Schur complement Ry satisfies

QlRlAI — F1R1AI = GlJBI 5
where Gy and By are (n—1) X r matrices that are computed from G and B as follows:

0 * *
[ a, ] = FloctJ + GJs3J

(7.27a) [ 131 ] = Auih3J + BIKST

where co and hg are arbitrary r X 1 column vectors, and so and ko are arbitrary r X r
matrices chosen so as to satisfy the generalized embedding relation

fo 9o d 0 ao by |7 _ [ wodody O
I F R A 1 g R |

Also, do,lo, and ug are the (0,0) entry, the first column and the first row of R,
respectively, and they satisfy the equations

Qlod; = Floal + GJbE,
wougA* = foupA* + goJ B,
do(wody — foag) = goJbg-

Proof. The proof can be obtained via direct manipulations that are similar to the
proof of Lemma 7.1. We write

QR A* — FRi A* = GIB* — Qlydy tugA* + Flody ug A,

_ayly_ 90 | ;e
wod()(sa

Jobg aggo
gAY — F B*
G s ¥ lo joiegs 7B
gOJb(’; * A%
7.28 Fl utA*

where we have replaced Qly and ugA* by the relations

1
Qlo = 5_* [Floaa + GJba] 5
0

1
’U,()A* = — [fo’u,()A* + goJB*] .
wo
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Here we invoked the nonsingularity of dp and wg. [ If we had instead fo # 0 and
ag # 0, then we would have replaced Fly, and uoA* by (ag* [Qlod — GJb§]) and
(f5! [wouoA* — goJ B*]), respectively; thus leading to a similar result but with an
appropriately modified embedding relation. In any case, the general result is stated
in the next lemma. ]. It follows, as in the proof of Lemma 7.1, that the right-hand
side of (7.28) can be put into a perfect-square because of (7.27b). O

We may now proceed as in the Toeplitz-like case and determine expressions for
{ho, ko, co, S0} so as to satisfy the embedding relation (7.27b) (see, e.g., [171, 175]),
thus leading to the following extension of Theorem 7.4.

LEMMA 7.12. Consider an n X n strongly regular matriz R as in (7.24) and
assume wg # 0 and &g # 0. The first Schur complement Ry satisfies

QIRIAI - FlRlAI = GljBi< )

where G1 and By are (n—1) X r matrices that are computed from G and B as follows:

0 _
[ a ] ={G — Aolody ' 90} ©0 ,

0 * 3—%
(7.29) [ B, ] = {B — Zougdy "bo} To

where ©oJI'§ = J,

1 * 1 *
o—rfo) Q=1F), Yo=7—7— (A-154),

Ay =
° (60 — v5ao)

with Tov = 1 and where dy,lo, and ug are the (0,0) entry, the first column and the
first row of R, respectively, and they satisfy the equations

91063‘ = Floag + GJbS,
wouoA* = foupA* + goJB”,
do(wodgy — foag) = goJbg.

By symmetry, the recursions are also applicable if we instead had fo # 0 and ag # 0.

Note that it is always possible to choose a 7y so as to guarantee (wo — 73 fo) # 0.
This is due to our earlier assumption that wy and fy are not zero simultaneously. A
similar remark holds for the term (d¢p — v§ag) that appears in the expression for Xg.

But what if we had fod§ # 0?7 This is again in accordance with (7.25a) and, by
symmetry, the arguments that follow are equally applicable if we alternatively had
woad # 0. In these cases, it is convenient to follow the continuous-time embedding
technique of the previous section especially because, as we remarked earlier, the cor-
responding derivation is rather immediate. This leads to the following generalization
of Lemma, 7.6.

LEMMA 7.13. Consider an n X n strongly regular matriz R as in (7.24) and
assume fo 7 0 and g # 0. The first Schur complement Ry satisfies

Ql_RlAi< - F1R1AI = GlJBi< )
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where Gy and By are (n—1) X r matrices that are computed from G and B as follows:

0 1 _
[Gl ]:{G—%Flo 0190}607
0 1 * J—%
(730) Bl =<B- g A’Lbodo bo F(),

where ©gJT'§ = J. If we instead had wy # 0 and ag # 0 then the above recursions get
replaced by

0 1 _
[ G1 :| = {G_w_OQlOdO 190}@0,
0 1 * 3—x%
(731) Bl =<B-— a_() A’U,Odo b() F().

Again, do,lo, and ug are the (0,0) entry, the first column and the first row of R,
respectively, and they satisfy the equations

Qlo(sg = Fl()aa + GJba,
woupA* = foupA* + goJB*,
do(wods — foag) = goJbg-

Proof. The proof is similar to that of Lemma 7.6. We prove it for the case fo # 0
and §y # 0. So we write

QR;A* — FRiA* = GIB* — Qlydy " ugA* + Flody ugA*,
1 1
dod; do fo

goné

=GQJB* — Jo%
7 B fod "

GJbaqu* - FlygoJB* + Fly A*

which can be put into the perfect square form

1 1 *
G- — Flgdo_lgo] J [B — — Aujdy*bo
fo do

The previous results clearly extend to successive Schur complements, thus leading
to the following general theorem.

THEOREM 7.14. Consider an n X n strongly regular matriz R as in (7.24) and
assume that, for every i, at least one of the following conditions holds:

wid; #0 or fia] 0 or fi07 #0 or w;al #0.
Then, the successive Schur complements of R satisfy
OR,A} — F;R; A} = G,;JB;,

where {Q;,A;, F;, A;} are the submatrices obtained after deleting the first row and
column of the corresponding {2_1,8;—1,F;_1,A;-1}, and G; and B; are (n—1i) x r
generator matrices that can be recursively constructed as follows: start with Qo =
Q0o =A,Fy=F, Ag = A, Go =G, and By = B, and repeat for i > 0:
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1. If w0} # 0 or fiaf # 0 then

0 ={G; — Ailid1g;} ©;
[ Git1 ] ={Ci — Ailid;9:} O,
0 * g—%7p ) ) x _

[ Bit1 ] ={B; — Sujd;*b;} i, ©,JT; =J,

1 1
. (Y —7*F), D=
=gy TR Bi=

2. If fi6F # 0 then
0 1 -1
i — — Filid;"gi ¢ ©4,
oo | ={o- g e

0 1
={B;— = Ajuld*b; STy, ©;JTF = J.
[Bi+1] { 5, uzdzb} 0,JT; =J.

A.i = (Az - I/;Ai), ’7'1'1/;k =1.

3. If w;a; # 0 then

0 |l - Laritele.
[Gi+1 :| —{Gz " Qzlzdi gz}eza

Bi+1 a;

Also, g; and b; are the top rows of G; and B;, respectively, and d;,l;, and u; are the
(0,0) entry, the first column, and the first row of R;, respectively, and they satisfy the
equations

911,5: = F,l,af + G,Jb;k,
wiuiAf = fiu;AY + g;JBY,
(7.32) di(wib} — fiai) = giJb;.

7.4.1. The Special Case of a Unique R. The generator recursions in the
above theorem are adequate as long as d;, l;, and u; can be uniquely determined
from (7.32) or from other available information. If it is further assumed that the
displacement equation (7.24) has a unique solution R, which happens when

(7.33) w;6r — fiar #0 for all 4,j,

then we can solve explicitly for d;,l; and u;, and it also allows us to conclude that we
either have w;é; # 0 or f;a; # 0. This leads to the following result.

COROLLARY 7.15. Consider an n X n strongly regular matriz R with generalized
displacement structure

QRA* — FRA* = GJB* ,

where Q, A, F, and A are n X n lower triangular matrices whose diagonal entries are
denoted by {wi}=y, {630, {fi}i=y, and {a;}!=,), respectively, G and B are n xr
generator matrices and J is an r X r signature matriz. It is further assumed that

w;0; — fija; #0 for all i,3j.
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Then the successive Schur complements of R satisfy
QOR;A} — F;R;A; = G;JB],

where {Q;, A;, F;, A;} are the submatrices obtained after deleting the first row and
column of the corresponding {2;_1,2; 1,F; 1,A; 1}, and G; and B; are (n—1) X r
generator matrices that satisfy the following recursions: start with Go = G, By = B,
Fo=F Ay = A, Qo =Q and Ay = A and repeat for i > 0:

0 Jb} g
[ Cns ] = [Gi+(<1>i—1n_i)aiﬁ] 0, ,
(7.34a)
0 = ; . \p.J9ibi )
[ Bina ] B [B’ + (¥ I"*’)BlbiJg;] Ly,

where ©; and T'; are arbitrary matrices that satisfy ©;JI = J,

®; = (5;—1/,-(;;) (wiFi — fiQ:)(6; Qi — a; Fi)™

viw;—f;

(7.34b)

Ti0i—a;

;= (ﬂ) (0:Ai — a;ldi)(wiA; — fFA)TH,

and v; and 7; are complex scalars that satisfy v;7; = 1. The triangular factors are
given by

li = (Qz(s: — .an:‘)_leJb:,
u; = giJ B} (wiAF — fiAD) 7L,
9iJb}

di=————-"2-—.
w,(S:‘ - f,a:‘

7.4.2. Specialization to Array Form. The recursions can also be rewritten
in array form, under the uniqueness assumption (7.33), by properly choosing the
parameters (7;,v;) and the rotation matrices (0;, ;). We assume J = (I, ® —I;;), set

fi+ 6 a; +w!
7.35 =% = i
(7.35) Vi a; + w; T o + [

and choose the rotation matrices so as to reduce the rows rows g; and b; to the forms
giGi:[O T; 0] and biFiZ[O Ui 0] ,

respectively, where the nonzero entries Z; and ¢; are in the same column position, say
the j** position. This leads to the following result.

COROLLARY 7.16. Consider an n x n strongly reqular matrix R with generalized
displacement structure

(7.36a) QRA* — FRA* = GJB*

where Q, A, F, and A are n X n lower triangular matrices whose diagonal entries are
denoted by {w;}1=, {6:}0, {fi}i=y, and {a;}?=,), respectively, G and B aren xr
generator matrices, and J is an r X r signature matriz. It is further assumed that

w;b; — fiai #0 for all i, ;.
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The successive Schur complements of R are also structured, viz.,
(7.36b) OR,AT — F;R; AT = G;JB;,

where {8, A, F;, A;} are the submatrices obtained after deleting the first row and
column of the corresponding {1, A;—1,F;—1,A;_1}, and G; and B; are (n—1i) X r
generator matrices that satisfy the following recursions: start with Go = G, By = B,
Fo=F, Ay = A, Qy=Q and Ay = A and repeat for i > 0:

1. At step 1 we have G;, B;, F;, A; Q;,A;. Let g; and b; denote the top rows of
G; and Bj;, respectively;

2. Choose rotation matrices ©; and I'; that satisfy ©;JT; = J and such that
the rows g; and b; are reduced to the forms

respectively, where the nonzero entries T; and g; are in the same column position, say
the jth position;
3. The generators G;+1 and B;y1 are then given by

0 0, 0 0 I, 0 0
[G :|=<I)Z'Gi@i 0 1 0 + G;0; 0 0 0 s
o 0 0 0,_;; 0 0 I,
(7.36d)
0 0, 0 0 I, 0 0
[B' ]:\IliBiI‘,- 01 0 +BI;| 0 0 0 :
o 0 0 0, 0 0 I
where

®; = (wiFi — fi) (07 Qi — a} Fi) 1,
U, = (8;A; — ail\i)(w}A; — frA) T,
4. The triangular factors are given by d; = (Z;J;;9;)/(widF — fiay),
0
L= —ajF)7'Gi0:J | §F |, ui=[0 Z 0 ]JT;B(wiA} — f; A7)~
0

5. Fach step also gives rise to two r—input r—output first-order sections of the
form

I 0 0 I; 0 0
Boi(z)=©; | 0 %=L 0 , Bri(e)=Ti| 0 J&% 0
0 0 I, 0 0 I

7.4.3. Specialization to Hankel-Like Structure. The recursion (7.34a) also
includes the algorithms of earlier sections as special cases. To demonstrate this, let
us show that the recursions (7.34a) include, for example, the Hankel-type recursions
(7.23f). For this purpose, we consider matrices that satisfy (cf. (7.22))

QR+ RA* + GJB* =0, J is a signature matrix,
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which is clearly a special case of (7.24) with

A=1I, F=—1, J=—J.

To specialize the recursions (7.34a) to this case, we choose ©; = T; = I and (v;,7;)
as in (7.35). This leads to

®; = (wiF; — fiQ) (07 Qi —alFy) 7', ;= (6;4i — aiN) (WA — fFA)Y,

and the recursion for G;; now becomes (here we want to re-express the terms as a
function of [;)

0 " gi * Gi
=G; d,G;Jb; — G;Jb;
[ Gist ] Nl 1SN R [
(wi F3—fiQ4)1; (032 —a} Fi)l;
N 1

=G+ (—wilp_i + Qi — Q; —a} Infi)m l;gi,
w; + af _

=G; + gzijb;f‘z lLigi = Gi — lid; ' g;.

Likewise for B;;1.

Many other illustrations can be given of how, not surprisingly, the above general
recursions, which were first presented in [120], include various algorithms derived in
the literature for special choices of {Q, A, F, A}. Here, however, we would like to
describe an alternative function-theoretic formulation.

8. The Generating Function Approach. The generalizations studied so far
of Schur’s original recursion (3.1) (or (3.6a)) were obtained via matrix-based argu-
ments, and one might wonder at this point whether a similar extension is possible
in the function domain. The answer is (essentially) affirmative and it takes us to
the earlier work of Lev-Ari and Kailath [130, 133, 134] on the generating function
approach to structured matrices. In this framework, a matrix R is described in terms
of a bivariate function R(z,w): if R is structured then R(z,w) will be a structured
bivariate function as clarified below. More important perhaps is the fact that the
bivariate functions associated with the successive Schur complements of R will also
inherit the same structure as R(z,w). The final recursions, in function language,
hint to connections with results in complex analysis and to several applications. In
particular, we elaborate further ahead on a connection with Bezoutians and stability
tests.

We shall, for simplicity, limit ourselves in this section to Hermitian strongly reg-
ular matrices, although the approach is readily applicable to non-Hermitian matrices
as well [183]. Our goal will be triangular factorization, which is a nested operation.
Therefore we shall assume, and without loss of generality, that all matrices R are
extended to be semi-infinite.

The generating function of a semi-infinite matrix R = [rmj];ij:o is the bivariate
function R(z,w) defined by

Rzyw)=[1 z 22 ...]R[1 w w? ...]".

Lev-Ari and Kailath [130, 134] studied structured matrices R whose generating func-
tions can be expressed in the general form

(8.1a) R(z,w) = ¢
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where J is any Hermitian constant nonsingular matrix, d(z,w) is the generating
function of a constant (possibly singular) Hermitian matrix d = [dmj]zj:o viz.,

dzyzw)=[1 2z 22 ...]d[1 w w? ...]*,

and G(z) is a 1 X r row vector function, where r is called the displacement rank of R.
Equation (8.1a) has a matrix domain equivalent that shows that it can be regarded as a
generalization of the earlier definition (2.1b). If we write d(z, w) = >°7° . dm; 2Maw*d
then (8.1a) can be alternatively expressed in the form

(8.1b) > dmjZ™RZY = GG,

m,j=0

where each column of the matrix G is formed by stacking the coefficients of the
corresponding function in G(z), i.e., G(z) =[ 1 z z*... ]G.

As simple examples, consider the case of Hermitian Toeplitz and Hankel matrices
(T = lei—jlij0-¢i = ¢y and H = [hiy]7;_), for which it can be seen by direct
calculation that
c(2) + c*(w)
2(1 — zw*)

[2h(2) — w*h* (w)]

(8.2) T(z,w) = )

and H(z,w) =

respectively, where ¢(z) and h(z) are given by

c(z) =co +2z2c1 +22%¢5+... and h(z) = ho + zhy +2%ho + ...

The expression for T'(z,w) can also be written in the alternative form

b

T(z,w) = 9”(2)‘”*(;")_—2 iEZ)y*(w)

where
2z(2) =c(z) +1 and 2y(z)=c(z)—1.

By writing the above as (1 — zw*)T(z,w) = z(2)z*(w) — y(2)y*(w), we can easily
recognize the matrix equivalent (compare with (2.3a))

1 0 *
T—ZTZ*=[X0 yo][o _1][X0 YO] )

where the semi-infinite columns x¢ and y( are formed by stacking the coefficients of
z(z) and y(z), respectively. Expression (8.1b) is clearly more general than (2.1b) and
it includes a larger class of structured matrices, such as sums of Toeplitz and Hankel
matrices [183]: assume R is the sum of a Hermitian Toeplitz matrix and a symmetric
Hankel matrix. Using (8.2) we readily verify that the associated generating function
is equal to

G(2)JG*(w)
31 = 2w*)(z — w*)
where G(z) = [ 1 2z ¢(2) +2%h(2) z[c(2) + h(z)] | and

R(z,w) =

b

—J
J= o , =+ -1
J
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Further examples and discussion of the more general class of sums of quasi-Toeplitz
and quasi-Hankel matrices can be found in [183] — see also [80, 98, 143, 197, 198] for
alternative appoaches to the factorization of sums of Toeplitz and Hankel matrices.

We may remark that the function defined by the equation d(z, z) = 0 demarcates
various regions in the complex plane (see Section 8.2). When d(z,w) = 1 — zw*, the
boundary is the unit circle, when d(z,w) = z — w*, the boundary is the real axis.
This remark sheds further light on our earlier (perhaps cryptic remarks to readers
not versed in linear system theory) that Toeplitz-like and Hankel-like displacements
corresponded to unit circle (discrete-time) and half-plane (continuous-time) systems,
respectively.

We now show how to extend Schur’s algorithm, viz., recursion (3.6a), to the class
of matrices described by (8.1a). We shall see ahead that for such an extension to be
possible, the freedom in choosing d(z,w) has to be limited (see (8.5a)).

Returning to the general definition (8.1a), and using the notation of generating
functions, it is easy to check that the Schur reduction procedure (4.1b) can be written
in the equivalent form:

(8.3&) di = Ri(0,0), lz(z) = Ri(Z,O) ,
(8.3b) 2w* Riy1(z,w) = Ri(z,w) — Ri(2,0)R;*(0,0)R;(0,w) ,
where l;(2) = [ 1 z 2z* ... ]l; and R;(z,w) denotes the generating function of

the it* Schur complement. Notice that the (nonzero parts of the) it* column of the
triangular factor L of the given finite matrix R is obtained by considering the leading
(n — 1) coefficients of 1;(2).

Our purpose is to show that if we start with a generating function R(z,w) that
has the form given by (8.1a) then, under an additional condition to be specified ahead,
the successive Schur complements of R will also have a similar form. To verify this,
we proceed by induction: suppose we can write R;(z,w) in the form

Gi(2)JGi (w)

B = " dew

(this is certainly true for ¢ = 0) then substitution into (8.3b) yields

Gi(2)J — gt TMi T} G (w)

d(z,w) ’

2w* Riy1(2,w) =

where we defined M; = G¥(0)R;'(0,0)G;(0). [ The strong regularity of R guarantees
that R;(0,0) # 0. Also note that G;(0) is equal to the top row of G; and that R;(0,0)
is equal to the (0,0) entry of R;.]. If we can now find a matrix function ©;(z) such
that

(8.4a) 0:(2)JO;(w) =J —

then we can write

(8.4b) 2w*Riy1(z,w) = ¢
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This shows that in order to reduce the right-hand side of the above expression to
a form similar to (8.1a) all we need to do is to define the following row function
(compare with (3.6a))

(8.4¢) 2Gi11(2) = Gi(2)0;(2) , Go(z) =G(2),
which tells us how to update G;(z). In this case, we can rewrite (8.4b) as

Git1(2)JGiy 4 (w)

(84d) R’H—l (Z, ’LU) = d(z w) .

which is the desired form. It also follows that we can determine d; ;1 and [;11(z) from
G;+1(2) without the need to explicitly evaluate R;y1(z,w), viz.,

o Gi(2)JGA(2)
(8de)  dips = lim d(z, 2)

Gi11(2) G144 (0)
d(z,0)

, o lipa(2) =

All that remains to be shown is that a ©;(2) exists that satisfies (8.4a), and if so to
find an explicit expression for it. It turns out that to do this, d(z,w) needs to be
further constrained as in (8.5a) below.

THEOREM 8.1. Let R be a Hermitian structured matriz whose generating function
is given by

G(2)JG*(w) .

R w) = = 4 w)

If d(z,w) is of the form
(8.5a) d(z,w) = a(z)a*(w) - f(2)f"(w) ,

for some functions a(z) and f(z), then the triangular factorization of R can be carried
out recursively using (8.4c) and (8.4e) with

(8.5b) ©i(2) = {I - %

J MZ} 0;,
where ©; is an arbitrary J—unitary matriz (©;J0F = J) and 7 is any scalar such
that d(r,7) = 0.

Proof. We refer to [131, 134] for a proof that (8.5a) ensures that some ©;(z)
exists, because it is a bit long (and could probably be improved). Here, however it
will be useful to indicate how (8.5b) follows under the assumption that (8.4a) has a
solution ©;(z). First we note that if ©;(z) exists, it is not unique because it can be
replaced by 0©;(2)0;, for any ©; such that ©,J0; = J. If we choose any scalar such
that d(7,7) = 0, it then follows from (8.4a) that ©;(r) is a J—unitary matrix, and
that we can express ©;(z) as in (8.5b). O

We may remark that in matrix form the descriptions (8.1a) and (8.5a) imply that
R satisfies a displacement equation of the form

ARA* — FRF* = GJG* ,

where A and F' are lower triangular Toeplitz matrices that are formed from the co-
efficients of a(z) and f(z), respectively. This is of course only a special case of the
generalized displacement (7.24); however we may note that by appropriate use of
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Newton series and divided-difference matrices (rather than Taylor series and Toeplitz
matrices) Lev-Ari [130] was able to obtain generator recursions equivalent to those
of Corollary 7.5 for the case of nonderogatory matrices F' that are not necessarily
Toeplitz.

The generating function approach allows an interesting generalization of the Schur
algorithm to factorizations of the form R = QDQ@*, @ not necessarily lower triangular
[130]. This can be useful in various applications, e.g., in root distribution theory (see
Section 8.2 below). The generalization is obtained by replacing (8.4c) by

(z = &)Giv1(2) = Gi(2)0i(2), Go(2) = G(2),

where §; is any point in the complex plane (though the most common choices are
& = 0,£1). Now ©;(2) is correspondingly generalized from (8.5b) to read

o den)
0i(z) = {I d(z,&)d(&, 1)

where 7 is any scalar such that d(7,7) = 0 and ©; is an arbitrary J—unitary matrix.

JG;(&)R™'(&, §z‘)Gi(§i)} 0;,

8.1. An Example: Quasi-Toeplitz Matrices. We now specialize, for the
sake of illustration, the recursions of Theorem 8.1 to a Hermitian positive-definite
quasi-Toeplitz matrix R, viz., a matrix whose generating function has the form

G(2)JG* (w)

R(z,w) = 1— zw*

b

where G(z) is a 1 X 2 row vector function and J = (1 & —1). Notice that d(z,w) =
(1—2w*) satisfies condition (8.5a). Expression (8.5b) has two degrees of freedom, viz.,
the J—unitary matrix ©; and the scalar 7. A simple choice for 7is 7 = 1. A convenient
choice for ©; is to choose it as a 2 x 2 hyperbolic rotation that annihilates the second
entry of the top row of G;, which is equal to G;(0). The positive-definiteness of R
guarantees that the corresponding reflection coefficient 7; will be strictly bounded
by one. Substituting this choice for ©;, along with 7 = 1, into expression (8.5b), it
follows, upon simplification, that it collapses to the form

(8.6) @i(z)zﬁ[_iﬁ _1%][3 fl]]’

which is precisely the same expression for ©;(z) in Schur’s linearized form (3.6a).

8.2. An Application: Bezoutians and Root Distribution Problems. Therell
is a long history of studies on the problem of tests for determining the distribution
with respect to different regions (in particular, half planes and discs) of the roots of
a given polynomial. Most of the literature on this topic falls into one of two major
classes: (i) various matrix criteria (e.g., those of Hermite (1856), Lyapunov (1893),
and more recent results of Kalman (1969) and Jury-Gutman (1981)) and (ii) efficient
computational algorithms (e.g., those of Routh (1857), Hurwitz (1895), Schur (1917),
Cohn (1922)). Most of the literature treats the first class of problems, presumably
because the classical efficient algorithms can hardly be improved upon. Nevertheless,
there is room for dissatisfaction with the current state of knowledge, even if only from
a pedagogical point of view. Among the reasons for this are: 1) the miscellany of
derivations for each test, 2) the differences between the forms and the derivations
of the imaginary axis and unit circle tests, 3) the generally ad hoc procedures for
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handling singular cases, 4) the continuing “surprising” discoveries of new tests. Now
it turns out that one of the oldest criteria for root distribution with respect to the
left-half plane — the one of Hermite (1856) — involves a particular kind of structured
matrix (a Bezoutian), and so in fact does perhaps the earliest unit circle test — the
one of Schur (1917).

Therefore, it was interesting to explore the results of applying our general fast
algorithms for matrices with displacement structure to the special Bezoutian matri-
ces for root distribution problems. The results were encouraging. A unified approach
could be found to half-plane and unit-circle problems. The natural algorithms arising
from the analysis were essentially the same as the Routh-Hurwitz and Schur-Cohn
tests - slightly different in form but identical in the number of computations. More-
over, a whole family of algorithms with identical computational burden could be
identified and parametrized. A classification scheme was evident for grouping various
algorithms - old ones and any yet-to-be proposed. Finally a systematic method for
handling singularities becomes available. A more detailed account of our results in
this direction can be found in [25, 132, 152, 154].

To give a flavor of our approach, recall the function d(z,w) of (8.5a),

d(z,w) = a(z)a*(w) — f(2)f*(w) ,
and define!
Qy ={zld(z,2) >0}, Q_ ={z|d(z,2) <0}, 00 ={z|d(z,2) =0}

One is generally interested in three special cases.
1. Real Axis: dr(z,w) = j(z — w*). In this case

OR = {z|j(z — 2*) = Im z = 0},

so that R, are, respectively, the open upper and lower half planes.
2. Imaginary Axis: dj(z,w) = (2 + w*). In this case

OI = {z|(2 + 2*) = Re z = 0},

so that I are, respectively, the open left and right half planes.
3. Unit Circle: dr(z,w) = 1 — zw*. In this case

OT = {z[1 - |2]> = 0},

so that T are, respectively, the exterior and interior of the unit circle.
Given a polynomial

p(z) =Pno +Pniz+ ... +pn,nzna

we shall define pﬁ(z) as the polynomial reflection of p(z) with respect to 9. Instead
of exploring a general definition, we shall content ourselves with defining it in the
three special cases mentioned above:

1We remark that the symbol  is used in this section to denote regions of interest in the plane,
and it should not be confused with the matrix 2 that we used earlier in (7.24). The distinction is
obvious from the context. Likewise, the symbols R, T, and I are used here to denote specific regions
in the plane rather than matrices.
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1. pﬁ (2) = [p(z*)]*, where the notation [-]* denotes conjugation with respect to
both the coefficients and the variable. Note that pﬁ (2) corresponds to reflecting the
roots of p(z) into their images with respect to the real axis.

2. p?& (2) = [p(—2*)]*, which corresponds to reflecting the roots to their images
in the imaginary axis. If p(z) has only real coefficients, then p7 (z) = p(—2).

3. pﬁ (z) = 29°8P()[p(1/2*)]*, which corresponds to reflection with respect to
the unit circle. Alternatively, p#(z) is the so-called conjugate reverse polynomial,

p#(z) = p;’oz" —I—p;’lzn_l +... —}—p;’n.
Next we define a Bezoutian form

Bo(z, w) = PO @I — p* () p* (w)]"

dQ(Z,’LU) ’

where again we shall restrict 2 to be R, I, or T. The choices 2 = R corresponds to
the classical Bezoutian form introduced by Hermite (1856); Q = I was studied by
Fujiwara (1926); Q@ = T by Schur (1917) and Cohn (1922).

It is not hard to see that the Bezoutian form is a polynomial of degree n in both
z and w*, so that it is a quadratic form associated with a matrix Bgq,

n

Bq(z,w) = ZZziw*jb%, B, = [b% .

n
i=0 j=0

It can be shown that the Bezoutian matrix B is Hermitian. Now we can state (a
slight generalization of) Hermite’s original result; various proofs can be given — see,
e.g., [132].

THEOREM 8.2. Let {m,n,v} be the inertia of Bq, i.e. , Bq has 7 strictly positive
eigenvalues, 1 zero eigenvalues, and v strictly negative eigenvalues.

Then p(z) and p* (2) will have i roots in common; of the remaining roots of p(z),
m will lie in Q_ and v will lie in Q4.

Therefore, the root distribution problem can be reduced to one of finding the
inertia of Bg. One method is to seek a factorization

Bq = QDQ*a

where D is diagonal (or at least block diagonal). Then by a famous theorem of
Sylvester (that congruence preserves inertia), In Bqg = In D, and now the inertia is
easy to find. One approach is to try to find @ as a lower-triangular matrix, which
can be achieved with a diagonal D if and only if all the leading minors of B are
nonzero. In this case, Bg is said to be strongly regular, and it is associated with
nonsingular root distribution problems (e.g., those with no degeneracies in the Routh
table). When some minors are zero, the best we can get with triangular @ is a block
diagonal D, with blocks whose sizes correspond in a certain way to the patterns of
zero minors in Bg. Here we shall assume the strongly regular case; the singular case
is studied in [155, 180].

The triangular factorization of an n x n matrix can be achieved in O(n?) flops;
however the Bezoutian matrix clearly has displacement structure, which can be ex-
ploited to find the factorization and the inertia with O(n?) computations, and more-
over to do this using only the coefficients of p(z) without explicitly forming the Be-
zoutian matrix Bgo. Here we illustrate how the famous Routh test, usually derived
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via complex function arguments (e.g., Rouche’s theorem), falls out from the Schur
algorithm applied to a Bezoutian matrix.

8.2.1. Tests of Routh-Hurwitz Type. For reasons of simplicity, we shall as-
sume that the polynomial p(z) has real coefficients. Then p*(z) = p(—2z) and

with
dzw) =2 +w', Gz) = [ pz) p(=2) ], J=(1&-1).
Then

_dzn) 11
d(z,0)d(0,7) z = T

Here 7 is an arbitrary point on the imaginary axis; we could take it as j, but the
choice 7 = joo seems even better. Now B(0,0) = 0/0, and so we use L’Hospital’s rule
to evaluate it as

B(Oio) = 2p(0)pl(0) = 2pn,0pn,l-

Therefore,
0 _ 1 1
Mo= | 20 | B 00 [50) 50 T=p0| | 1 |,

where

pO = pz(O) = pn’o

2p(0)'(0)  2pp1’

and

_ [ 1=poz™"  —poz!

Oo(2) = poz ' 1+ pozt ©o.

If we choose ©g = J, then we can check that G1(z) will have the form [ p1(2) pi(—2) ]|}
so that the recursion can be continued. In fact, if we write
i

pi(2) = pio +Pinz+ ...+ Pip—iz" 7,

then it is easy to see that
di = B;(0,0) = 2p;(0)p;(0), pi = p;(0)/d;,

1 1

1—piz™" —piz~

GZ(z) = piz_l 1 +Piz_1 %

and the recursion 2G;11(2) = Gi(2)0;(z) becomes

(8.7) zpir1(2) = pi(2) — piz 'pi(2) — pi(—2)].



74 THOMAS KAILATH AND ALI H. SAYED

Note that [p;(2) — pi(—2)] is odd, and therefore divisible by z; also that when z = 0
the right-hand side is zero. Therefore p;11(z) has degree less than p;(z), and the
recursions will terminate in n steps or less. Note also that the inertia depends upon
the signs of the {d;} or equivalently of the {p; = p?(0)/d;}.

Finally, as for the computational effort, note that at the i** stage we have (n —
i)/2 multiplications (even coefficients xp;) and (n — ¢)/2 additions (modify the even
coefficients of p;(z)). This is exactly the same as for the celebrated Routh recursions,
which however are slightly different in form. However they are easily obtained by
adding the recursions for p;(2) and p;(—z). In fact if

2mi(2) = pi(z) + pi(—2), 2ni(z) = pi(2) — pi(—2),
the recursion (8.7) becomes exactly the Routh recursion

2mip1(2) = ni(2), 2nip(2) = mi(2) — 2piz " ni(2).
The reader can check that these expressions will be obtained directly if we started
with

Go(2)U = [ po(2) mo(—2) ]T, withU=[} —}]'

However our derivation shows that there are many tests of complexity equivalent to
that of the Routh test — we gave one, but many others can be obtained by choosing
differently the free parameters associated with the recursions of Theorem 8.1.

8.3. Remark on Reproducing Kernel Hilbert Spaces. Lev-Ari and Kailath
[133] pointed out that the generating functions R(z,w) in Theorem 8.1 could be
regarded as the reproducing kernels for certain Hilbert spaces of analytic functions
(see, e.g., [16], [62]). This provides some new ways of looking at these theories, e.g.,
the famous Szegd kernel, R(z,w) = 1/(1 — zw*) is the generating function of the
(identity) covariance matrix of a white noise process. So also, the kernel T'(z,w) =
(e(2) + c*(w))/(2(1 — zw*)) in (8.2), which arises from a Toeplitz covariance, occurs
frequently in the work of deBranges, who characterizes T'(z, w) much more abstractly
via certain resolvent properties. Dym and his colleagues, esp. Alpay and Dewilde,
noted the connection with the work of deBranges; they have developed it extensively
and also applied it to the study of displacement structure (see, e.g., [6, 7, 8, 71, 72]).
It would take us too far afield to describe their approach here, esp. since their main
focus is not the factorization problem which we regard as central. We may note that
our specification of the form (8.5a) for the (domain) function d(z,w) has led to the
study of a new class of reproducing kernel spaces — see [10].

Here we shall reinforce the value of making connections with stochastic processes
by showing how displacement structure can be enhanced by combining it with state-
space structure, and especially the computationally-oriented Kalman-filter theory,
which has been extensively developed by engineers over the last 30 years.

9. Incorporating State-Space Structure. We have studied displacement struc-fi
ture at some length. A very widely studied structure in system theory is state-space
structure. It turns out that we can often combine the two quite effectively. In par-
ticular, while fast triangular factorization algorithms for N x N matrices Ry with
displacement structure reduce the computational complexity from O(N?) to O(N?),
if the matrices arise from a system with n states, the computational effort can be re-
duced to O(Nn?) and when displacement structure is also present, to O(Nn?). Since
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the number of states n, is often much less than the number of measurements, N, the
presence of state-space structure enables significant computational savings.

To be more specific, we shall focus largely on the case where the matrix Ry is
the covariance matrix of a set of zero-mean random variables,

Yo
y:

Y = . , Ry =EYY",
yn

where the letter E denotes expected value. The {y;} are further assumed to be
obtained from the following state-space model:

xi+1 = Fix; + Giu;
(9.1a) yi = Hixi +vi ,

where F;, G; and H; are n xn,n xm, and pxn known matrices, respectively, while xq,
{u;} and {v;} are zero-mean random variables with specified second-order statistics

u; s * Q,é,, 0 0
Vi J _ 0 Rzéz] 0
(9.1b) E Xo ;J = 0 0o I,
1 0 0 0 o

Here 0;; is the Kronecker delta function equal to unity when ¢ = j and zero elsewhere.
Of course, the {x;} and {y;} will also be random variables with statistics that can be
computed as follows: let

II; = Ex;x’, the state covariance matrix.

Then given the initial values Il we can find the II; via the (Lyapunov) recursion
(923,) Hi-i-l = EH;FZ* + G,QzGr, 1 > 0.

Next, we have Ry = EYY* = [Eyiy;'-‘]f\,;-_:lo where
HFFyy .. FILH:  ifi>j
(9.2b) E'yiy; = HILH! + R; ifi=j
HILFfF;, ... F H  ifi<j

We shall assume that the matrix Ry is strictly positive-definite, which can be assured
by various reasonable assumptions on the system parameters (e.g., R; > 0).

We see that the entries of Ry are essentially determined by size n matrices, which
is what allows the possibility of computational reduction. It can be shown, though we
shall not prove this here, that the triangular factorization of Ry can now be carried
out with O(Nn?) elementary operations. The key calculation turns out to be that of
certain n x p matrices {K;}, which can be done in various ways. The best known is
one introduced in the celebrated Kalman filter [123] and involves the so-called discrete
Riccati recursion for certain n x n matrices {P;},

(9.3) Piy1 = FiPF} + GiQ:G; — F,P,H;R_[H;P,F}, Py=1l,
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where R.; = R; + H;P,H;. The invertibility of the {R, ;} is assured by (in fact,
is equivalent to) the assumed positive-definiteness of the matrix Ry, whose (block)
triangular factorization,

Ry = LD7'L*,

turns out to be specified by D = diagonal {R. ;}, and

t

l; = the nonzero part of the i** column of L

Re,i
HK;
_ HF; 1 K; , where K; = F;P;H;.

HFn_y...Fi1 K,

We can see that each iteration (i.e. , computing P;41 from P;) of the Riccati recur-
sion takes O(n?) elementary operations, so that the complete triangular factorization
of Ry takes O(Nn®) elementary operations, rather than O(N?3).

To make a connection with the material in earlier sections, it is easiest to begin
by restricting attention to the special case where all the model parameters are time-
invariant (e.g., F; = F). Assume also that the eigenvalues of F' have magnitude less
than unity (i.e. , F' is a stable matrix) and IIy = II, where II is the unique nonnegative
definite solution of the (discrete-time Lyapunov) equation (cf. (9.2a))

II = FIIF* + GQG*.

Then it is not hard to see from the expressions (9.2b) that now Ry will be Toeplitz,

HFIAH*  ifi>j

Eyy; = HIIH* 4+ R ifi=j

HOF*G-DF*  ifi<j
If we did not account for the state-space structure, the inversion of the Toeplitz matrix
Ry would require O(N?) operations; as we have just seen, state-space structure allows
this to be reduced to O(Nn?). But the additional assumption of constant parameters
should buy us more. In fact, we can manage in the Toeplitz case with O(Nn?)
operations rather than O(Nn%). And in fact, for any set of constant parameters

and any choice of Il (e.g., F not necessarily stable), we can manage with O(Nn?a)
operations, where

a = rank(FII,F* + GQG* — KoR_ (K — IIy) = rank (P, — P).

This was shown by Kailath et al. [107, 118, 122] in their studies of recursive state-
space estimation. They showed that one could alternatively compute {K;, R ;} via
the so-called Chandrasekhar-type recursions
Kiy1 = K;— FL;R, [ L;H"
Lit1 = FL;i — K;R; [ HL;
Reiyn = Rey— HL;R L} H*
(9.4) Reiy1=R.;— LiH*R;;L;H,
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where L and R, are defined (nonuniquely) via the factorization
FI,F* + GQG* — KoR, gK; —Tlp = —LoR, ; L;.

The reason for the name is that the above recursions can be seen to be discretizations
of certain partial differential equations (the famous X and Y equations) introduced
by Chandrasekhar [45] to solve certain equations of the Wiener-Hopf type.

9.1. Chandrasekhar-Type Recursions in Array Form. It has been useful,
as with the Schur algorithm, to rewrite the above equations in array form, which was
done as follows [122]: introduce the (nonunique) factorization

Py — Py = FT\F* + GQG* — KoR, K — g = LySLg,

where S is an a x « signature matrix and apply any (I & S)—unitary matrix @; (or
a sequence of elementary matrices) that triangularizes the prearray shown below

X 0
61_[Y Z:I’

where for a positive-definite matrix A, a square-root factor is defined as any matrix,
say A'/2, such that A = (A'/2)(AY/2)*. Such square-root factors are clearly not
unique. They can be made unique, e.g., by insisting that the factors be Hermitian or
that they be triangular (with positive diagonal elements). In most applications, the
triangular form is preferred.

By “squaring” both sides of (9.5a) in the (I & S)-norm, we can see that

(9.5a)

KoR.y* FLg

XX*=Re1, YX*"=K, and ZSZ* =P, — P,

which implies that we can make the identifications X = Ri,/f andY = K 1R;i/ =

K, 1, and conclude that the difference (P, — P;) has the same inertia matrix, .S, as
(P — Py),

P2 - Pl = LlsLI, say.

We can thus take Z as L; and conclude that the first step of the array recursion is
given by

R1/2 HL 1/2 0
(95b) K, 591/2 FLO @1 = [ ]}%3,1 I ] B
0 g,() 0 p71 1

More generally, the array form of the Chandrasekhar recursions are given by

RY?2  HI, 1/2
(9.6) e,_zl/2 ? @i = [ ]_{E,l-i-l 0 :| ,
KiR_; FL; pitl  Liy1

where @, is any (I @ S)-unitary matrix that triangularizes the prearray.

9.2. Connections to Generalized Schur Algorithms. Soon after their in-
troduction, the Chandrasekhar recursions were recognized to be closely related to the
well-known Levinson algorithm [137] for solving the discrete-time analog of the finite-
time Wiener-Hopf equation, viz., a linear equation with a Toeplitz coefficient matrix,
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and more precisely to certain generalizations of the Levinson algorithm [79] devised
to account for the fact that the appropriate coefficient matrix for constant-parameter
state-space systems is not Toeplitz but is Toeplitz-like. But as the displacement the-
ory began to be better understood, it was realized that the proper connection was to
the Schur algorithm. What we shall show now is that when the extra structure pro-
vided by an underlying state-space model is properly incorporated into the generalized
Schur algorithm, it reduces to the Chandrasekhar recursions [181]. Moreover, this in-
terpretation allowed us to generalize the Chandrasekhar recursions to certain types
of time-variant systems [178], which fortunately also arise in important applications
[179] (see (9.9a) and Section 9.3).

First we need some notation to incorporate the fact that the covariance matrix Ry
has p x p matrix entries Ey;y;. Thus note that Z” is a lower triangular shift matrix
with ones on the pt* subdiagonal and zeros elsewhere, so that multiplying a column
vector by ZP corresponds to shifting its entries down by p positions and introducing
p zeros on top. The special structure that will be relevant to our discussions here is
the case where Ry satisfies a displacement equation of the form

(9.73,) RY - ZpRy [Zp]* = ng* )

where J is a p X « signature matrix and G is a generator matrix with p + o columns.
By suitably extending Theorem 4.2, we can see that the triangular factorization of
such an Ry can be recursively computed as follows: start with Go = G and repeat for
1> 0:

1. Determine a J—unitary matrix @; that reduces the top p rows of G; (denoted
by g;) to the form g;®; = [ X 0 ], where X is a p x p matrix. That is, a p X
zero-block is introduced in g;®;;

2. Shift down the first p columns of G;®; by p steps and keep the last a columns
unaltered,

I, 0

Opx(pta) | — 7ro.@.
(9.7h) [ pxte ]_ng,@)z[o o

i+1

0, O
]+gz~®,~[ o L ] Go = G-

To compute the displacement of Ry, let us first note from the basic formulas
(9.2a)—(9.2b) for its entries that

M —II; = FEAF* | A =TI; — I,
and that

Ey;y; — Ey;1y; 1 = HFG-) A pr(i-1) =
EYiy;'k+1 - EYZ—ly;k = HF(Z—l)AF*zH*

From these identities, it follows readily that

R.o KtH* K$F*H* KyF*?H*
HEK, HAH* HAF*H* HAF**H*
* * * *2 *
VRY:RY_ZPRY[ZP]*: HFKO HFAH HFAF H HFAF H

HF?K, HF?AH* HF!AF*H* HF?AF*?H*

There is clearly a significant redundancy in the elements of Ry — ZPRy [ZP]", since
the second and later rows differ only by multiples of F' from the rows above. One
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suspects that the block displacement rank is low, and this can be verified by going
through the first few (in fact, two) steps of Schur reduction. Let us begin with the
Schur complement of the (0,0) block entry of VRy, which is

Re,O
HK, )

VRy — | HFK, | Rop[ Reo Ki{H* K{F*H* ... ]|=
0 0 0

HéP, H* HéP,F*H* H§P,F**H*
HFSP,.H* HFSP,F*H* HF§P,F**H*
HF?5P,H* HF*P,F*H* HF*SP,F**H*

cocoo

HF | 6P [0 H' F'H* ... ],

where we used the following relation (recalling the Riccati recursion (9.3))

HAH* — HK, oK o H* = H(I, — Iy — K, 0K} ,)H* = H(P, — Py)H* = HSP,H".

It now follows easily that the the displacement V Ry has block rank 2,

Re,O Re,O * 0 0 *
HKy HKy H H

VRy = | HFK, | R.s | HFK, | +| HF | 6P| HF

To find a generator for Ry, we factor 6P, = P, — Py = LoSL§, where Lg is n X «
and S is the a x a signature matrix of (P, — Py). We can then write

VRy = Ry — Z°Ry [Z°]" = GJG",

where
RYS 0
I o HK,o HLo
J=[0” S] and G=| HgFK,, HFLo

This establishes the fact that Ry is indeed a structured matrix as defined in (9.7a),
and hence we can compute its Cholesky factor via the array form of the generalized
Schur algorithm.

Note that the rows of the generator matrix G are closely related: going from one
row to another (except for the first row) just changes the power of the F' matrix. This
is a consequence of the underlying state-space model for the covariance matrix Ry .
We now verify that because of this additional structure in the generator matrix, the
generalized Schur algorithm (9.7b) collapses to the Chandrasekhar recursions.
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The first step in the Schur algorithm involves multiplying by @g, which is the
identity matrix since the first block-row of G already has a p x a zero block, and then
shifting down the first block-column to get

RS HLo
HK,o HFLg

Gi1=| HFK,o HF’L,

Let ®; be a J—unitary matrix such that [ Ri,/o2 HL, ] 0, = [ X 0 ] . Applying

®; to the first two (block) rows of G; (denoted by A) we obtain a (block-triangular)
postarray of the form

RY2  HL, X 0
A = €,0 =
o [HKp,o HFL, |2 T |y z |

where we can identify the unknowns {X,Y, Z} in terms of known quantities. For
this purpose, we compare entries on both sides of the equality AJA* = A®,JOTA*

leading to X X* = R, o+ HLoSL{H* = R, 1. So we can choose X = Ri,/lz. Moreover,
YX* = Ko+ FLySL{H* = K, and, hence, we can identify Y = K;R_ /> = K,,;.

Finally, YY* + ZSZ* = KoR,}K; + FLoSLLF* = P, — P, = L, SL}, which shows

that we can identify Z as L;. We thus conclude that
Ry HLo @, = Ry o]
Kp,O FLO Kp,l L1

Therefore, G;®; is equal to (we now invoke the special structure of the rows of G;)

RY? 0
HEKp 1 HIL,

Gi1©:.= | HFK,, HFIL,

Next we shift down the first p columns to get

R HL
HK,: HFL

G:=| HFK,, HFL, | >

choose a J—unitary matrix @, shift down, form ®3, and so on. We see that because
of the special state-space structure of the elements of the generator of R, there is
again a significant redundancy in the factorization arrays: the equality of the first
two nonzero rows tells enough to fill out all other rows. So the basic recursion is
just the following, which coincides with the array form (9.6) of the Chandrasekhar
recursions [122],

1/2 ) 1/2
(9.8) [ Bei HL :|®z'+1 = [ R it 0 ] )
Kpi FL; Kpiy1 Lipa
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where @, 1 is any J = (I & S)—unitary matrix that introduces the block zero entry
on the right-hand side, and

Piyo— Py = Liy1SLY,.

It is satisfying to see how the Chandrasekhar equations, which were instrumental
in the initiation of the displacement theory [110, 111], turn out to be a special case
of the resulting theory. However, the displacement structure framework also provides
further insights into the nature of the Chandrasekhar recursions. Thus Sayed and
Kailath [170, 171, 178] showed that the Chandrasekhar recursions can be extended to
time-variant state-space models that exhibit a certain structure in their time-variation.
Such models often arise in adaptive filtering.

To clarify this point, we first note that the computational advantage of the Chan-
drasekhar recursions (9.8) stems from the fact that it propagates a low rank factor
L; instead of P;y;, where P;yy — P; = L;S;L}. A direct generalization would be to
consider differences of the form P;; — ¥; P, ¥}, where ¥; are convenient time-variant
matrices that also result in a low rank difference, say of rank . That is,

Py — Y, PV = L;S;L3,

for some n x a matrix L; (it also follows that for the special time-variant models to
be discussed ahead we have S; = S, V).

We consider a state-space model with time-variant matrices {F;, G;, H;} as in
(9.1a), and we shall say that it is a structured time-variant model if there exist n x n
matrices ¥; such that F;,G;, and H; vary according to the following rules:

(9.92) H,=H;,V;,, Fn¥%=9%,F, Ggu=%.,G; .

Tt is clear that constant-parameter systems satisfy (9.9a) with ¥; = I. We shall as-
sume that the covariance matrices R; and @); are time-invariant whereas F;, H;, G;
vary in time according to (9.9a) (the restrictions on {R;, @;} can be relaxed as dis-
cussed in [171, 178]).

The point is that the conditions specified in (9.9a) guarantee that the covariance
matrix Ry of the output process {y;} will still have a time-invariant displacement
structure of the form Ry — ZPRy [ZP]" = GJG*, and, consequently, its Cholesky
factorization can still be carried out via the same generalized Schur algorithm. Thus,
following the same reasoning as before, we can easily verify that for structured time-
variant models as in (9.9a) we get

1/2 1/2 *
RY; (] RY; (1}
HlK ,0 HlLO H1K ,0 H1L0
Ry —Z°Ry [Z°]* = H2F[1]Kp,0 HyFM L, [ (I) g ] H2F[1]Kp,0 H,FUL,

HsFBEK,, HsFPL, HsFPEK,, HsF?L,

where we defined Flil = F;F,_,...F,, F° =1, and Ly and S are defined via the
(nonunique) factorization Py — $oPy ¥l = LoSL§. Applying the generalized Schur
algorithm to the above generator we readily verify that it collapses to the following
extended Chandrasekhar recursions [170, 171, 178]:

(9-9b) Ri’/"—z HinaLi ]@i+1 = [ }_zi,/ikl 0 ] .
ql'H‘lK K -F'z—l—le Kp,z'+1 L’i+1



82 THOMAS KAILATH AND ALI H. SAYED

9.3. An Application: Fast RLS Adaptive Filtering. An important appli-
cation of the extended Chandrasekhar recursions arises in the much-studied recursive
least-squares problem of adaptive filtering (see, e.g., [96, 160]). The presentation given
here is a brief exposition of a state-space approach to adaptive RLS filtering that was
recently proposed by Sayed and Kailath [171, 177, 179]. It shows how to derive the
different versions of RLS adaptive schemes as special cases of a unifying estimation
theory. Here we only focus on the fast RLS version; for other versions such as the QR
algorithms and the lattice algorithms the interested reader may consult [179].

A basic problem in adaptive filtering reads as follows: given pairs of data points,
{u;,d(?)}, ¢ =0,1,...,N, where u; is a 1 x M row vector that consists of the values
of M input channels at time 1,

(9.10a) w = [ u(i) ue(d) ... um() ],

(d(i) and u;(¢), j = 1,..., M, are assumed scalar for simplicity), we are required to
determine the linear least-squares estimate of an M x 1 column vector of unknown tap
weights w = [ w1 wy ... wy ]T, so as to minimize the exponentially weighted
error sum

N
—1 .
(9.10b) € = (w — w)* [)\_(N“)HO] (W — %) + 3 AN7Hd() —uyw]?
=0

where I is a given positive-definite matrix and the parameter A, 0 < A < 1, is the
so-called forgetting factor, since past inputs are (exponentially) weighted less than
the more recent values. We can rewrite the expression for £ as follows

d(i) ww |
2NN

which shows that minimizing £ is equivalent to the following minimization problem:

N
£= [(‘” —w)* A TMI]  (w— W) + Y
i=0

N
(9.10c)  min l(x —%0)* [A o] (x0 — o) + 3 Jy(i) - umlﬂ ,

To=w =0
where we have defined the normalized quantities y(7) and x; by

d(4) - v
O N AV O
The minimization in (9.10c) can be easily recast into a Kalman filtering or recursive

state-space estimation problem [179] by considering the following M —dimensional
state-space model

(9.10d) y(i) =

Xg =W, )_C():W.

X'H—l = A_1/2Xi, Xg =W, }_C() = W, HO )
*

(9.11) y(@) = wx; +v(i), Ev(@)v*(j) =d;; .

This state-space model has special structure: F = A\™1/2],G = 0, and R = 1
are constant, while H; = u; is not. We now further assume that the input channels
{u1(.),u2(.),...,unm(.)} exhibit shift structure: w;(i) = w;_1(i — 1). That is, if we
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denote the value of the first channel at time 7 by (%), then this corresponds to having
an input row vector u; of the form

(9.12a) w=[u@) u@-1) ... u@-M+1)].

The shift structure in u; suggests that we might be able to get fast RLS algorithms
by using the extended Chandrasekhar recursions in place of the Riccati recursions.
In fact this is true and many results in the literature can be obtained in a more
transparent (square-root array) form, and many variations and extensions derived in
this way [179]. Observe that the input data u; has a shift structure, viz.,

(9.12b) w=wpZ+u(@i-M+1)[0 ... 0 1],

where Z is the lower triangular shift matrix. We can however, modify the auxiliary
M —dimensional state-space model (9.11) of the previous section in order to better
exploit the shift structure and obtain a simpler relation than (9.12b). This will allow
us to reduce the computational complexity of the RLS algorithm from O(M?) down
to O(M) operations (multiplications and additions) per time-step.

For this purpose, we consider the following (N + 1)— (not M) dimensional state-
space model

xip1 = A7V 2%, xo = [ :)V ] )
(9.12¢) y(i) = hixi + 0(6),  Bu(i)*(j) = i ,

where x; is now an (N +1) x 1 state-vector with trailing zeros (added for convenience),
and

h; = [ w(@) uw(tz—1) ... u(0) On_; ]

isa 1l x (N +1) row vector. An initial state covariance matrix (with trailing zeros) is
assumed, viz.,

_ o\ II, 0
E(xp — %o)(x0 — o) Z[ 00 O]EHOGBO,

where Ty is an M x M positive definite matrix. The associated gain vector k,; =

—%/2 .y .
kir, z-/ has trailing zeros, viz.,
k)

and the Riccati recursion is given by

Piy1 ="' [P — Phir_;hiPj].
The computational complexity of the resulting (RLS) algorithm is O(M?) operations
(multiplications and additions) per time step.

However, though time-variant, the special structure of h;, viz., h; = h;;; Z, can
be further exploited to reduce the operation count to O(M). Observe that the above
relation is simpler than (9.12b), and shows (along with F;11Z = ZF;, since F; =
A~1/2]) that the state-space model (9.12c) is a special structured time-variant model
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as in (9.9a). The reduction in operation count can now be achieved by using a special
case of the extended Chandrasekhar recursions (9.9b) with ¥; = Z, F; = A~/2]. To
apply these recursions, we first introduce the (nonunique) factorization

LoSL; = P, — ZPyZ* = A} ([ r([)" o ] —12,,,012*’0> - Z[ %" 0 ] AR

where Lo and S are (N + 1) x @ and o x a matrices, respectively. The factor Lg is of

the form
_[ Lo
LO - [ 0 ] 9

where Lo is (M + 1) x a. Let h; be the row vector of the first M + 1 coefficients of
h;. Writing down the extended Chandrasekhar recursions (9.9b) we obtain

'I’i’/iz }-11-+1f1i ri,/z'i—l 0
(9.12d) . Oi=| .. ,
s & -
[ :, ] AT12f, [ 'a'l ] Ly

where ©;,; is any J = (1 ® S)—unitary matrix that produces the zero entry on the
right hand-side of the above expression. The computational complexity of each step
is O(aM) where the value of o depends on the choice of IIy. This recursion is a
square-root version of fast RLS algorithms discussed in the literature [39, 53]. It was
also derived by Houacine [102] and Slock [187] by using alternative state-space models
(see [179, 178] for more discussion). Work continues by us and others on this active
research area, see, e.g., [188].

10. Time-Variant Displacement Structure. The study of time-variant Chan-Ji
drasekhar recursions was based on the equation

Py1— U,PU: = L;S;L}.

This suggests that the notion of displacement structure can also be extended to the
time-variant setting, as detailed in [171, 172, 174, 184]. We say that an n x n matrix
R(t) has a time-variant Toeplitz-like displacement structure if the matrix difference
VR(t) defined by

VR(t) = R(t) — F(t)R(t — A)F*(¢) |

has low rank, say r(¢) (usually r(t) < n), for some lower triangular n x n matrix F(t)
whose diagonal elements we shall denote by {fi(t)}?=. The indices t and (t — A)
denote two discrete-time instants that are A units apart. It follows from the low rank
property that we can factor VR(¢t) and write

(10.1) R(t)— F)R(t — A)F*(t) = Gt)J@)G*(¢) ,

where G(t) is an n x r(t) generator matrix and J(t) is an r(t) x r(t) signature matrix
with as many +1's as V R(t) has strictly positive or negative eigenvalues. The notation
L1y refers to the p(t) x p(t) identity matrix,

g0 = )] 0 =s0+a0
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We shall outline the main features of the time-variant theory here. We shall only
focus, for brevity, on positive-definite Hermitian matrices R(t) although the theory
is equally applicable to strongly regular and non-Hermitian time-variant matrices, as
well. We assume from now on, and for simplicity of notation, that A = 1.

The main question of interest here is the following: given the Cholesky factor of
R(t — 1), and knowing that R(t) satisfies a displacement equation of the form (10.1),
how to determine efficiently and recursively the Cholesky factor of R(t)? Situations
of this type often arise in adaptive filtering [184] and instrumental-variable methods
[172].

Arguments analogous to what we have used in the time-invariant case allow us
to extend the recursive Schur algorithm to the time-variant setting as well (see, e.g.,
[184, 174, 171]), thus leading to the following result (compare with (6.3a)). Let L(t)
denote the (lower-triangular) Cholesky factor of R(t), viz., R(t) = L(t)L*(t), and
denote (the nonzero parts of) its columns by [;(t). That is, [;(t) = L(t)d; /> (¢),
where [;(t) and d;(t) denote the (0,0) entry and the first column of the it* Schur
complement R;(t), respectively.

THEOREM 10.1 (A Generalized Time-Variant Schur Recursion in Array Form).
The Cholesky factor of a positive-definite Hermitian matriz R(t) that satisfies the
time-variant displacement equation (10.1) can be time-updated as follows: start with
Fy(t) = F(t), Go(t) = G(t), Lo(t — 1) = L(t — 1), and repeat for i =0,1,...,n —1:

1. At step i we have F;(t) and G;(t). Let g;(t) denote the first row of G;(t).
2. Choose a convenient (1 ® J(t))—unitary transformation T';(t) that performs
the rotation

[ £ =1 g [T =] d"@) o],

3. Applying T;(t) to the prearray [ F;(t)li(t —1) G;(t) ] leads to
(10.2) [ B@)i(t—1) Gi(t) |Tu(t) = [ L(t) Gi:’l(t) ] ,

where Fy11(t) and Liy1(t — 1) are the submatrices obtained by deleting the first row
and column of each of Fy(t) and L;(t — 1), respectively. Moreover, the matriz G 1(t)
that appears in the postarray is a generator matriz of the (i + 1)** Schur complement
Ri+1 (t) That ’iS,

Rit1(t) = Fiy1 () Rig1(t — 1) Fipr (t) = Giy1 () J () Gy (2).

Figure 10.1 depicts one step of the algorithm in Theorem 10.1. Each such step is
characterized by a (1 @ J(t))—unitary transformation I';(t), and a storage element A
that stores the present value of [;(t) to the next time instant. The generator matrix
G(t) and the column vector Fj(t)l;(t— 1) undergo the transformation T';(¢) and yield
the next generator G, 1(t), as well as the it" column of the Cholesky factor, I;(t).

More generally, the generator recursion (10.2) admits the form [174]

0 _ f(0) hi (8)J(t)
(50 b | =TRoue-n G0 T] iy s |
where h;(t) and k;(t) are arbitrary r(t) x 1 and 7(¢) x r(t) matrices, respectively,

chosen so as to satisfy the time-variant embedding (or dilation) relation (compare
with (7.2b))

4 I ke
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Fi(t) A

F1G. 10.1. One step of the generalized time-variant Schur algorithm.

This again defines a time-variant first-order system in state-space form with inputs
from the left. Each such section can be further shown to exhibit certain blocking
properties, which turn out to be equivalent to time-variant extensions of classical
interpolation problems. For more details on these problems, and related applications
to several matrix completion problems, the interested reader may consult [56, 172,
173, 174].

11. Concluding Remarks. Though a wide range of results and applications
has already been addressed in this long paper, there are still several unmentioned
results, and also areas where further research is possible. We give a brief outline of a
few of these items here; there are indeed many others, some big, some small.

11.1. Block Schur Complementation and Look-Ahead Algorithms. A
standing assumption in all the preceding has been that the matrices R are strongly
regular, i.e., all their leading minors are nonzero. This allowed the derivation of a
recursive algorithm for the update of generator matrices of successive Schur comple-
ments. In several instances, however, it might be more appropriate to perform block
Schur complementation steps. This happens, for example, when the assumption of
strong regularity is dropped, which then requires the use of the smallest nonsingular
leading minor, or a well-conditioned leading minor of appropriate dimensions, in order
to proceed with a block Schur reduction step. This problem was addressed in [153]
for the special class of quasi-Toeplitz matrices, where it was further shown that the
block Schur complementation step can be performed via scalar operations.

More general (block or look-ahead) recursions for the class of Toeplitz-like matri-
ces were presented in [171, 180], which employed a generalized block Schur algorithm
of the form

[ G?:;-l ] = {G, + (Tz'*Fi - In_ai)LiD;l(Im - Ti*ﬂ)_lGi} @,’, Go = G, Fy = F,
where ©; is an arbitrary J—unitary matrix, 7; is an arbitrary unit-modulus scalar,
ni X n; is the size of the (desired) leading block (or minor) D;, L; is comprised of the
first ; columns of the Schur complement at the i** step, and G; is comprised of the
top n; rows of G; at the it* step. This block recursion is applicable whether or not 7;
stands for the size of the smallest nonsingular minor. The 7; can also designate the
size of any desirable blocks, such as blocks that are numerically well-conditioned.
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The use of block Schur complementation, or block pivoting, has recently been
studied by several authors trying to devise effective numerical algorithms for various
classes of (non-positive definite) structured matrices. An early paper was the one of
Chan and Hansen [44]. Among many others we mention Gutknecht [95] and Freund
[77], which give extensive references. Here we only wish to suggest that the explicit
formulas of [171, Ch. 7] and [180], mentioned above, could provide new fast look-ahead
algorithms for matrices with very general displacement structure.

We should note that apart from numerical possibilities, these fast block-Schur
complementation algorithms have several theoretically interesting features as well.
For example, the explicit formulas for the block diagonal matrix in the generalized
LDU factorization can give simple rules for computing the inertia of general struc-
tured matrices. In particular, Pal [152] (see also [9]) showed how to obtain certain
often-quoted rules of Iohvidov [105] for specifying the inertia of Toeplitz and Hankel
matrices.

11.2. The Schur Theory for Matrix-Valued Meromorphic Functions.
To avoid confusion, we may also note that what we have called block Schur comple-
mentation algorithms are different from the (block) Schur algorithms proposed for
Toeplitz matrices with block (not necessarily Toeplitz) entries — see, e.g., [64]. Car-
rying out the block operations on the block entries requires forming several matrix
inverses, and can be expensive. Fedcina [73] and Dewilde and Dym [67] introduced
tangential versions in which the operations are performed in only one “direction”
at a time, for example, row after row. However, by using elementary operations as
described in Section 4.4, one can further reduce the operations in each direction to
a set of elementary scalar operations. This scalarization procedure is widely used
in the square-root (Riccati and Chandrasekhar) algorithms of Kalman filter theory
described in Section 9.

The paper [2] describes this in detail, and moreover also discusses what needs
to be done to extend the classical Schur algorithm, which dealt with H° —functions
(bounded and analytic in the unit disc), to meromorphic functions. This was ap-
parently first done by Chamfy [40] in the scalar case. Reference [1] shows how to
extend the transmission line model of Section 3.2 to the scalar meromorphic case.
The general case was treated in Section 6.

11.3. Doubling or Divide-and-Conquer Algorithms. The recursive dou-
bling or divide-and-conquer ideas used to develop the FFT have been exploited to
obtain asymptotically fast O(n log? n) algorithms for Toeplitz systems. The first such
algorithm was given by Brent et al. [32]. Soon after, Bitmead and Anderson [26] and
Morf [145] independently proved and used the property that displacement structure is
preserved by Schur complementation to obtain similar results. For general Toeplitz-
like matrices, however, the coefficient in their proposed O(nlog® n) algorithms turned
out to be extremely large. Later several other authors used an approach based on a
combination of the Schur and Levinson algorithms to obtain better results; in partic-
ular Ammar and Gragg [12] made a detailed study and claimed an operation count of
8n log® n flops for solving Toeplitz linear systems. With this count, the new algorithm
(called superfast in [12]) is faster than the one based on the Levinson algorithm when-
ever n > 256. A purely Schur-based approach to Toeplitz-like matrices (e.g., those
encountered in finding least-squares solutions of overdetermined linear equations) is
described in [51]. If one recalls the fact that the Schur algorithm is closely related to
transmission lines (cf. Section 3.2), then it may not be surprising that similar Schur-
based methods for Toeplitz matrices were also discovered in the geophysics literature
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(see the references in [51]).

11.4. Iterative Methods. The existing methods for the solution of linear sys-
tems of equations of the form Ax = b can be classified into two main categories: the
so-called direct methods and the alternative iterative methods. A direct method or
algorithm is primarily concerned in first obtaining the triangular or QR factors of A,
and then reducing the original equations Az = b to an equivalent triangular system
of equations, whose solution may be obtained, for instance, via backsubstitution [94].
In its most primitive form, the direct method may not involve more than a standard
Gaussian elimination procedure with a computational complexity of the order of n3,
written O(n?), where n x n denotes the size of A. Of course, when the matrix has
special structure (Toeplitz, Hankel, displacement) the computational complexity can
be reduced, e.g., to O(n?) or O(nlog®n), as detailed in earlier sections of this paper
(see also [31, 94, 137, 193, 104]).

An iterative method, on the other hand, starts with an initial guess for the solution
z, say %o, and generates a sequence of approximate solutions, {z }x>1. The matrix A
itself is involved in the iterations via matrix-vector products, and the major concern
here is the speed of convergence of the iterations. To clarify this point, we note that
we can rewrite the equation Az = b in the equivalent form

Cz=(C-Az+b,

for an arbitrary invertible matrix C'. This suggests the following iterative scheme (see,
e.g., [94]),

(11.1) Cziy1 = (C — A)z; +b, x0 = initial guess.

The convergence of (11.1) is clearly dependent on the spectrum of the matrix I—C~! A.
The usefulness of (11.1) from a practical point of view is very dependent on the
choice for C'. Extensive results in the literature are available for the special choice
of circulant preconditioners C (see, e.g., [41, 43, 190], which allow the use of the fast
Fourier transform (FFT) technique to carry out the computations in a numerically
efficient and parallelizable manner. An interesting demonstration to this effect is the
recent work by Plemmons and co-workers [42, 148], which shows how to exploit this
fact, and displacement structure, in several applications. V. Pan has taken a different
approach by studying the application of Newton’s iteration to structured matrices
[157], and also the use of parallel computation to obtain O(log® n) iterative solutions
[23, 24, 158].

11.5. Numerical Issues. An important issue is the analysis of the numerical
properties of the generalized Schur algorithms. Despite many efforts, definitive results
even for Toeplitz matrices are not readily available - see the discussion in [87]. It is
shown in [87] that for many structured classes such as Vandermonde-like, Chebyshev-
Vandermonde-like, polynomial Vandermonde-like, Cauchy-like matrices, and in fact
for any kind of displacement structure as in (7.23a) with a diagonal F, partial piv-
oting technique (suggested by Heinig [97]) can be incorporated into the generalized
Schur algorithm [120, 175], thus giving (see Sec. 4.1) fast implementations of Gaus-
sian elimination with partial pivoting. The point is that for the above classes of
structured matrices, row interchanges do not affect the structure, e.g., a Cauchy ma-
trix remains Cauchy (a fact first remarked and exploited by Heinig [97]). To overcome
the fact that row interchanges can destroy Toeplitz structure, one can first transform
it to Cauchy form, then solve the problem and finally return to the original matrix.
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In fact, one can also transform Toeplitz-like, Hankel-like, Toeplitz-plus-Hankel-like,
Vandermonde-like, Chebyshev-Vandermonde-like structured matrices, and probably
others, into Cauchy-like matrices, essentially using only Fast Fourier, Fast Cosine or
Fast Sine transforms of the columns of the generator matrices (see [24, 87, 119]).

11.6. Continuous-Time Results. The identification of displacement structure
was first made in the context of integral operators and integral equations. However,
attention shifted to matrices and linear equations around 1980, just as the relevance
of Schur’s work became clear. It seems the time may be ripe to return to the study of
continuous-time problems using the insights gained from the long study of discrete-
time matrix problems.
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