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STABILIZING THE GENERALIZED SCHUR ALGORITHM

S. CHANDRASEKARAN AND ALI H. SAYED*

Abstract. This paper provides a detailed analysis that shows how to stabilize the generalized
Schur algorithm, which is a fast procedure for the Cholesky factorization of positive-definite struc-
tured matrices R that satisfy displacement equations of the form R — FRFT = GJGT, where J is
a 2 X 2 signature matrix, F' is a stable lower-triangular matrix, and G is a generator matrix. In
particular, two new schemes for carrying out the required hyperbolic rotations are introduced and
special care is taken to ensure that the entries of a Blaschke matrix are computed to high relative ac-
curacy. Also, a condition on the smallest eigenvalue of the matrix, along with several computational
enhancements, are introduced in order to avoid possible breakdowns of the algorithm by assuring the
positive-definiteness of the successive Schur complements. We use a perturbation analysis to indicate
the best accuracy that can be expected from any finite precision algorithm that uses the generator
matrix as the input data. We then show that the modified Schur algorithm proposed in this work
essentially achieves this bound when coupled with a scheme to control the generator growth. The
analysis further clarifies when pivoting strategies may be helpful and includes illustrative numerical
examples. For all practical purposes, the major conclusion of the analysis is that the modified Schur
algorithm is backward stable for a large class of structured matrices.

Key words. Displacement structure, generalized Schur algorithm, Cholesky factorization, hy-
perbolic rotations, generator matrices, pivoting, Schur functions, error analysis.
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1. Introduction. We show how to stabilize the generalized Schur algorithm
and give a finite-precision error analysis to support our conclusions. The notion of
structured matrices, along with the algorithm itself, are reviewed in the next two
sections. Here we proceed with a general overview of earlier relevant work in the
literature.

One of the most frequent structures, at least in signal processing applications,
is the Toeplitz structure, with constant entries along the diagonals of the matrix. A
classical algorithm for the Cholesky factorization of the inverses of such matrices is
the so-called Levinson-Durbin algorithm [14, 8], an error analysis of which has been
provided by Cybenko [7]. He showed that, in the case of positive reflection coefficients,
the residual error produced by the Levinson-Durbin procedure is comparable to the
error produced by the Cholesky factorization [8, p.191].

A related analysis has been carried out by Sweet [22] for the Bareiss algorithm
[2], which is also closely related to an algorithm of Schur [20, 12]. These are fast
procedures for the Cholesky factorization of the Toeplitz matrix itself rather than its
inverse. Sweet concluded that the Bareiss algorithm is asymptotically stable.

In recent work, Bojanczyk, Brent, De Hoog and Sweet [3] further extended and
strengthened the conclusions of Sweet [22] by employing elementary downdating tech-
niques [1, 4, 5] that are also characteristic of array formulations of the Schur algorithm
[13, 17]. They considered the larger class of quasi-Toeplitz matrices [13], which in-
cludes the Toeplitz matrix as a special case, and provided an error analysis that
establishes that the Schur algorithm for this class of matrices is asymptotically sta-
ble.
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Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106. Fax (805)
893-3262. E-mail addresses: shiv@ece.ucsb.edu and sayed@ece.ucsb.edu. This work was supported
in part by the National Science Foundation under Award No. MIP-9409319.
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The interesting formulation of Bojanczyk et al. [3] has motivated us to take a
closer look at the numerical stability of a generalized Schur algorithm [13, 15, 18]
that applies to a wider class of positive-definite structured matrices R that satisfy
displacement equations of the form R — FRFT = GJGY, where J is a signature
matrix, F' is a stable lower-triangular matrix, and G is a generator matrix. This
class is briefly introduced in the next section where the lower-triangular matrix F' is
shown to be pivotal in characterizing the structure of the matrix. For example, in
the Toeplitz or quasi-Toeplitz case, the matrix F' is equal to the shift matrix Z (i.e.,
a Jordan block with zero eigenvalue and ones on the first subdiagonal). Multiplying
a column vector u by Z simply corresponds to shifting down the entries of u by one
position. In general, however, the matrix F' can be any lower triangular matrix (for
example, diagonal, bidiagonal, strictly lower-triangular, etc.). This creates several
complications that we address closely in order to guarantee a reliable algorithm.

For this purpose, we propose several modifications to the generalized Schur al-
gorithm (Matlab codes for the new modified algorithm are provided at the end of
this paper). In particular, two new schemes for carrying out the required hyperbolic
rotations are introduced and special care is taken to ensure that the entries of the
Blaschke matrix are computed to high relative accuracy. Also, a condition on the
smallest eigenvalue of the matrix, along with several computational enhancements,
are introduced in order to avoid possible breakdowns of the algorithm by assuring the
positive-definiteness of the successive Schur complements.

We further use a perturbation analysis to indicate the best accuracy that can be
expected from any finite precision algorithm (slow or fast) that uses the generator
matrix as the input data. We then show that the modified Schur algorithm proposed
in this work essentially achieves this bound when coupled with a scheme to control
the generator growth.

Another interesting idea that has been recently suggested by Heinig [10] is the
introduction of pivoting into algorithms for structured matrices when F' is diagonal.
In this paper, we have tried to clarify when pivoting may be helpful for positive-
definite matrices. Numerical examples are included to support our observations. In
particular, we emphasize that, in the diagonal F' case, pivoting becomes necessary
only when ||F|| is very close to one. Furthermore,

e If F' is positive (or negative), a good strategy is shown to be the reordering
of the entries of F' in increasing order of magnitude.

o If F has both positive and negative entries, then numerical examples indicate
that pivoting may not help in controlling the growth of the generators.

In our opinion, for positive-definite structured matrices, with diagonal or strictly
lower-triangular F', the stabilization of the generalized Schur algorithm is critically
dependent on the following:

e Proper implementations of the hyperbolic rotations.
Proper evaluation of the Blaschke matrix-vector product.
Enforcing positive-definiteness to avoid early breakdowns.
Controlling the generator growth.

1.1. Notation. In the discussion that follows we use || - || to denote the 2—norm
of its argument. We further assume, without loss of generality, that F' is represented
exactly in the computer. Also, the * notation denotes computed quantities, while the
~ notation denotes intermediate exact quantities. We further let € denote the machine
precision and n the matrix size. We also use subscripted §’s to denote quantities
bounded by machine precision in magnitude, and subscripted c’s to denote low order
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polynomials in n.
We assume that in our floating point model, additions, subtractions, multiplica-
tions, divisions, and square-roots are done to high relative accuracy, i.e.,

flzoy) = (zoy)(1+9),

where o denotes +, —, X, + and |§| < e. Likewise for the square-root operation. This
is true for floating point processors that adhere to the IEEE standards.

2. Displacement Structure. Consider an n X n symmetric positive-definite
matrix R and an n x n lower-triangular real-valued matrix F'. The displacement of R
with respect to F' is denoted by Vg and defined as

(2.1) Vr=R- FRFT,

The matrix R is said to have low displacement rank with respect to F' if the rank of
V F is considerably lower than n. In this case, R is said to have displacement structure
with respect to F' [13].

Let r < n denote the rank of Vg. It follows that we can factor Vg as

(2.2) Ve =GJGT,

where G is an n X r matrix and J is a signature matrix of the form
— IP 0 —

(2.3) J—[O —Iq]’ ptg=r.

The integer p denotes the number of positive eigenvalues of Vg, while the integer
g denotes the number of its negative eigenvalues. The factorization (2.2) is highly
nonunique. If G satisfies (2.2) then GO also satisfies (2.2) for any J—unitary matrix
©, i.e., for any © such that ©J0OT = J. This follows from the trivial identity

(GO)J(GO)T = G(0JOT)GT = GJGT.

Combining (2.1) and (2.2), a matrix R is said to be structured with respect to the
displacement operation defined by (2.1) if it satisfies a displacement equation of the
form

(2.4) R— FRFT =GJGT

with a “low” rank matrix G. Equation (2.4) uniquely defines R (i.e., it has a unique
solution R) if, and only if, the diagonal entries of the lower-triangular matrix F' satisfy
the condition

1—fif; #0 for all ¢,3j.

This uniqueness condition will be assumed throughout the paper, although it can be
relaxed in some instances [13].

The pair (G, J) is said to be a generator pair for R since, along with F', it com-
pletely identifies R. Note however that, while R has n? entries, the matrix G has nr
entries and r is usually much smaller than n. Therefore, algorithms that operate on
the entries of G, with the purpose of obtaining a triangular factorization for R, will
generally be an order of magnitude faster than algorithms that operate on the entries
of R itself. The generalized Schur algorithm is one such fast O(rn?) procedure, which
receives as input data the matrices (F, G, J) and provides as output data the Cholesky
factor of R. A recent survey on various other forms of displacement structure and on
the associated forms of Schur algorithms can be found in [13].
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2.1. Illustrative Examples. The concept of displacement structure is perhaps
best introduced by considering the much-studied special case of a symmetric Toeplitz
matrix, T = |:t|z_-7|]:l]:1 , to = 1.

Let Z denote the n x n lower triangular shift matrix with ones on the first sub-
diagonal and zeros elsewhere (i.e., a lower triangular Jordan block with eigenvalue
0):

(2.5) 7=

1 0
It can be easily checked that the difference T— ZT Z7 has displacement rank 2 (except
when all ¢;,7 # 0, are zero), and a generator for T is {G, (1 ® —1)} where

1 0 1 o 17
t1 t1 t1 t1
(2.6) T—-2TZ" = , , [ (1) _01 ] ) _ =GJGT .
tn—l tn—l tn—l tn—l

Another example is the so-called Pick matrix that arises in the study of interpo-
lation problems in the unit disc [19],

R= [1 — BiB; ] "
1-fif;
where the (; are real scalars and the f; are distinct real points in the interval (—1,1).

Let F' denote the diagonal matrix F' = diag[f1, fa,- .-, fn), then it can be verified that
the above Pick matrix R has displacement rank 2 with respect to F' since

b
,j=1

1 B 1 61"
B 1 0 1 B
(2.7) R— FRFT = - [0 _1] -
1 Ba 1 Bn

More generally, one can allow for complex-valued quantities and define the Pick matrix
[19]

R =

H H"
TiZj — YilY; ]

1-fiff

i,j=1
where ¥ denotes Hermitian conjugation (complex conjugation for scalars), z; and y;
are 1 x p and 1 x g row vectors, and f; are complex points inside the open unit disc
(Ifsl < 1). For the same diagonal matrix F' = diag[fi, f2,..-, fn], the above Pick
matrix has displacement rank r = (p + ¢), since

1 Y1 1 U

T2 Y2 T2 Y2
(2.8) R-FRFE = = 7 [IP 0 ] .

Tn Yn Tn Yn
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Without loss of generality, the analysis provided in this paper focuses on real-valued
data, i.e., on displacement equations of the form (2.4), and on the important special
case of matrices with displacement rank 2 (i.e., G has two columns and J = (16 —1)).
The results can be extended to higher displacement ranks and to the complex case.

The displacement structure implied by (2.4) applies to symmetric matrices R.
The case of nonsymmetric matrices will be pursued elsewhere since it also includes
important matrices as special cases such as the Vandermonde matrix

1 g o2 ... af
1 a2 a2 ... aof
V= . . .
2 n
1 o, o ay

It is immediate to verify that the matrix V has displacement rank 1 since
1

1
(2.9) V-FvzZt=| _[[1 0 ... 0],

where F' is now the diagonal matrix
F = diag [a1,...,04] .

3. The Generalized Schur Algorithm. The discussion in the sequel focuses
on symmetric positive-definite matrices R with displacement rank 2 with respect to
a lower triangular matrix F, viz., matrices R that satisfy displacement equations of
the form

(3.1) R—FRFT =] u vl][(l) _OI][ul v ]’

where u; and v; denote the n x 1 column vectors of G. The diagonal entries of F'
are further assumed to be strictly inside the open unit disc (|f;| < 1). In this case,
the matrix F' is said to be stable. This condition is clearly satisfied for the Toeplitz
case (2.5), where f; = 0, and for the Pick matrix (2.7). In applications, the following
forms are the most frequent occurrences for F: F = Z, F' = a diagonal matrix with
distinct entries, F' = a Jordan block,

[ f1
1 fi
F = . b
I 1A
F' in bi-diagonal form,
" -
L f
F= . ;
i L fa
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or F strictly lower triangular such as Z, Z2, (Z @ Z), etc.
Also, since a generator matrix G is highly nonunique, it can always be chosen to
be of the form

z 0
T T
(3.2) G=|7T 7T
T T

That is, the top entry of vy, v11, can always be chosen to be zero. Indeed, assume
that a generator G for R is found that does not satisfy this requirement, say

U1 V11
T T

G =
T T

It then follows from (3.1) that the (1,1) entry of R, which is positive, is given by

[u11]* = Jon |*
Rii1=————7"7— >0.
H 1—|fil?

Consequently, |u11| > |vi1| and a hyperbolic rotation © can always be found in order
to reduce the row [ w11 w11 | to the form [ \/|uii[> — [v11[> 0 ]. The matrix GO
can then be used instead of G as a generator for R.

A generator matrix of the form (3.2) is said to be in proper form. Note that in
the Toeplitz case (2.6) the generator G is already in proper form.

The following algorithm is known as the Generalized Schur Algorithm: it oper-
ates on the entries of (F,G,J) and provides the Cholesky factor of R. (We remark
that the algorithm can be extended to more general scenarios, e.g., an unstable F',
nonsymmetric matrices R, etc — see [13, 18, 15]).

ALGORITHM 3.1 (The Generalized Schur Algorithm).

o Input data: A stable lower-triangular matriz F', a generator G1 = G in proper
form, with columns denoted by u; and v1, and J = (1 ® —1).

o Qutput data: The lower-triangular Cholesky factor L of the unique matriz R
that satisfies (3.1), R = LLT.

The algorithm operates as follows: start with (u1,v1) and repeat fori =1,2,...,n4

1. Compute the n x n matriz ®; = (F — f;I)(I — f;F)~1. Note that the (i,1)
diagonal entry of ®; is zero.

2. Form the prearray of numbers [ du; v ] At step i, the top i entries of
®;u; and v; will be zero.
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3. Apply a Hyperbolic rotation ©; in order to annihilate the (i + 1) entry of v;.
Denote the resulting column vectors by (Wit1,Vit1):

(33) |: Ui+l Vit1 :| = |: <I>z~u,- V; ]@Z

The matriz G;41 = [ Uir1 Vit1 ] will also be in proper form, with the top
1 rows equal to zero:

0 0

00

Gitr = z 0
= x x -

4. The i —th column of the Cholesky factor L is given by

(3.4) li= V1= 1fil?(I = fiF) " u,.

The top (i — 1) entries of l; are zero.

After n steps, the algorithm provides the Cholesky decomposition
n
(3.5) R=>ul],
i=1

as shown below. Moreover, the successive matrices G; that are obtained via the
recursion have an interesting interpretation. Let R; denote the Schur complement of
R with respect to its leading (i — 1) x (4 — 1) submatrix. That is, Ry = R, R» is
the Schur complement with respect to the (1,1) top left entry of R, R3 is the Schur
complement with respect to the 2 x 2 top left submatrix of R, and so on. The matrix
R; is therefore (n — i + 1) X (n — i + 1). Define the n X n embedding

~ 0 0
=0 2]

Then it can be shown that [13]
(3.6) R — FR;FT = G;JGT.

In other words, G; is a generator matrix for the ¢ — th Schur complement, which is
also structured.

THEOREM 3.2. The generalized Schur algorithm provides the Cholesky decompo-
sition of R, viz.,

(3.7) R=> LI}
i=1

Proof. Tt follows from the relation (3.3) that

T

T T T&T
(3.8) Uip1Uiy g — Vi1V = Rugug B —vv;,
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where, in view of (3.4),
u-—il (I - fiF); <I>-u-—71
VISR T T VSRR

Summing (3.8) over i, up to n — 1, we obtain

(F = fil)l.

n—1 n—1
E ui+1uﬁ1 — E ®;u;ul &7 = —vyv] since v, =0,
i=1 i=1

which is equivalent to

n n
E uzu,T — E <I>z-u,~uZT<I>zT = uluf - Ulvf since ®,u, = 0.
i=1

i=1

Using the above expressions for u; and ®;u; in terms of /; we obtain

an [(I - )T - fiF)T (F = fDLIT(F — fI" r r

— = U1Uy — V1V, .
- - [/ - |fP P
Expanding and simplifying the 7 — th term of the sum on the left-hand side we get

o1 =fPLIE - =P FLUTET
3 (L= IAP) 11_<|f'|2|f|> L 5

i=1

Therefore,

Suf-F <Z l,-l,T) FT = wuf — v = GJGT.
i=1

i=1

This shows that Y-, ;I satisfies the displacement equation (3.1). Hence, by unique-
ness,

R= zn: LIT.
=1

4. Limits to Numerical Accuracy. Given a symmetric positive-definite ma-
trix R (not necessarily structured), if its Cholesky factor is evaluated by any standard
backward stable method that operates on the entries of R, e.g., Gaussian elimination
[8][Ch. 4], the corresponding error bound is given by

|R—LL"|| < ci€||R||

where € is the machine precision and c¢; is a low-order polynomial in n, the matrix
size.

A fundamental question that needs to be answered then is the following: given
(F,@G,J), but not R, how accurately can we expect to be able to compute the Cholesky
factorization of R irrespective of the algorithm used (slow or fast)?

To address this issue we note that just representing (F,G) in finite precision
already induces round-off errors. This fact in turn imposes limits on how accurate an



STABILIZING THE GENERALIZED SCHUR ALGORITHM 9

algorithm that employs (F,G) can be. We demonstrate this point by the following
example.

Let F be a stable diagonal matrix with distinct entries {f;} and assume f; is the
largest in magnitude. Let the entries of the column vectors u; and v; be given by

1

i—1
Ul = (5) , Vi1 =fiua, 12>1,

where vy is chosen such that 0 < v < 1.
The unique matrix R that solves (3.1) for the given (F,uq,v1) is symmetric
positive-definite. This can be verified by invoking Theorem A.1 and by noting that

v = ui 8(fi),
where s(z) is the Schur function (i.e., analytic and strictly bounded by one in |z| < 1)
s(z) = vz.
For this example, we have

|u11\2 1 3
(4.1) > =Z.
ludl® = 1/1=3) 4

Now define the perturbed vectors 4; and 0; with

U1 =ur(14+90), G =u 1>2, U =uv1.

That is, we only make a relative perturbation in the first entry of u; and keep all
other entries of u; and v; unchanged. Here, ¢ is a small number (for example, for
round-off errors, |4] is smaller than machine precision).

Let R be the unique solution of the displacement equation with the perturbed
generator matrix,

R-FRFT =GJGT, G=[u ® ],
and introduce the error matrix E = R — R. Then E is the unique solution of
E—FEFT = GJGT — GJGT = uyuT — g7,

from which we find

u?, (26 + 62)
Fqq| = (22 ~ 7/
P 1- 17
Therefore,
w2, (2[8] + 62)
(42) By = e GO e

fludl> 11— f7
But since F' is diagonal and |f;| < 1 is its largest entry, we have
(4.3) Q- =l-FeF) ™,

where ® denotes the Kronecker product of two matrices.
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Using (4.1) we conclude that
|Eui| > %2I5| I(I = F&F)7 fludl®,
from which we get a lower bound on the norm of the error matrix
1Bl > [Ex] > gl5| I(I=F&F)7 llull*.

We now show that by suitably choosing <y, the norm of R can be much smaller than
the above bound. Indeed,

IR|| < n max R,
(2

2 _ 42
_ i — Vi
=n max ——*,
i 11— f;
1—+2f7
i 2
=nmax | ——5% u;;
i [l—fz.2 “l’

from which we see that asy — 1, the norm of R can be bounded by n||u1||?. Therefore,
in this example, ||R|| can be made much smaller than [[(/ — F ® F) || |lu¢|®> by
choosing f; and « close to one.

In summary, we have shown that, at the same time,

e ||R — R|| can be larger than |8] [|[(I — F ® F)~|| ||u1|®> and
e ||R|| can be much smaller than |[(I — F ® F)~Y|| [Ju|?

Hence, in general, we can not expect the error norm, |R — LLT||, for any algorithm
(slow or fast) that uses (F, G, J) as input data (but not R), to be as small as ¢1|6|||R||,
for some constant c;.

Therefore, we conclude that irrespective of the algorithm we use (slow or fast),
if the input data is (F, G, J), for a general lower triangular F', we can not expect a
better bound than

(4.4) IR—LL|| < cze (I = F @ F) 7| [Ja |-

5. Hyperbolic Rotation. Each step (3.3) of the generalized Schur algorithm
requires the application of a hyperbolic rotation ©;. The purpose of the rotation is
to rotate the (i + 1) — th row of the prearray [ ®;u; v; | to proper form (recall that
the top i rows of [ ®;u; wv; | are zero by construction). If we denote the top nonzero
row of the prearray by

[ (Beui)iyr (vi)iyr |=[ o Bi ],

then the expression for a hyperbolic rotation that transforms it to the form

[ Viai? =18 0],

is given by:

(5.1) 0; = % [ 1 =pi ] where p; = g—

%
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The positive-definiteness of R guarantees |p;| < 1.
For notational convenience, we rewrite equation (3.3) in the compact form

(5.2) Giy1 = Git10;,

where we have denoted the prearray [ ®;u; v; | by Giy1. Note that both Gi41 and
G;+1 can be regarded as generator matrices for the (i + 1) — th Schur complement.
_ Expression (5.2) shows that in infinite precision, the generator matrices G;11 and

Gi+1 must satisfy the fundamental requirement

Obviously, this condition cannot be guaranteed in finite precision. But it turns out
that with an appropriate implementation of the transformation (5.2), equality (5.3)
can be guaranteed to within a “small” error. (The need to enforce the condition in
finite-precision was first observed for the F' = Z case by Bojanczyk et al. [3].). To see
how we consider the case when G is available exactly in the following subsections.

5.1. Direct Implementation. A naive implementation of the hyperbolic trans-
formation (E_>2) can lead to large errors. Indeed, in finite precision, if we apply ©;
directly to G;+1 we obtain a computed matrix G;;1 such that

~ -

Git1 =Gi19; + Eia,
where the norm of the error matrix F;; satisfies [8][p. 66]
IEi1ll < czel|Gipall [1€5]].

The constant c3 is a low-order polynomial in the size of the matrices and € is the
machine precision. Consequently,

G’i+1Jé;ﬂ_1 = Gi+1JG’;TF+1 + Ez'+1JE3_;_1 + G’i+1®,'E;{;_1 + Ei+1®z'@£,_1,
which shows that
(5.4) 1Gis1JGEy — Gipr JGE || < cae [|Giga | 11031

But since ||©;|| can be large, the computed quantities are not guaranteed to satisfy
relation (5.3) to sufficient accuracy®. This possibly explains the disrepute to which
fast algorithms have fallen.

5.2. Mixed Downdating. One possible way to ameliorate the above problem
is to employ the mixed-downdating procedure as suggested by Bojanczyk et al. [3, 4].
This scheme guarantees that

1Gir1IGE — Giy1 JGT || < cse (”GH-1||2 + ||éi+1||2) .

This bound is sufficient, when combined with other modifications suggested in Secs. 6
and 8.4, to make the algorithm numerically reliable (Sec. 7).

!Interestingly though, Bojanczyk et al. [3] showed that for the special case F' = Z and displace-
ment rank r = 2, the direct implementation of the hyperbolic rotation still leads to an asymptotically
backward stable algorithm. This conclusion, however, does not hold for higher displacement ranks.
Stewart and van Dooren [21] showed that for F = Z and r > 2, the direct implementation of the
hyperbolic rotation can be unstable.
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5.3. A New Method: The OD Procedure. An alternative scheme is now
proposed, which is based on using the SVD of the hyperbolic rotation ©; (it is a
modification of a scheme in [6]). Its good numerical properties derive from the fact
that the hyperbolic rotation is applied as a sequence of orthogonal and diagonal
matrices, which we shall refer to as the OD (Orthogonal-Diagonal) procedure. Its
other advantage is that it is a general technique that can be applied in other situations,
such as the Schur algorithms for nonsymmetric matrices. It can be implemented with
the same operation count as the mixed-downdating algorithm of [3].

It is straightforward to verify that any hyperbolic rotation of the form (5.1) admits
the following eigen(svd-)decomposition:

a;+0;
1 =B 0 _ 1
(5.5) G),:—[ 1 1] \ «i=8: “ 1]—2=QiDiQiT,

\/i -1 1 0 ai—pi 1

where the matrix

is orthogonal (Q;QT = I). )
If the eigendecomposition Q; D;Q7 is now applied to the prearray G;i1 in (5.2),
then it can be shown that the computed generator matrix G; 1 satisfies (see Appendix

C)
(5.6) (Giz1 + Eaiy1) = (Giy1 + E1,iy1)0s,
with
1By isall < coe Gigalls 1Bz iqall < cre [|Gigall-
It further follows from (5.6) that G, satisfies
(5.7) (Gip1 + E2,i11)J (Giy1 + Baip1)T = (Gip1 + B1,i11)J (Gig1 + Eripa)7,

which shows that

(5.8) 1Gi+17GTy = GinJGT, Il < ese (IIGinl® + [1Gisal?) -

ALGORITHM 5.1 (The OD Procedure). Given a hyperbolic rotation © with re-
flection coefficient p = B/a, |p| < 1, and a prearray row vector [ Ty ] the postarray
row vector [ 1 N ] can be computed as follows:

11
[« v lele vl ]
a+B
[:E" yn]<_[$/ y/] %OKL*B 0
0 /o
o w el 1] ]
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The algorithm guarantees (cf. (5.6)—(5.8)) the following error bounds
[d14+e1 Gi+e |=[z+es y+es |O,

with

659 [[er el <eoc |l a0l [les eIl <ewell[o o]l

5.4. Another New Method: The H Procedure. Let p = §/a be the reflec-
tion coefficient of a hyperbolic rotation O,

N
1—p2 | —p 1 !

with [p| < 1. Let [ 21 g1 ] and [ ¢ y | be the postarray and prearray rows,
respectively,

[21 »1 ]=[2 y]O, with |z]> [yl

The advantage of the method to be described in this section is that the computed
quantities Z; and ¢; satisfy the equation

(5.10) [Z1+€] G1+esy ]=[z y]6,
where the error terms satisfy
(5.11) le1] < crield], [ea] < crze(|E1] + [d1])-

Compare with (5.6) where the prearray is also perturbed. Moreover, we shall show in
Sec. 10.2 that by a slight modification we can further enforce that |Z1| > |§1|, which
is needed to prevent breakdown in the algorithm. (If |z| < |y|, then it can be seen
that [y « |® = [ y1 1 |. Therefore, without loss of generality, we shall only
consider the case |z| > |y|).

The expression for z; can be written in the form

(a —lzl)gia +B) [1 - gg]

The term £ =1 — g% can be evaluated to high relative accuracy as follows:

If 2L <1/2
then { =1-5¢
else

E=di +dy—didy
The argument employed further ahead in Sec. 6.1 establishes that

€= &(1+335y),

where §; dentoes a quantity that is smaller than the machine precision in magnitude.
Therefore, z; can be computed to high relative accuracy from the expression

|o|z¢
(o= B)(a+B)’

1 =
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ie.,
1 =2 (1 + 01352),

for some constant c;3.
To compute y; we use the expression

y1 =1 — ath (z —y)
1 1 a_p .
Then, the computed y; satisfies
oa+p

01 = <$1(1 + c1362) — (z-y)d+ 01453)) (14 64),

a—p
from which we get

91 = y1 + T1c1505 + Y1c1606-
Therefore,

|91 — y1| < crze[|21] + |91]] -

In summary, the H procedure is the following.

ALGORITHM 5.2 (The H Procedure). Given a hyperbolic rotation © with reflec-
tion coefficient p = B/a, |p| <1, and a prearray [ @ y | with |z| > |y|, the postarray
[ 21 w1 | can be computed as follows:

B
If24 <1/2
then{(—l—gg
else
la|—|8] lz|—|y|
dl <~ a—, dz «— %

]

E—dy+ds — dids

endif
ot
N T Batp

% %wl—\/%(w—y)-

This algorithm guarantees (5.10) and (5.11). We remark that the H procedure
requires 5n to 7n multiplications and 3n to 5n additions. It is therefore costlier than
the OD procedure, which requires 2n multiplications and 4n additions. But the H
procedure is forward stable (cf. (5.10)) whereas the OD method is only stable (cf.
(5.6)).

From now on we shall denote by @;;1 and 9;41 the computed generator columns
at step ¢, i.e.,

Git1 = [ Qi1 Digr |,

starting with
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6. Blaschke Matrix. Each step of the algorithm also requires multiplying the
Blaschke matrix ®; by u;. [Note that the top ¢ rows of ®;u; are zero and, hence, can
be ignored in the computation]. In this section, we consider the following two cases:

e F'is stable and diagonal, in which case ®; itself is diagonal and given by

_fi=fi
1—fif;
e [ is strictly lower triangular, e.g., F' = Z, F = (Z & Z), or other more

involved choices. In these situations, the matrix ®; is equal to F since the f;
are all zero,

(®i)jj

$,=F

6.1. The Case of Diagonal F. The goal of this section is to show how to
compute ®;4; to high componentwise relative accuracy (i.e., high relative accuracy
for each component of the computed vector). Here, 4; denotes the computed value of
Uj.

The numerator of (®;);; can be computed to high relative accuracy as

FU(f; = fi) = (f5 = fi) (L + 61).

Computing the denominator z;; = (1— f; f;) to high relative accuracy is a bit trickier,
as the following example shows.

Let fi = fo = 0.998842. Then in 6-digit arithmetic 1 — f; fo ~ 2.31500 x 1073,
whereas the actual answer is 2.31465903600 x 10~3. Therefore, the relative error
is approximately 1.5 x 10~*. Using the scheme given below, we find 1 — fi fo ~
2.31466 x 10~3. The relative error is now approximately 4.2 x 10~7.

The scheme we use to compute z;; is as follows:

If fzf] < 1/2
then Tij = 1-— f,fJ

else
dj =1-1fil, di=1-[fi
Tij = d; + dj — dzdj

We now show that this scheme ensures that z;; is computed to high relative
accuracy. Indeed, when f;f; < 1/2, we have that |1 — f;f;| > 1/2. Moreover,

g5 = (1= fifj(1 + 62))(1 + 63),
= Ty (1 - M52> (1 +63).
$,’j
Since |fifj/%ij] < 1, we have &;; = ;;(1 + 34). On the other hand, for f;f; > 1/2,
we note that
dj = d;(1+65), di =di(1+5),
and

Bi = [(d; + d;)(1+ 67) — did; (1 + 85)] (1+ 55),
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which, when simplified, gives
d; +d; + did;
@U:xﬁ(r+ni;ii$—LﬁmQ.

Zij

We shall now show that (d; + d; + d;d;)/z;; < 3. Indeed, first note that d; and d; are
positive numbers smaller than 1/2 since |f;| > 1/(2|f;|) > 1/2. It then follows from

1 1 4
d: _ _ —
’<2<2+2dj’

that d; + d; > 2d;d;. Therefore,

di +d; +did; _ 3(di +d;) _
di+dj —didj %

which shows that
& = ¢ij (1 4+ 33611) .

In summary, we have shown how to compute ®; to component-wise accuracy. There-
fore, since ®; is diagonal, ®;4; can be computed to component-wise high relative
accuracy. More specifically,

We should remark that if the denominator entries (1 — f;f;) were instead computed
directly, the error in computing (®;4;); will also depend on the norm of (I — f;F) !,
which can be large. For this reason, we have introduced the above computational
scheme for evaluating (1 — f;f;). This scheme, however, is not totally successful when
F is a general triangular matrix (for example, when F' is bidiagonal). A way around
this difficulty will be addressed elsewhere. But for a strictly-lower triangular F', the
situation is far simpler as shown in the next subsection.
But for now, let us consider how to compute the [;’s. Define

(6.2) = /1- 12 (I - fiF) 4.

We use the expression
(1-f)A+fi)
1-fifj

to compute /;, with the technique explained above for the denominator (1 — fif;).
Then we can show that

@) =

(@i)j,

(63) (lAz)] = (lz)](l + 018613)-

6.2. The Case of Strictly-Lower Triangular F'. For a strictly lower-triangular]]
F', we use the standard matrix-vector multiplication. In this case, the computed quan-
tities satisfy the relation [8][p. 66]

| fU(F @) — Fas|| < croe|lF|| [|a4]]-
Also, since f; =0,

(6.4)

-~
S
I
[~
A
I
o~
N
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6.3. Enforcing Positive-Definiteness. The condition (7.8) on the matrix R in
Sec. 7.1 guarantees the positive-definiteness of the successive Schur complements and,
therefore, that [®;4;];41 > |0;]i+1. This assures that the reflection coefficients will be
smaller than one in magnitude, a condition that we now enforce in finite-precision as
follows:

If |fl(¢‘,ﬂz)|z+1 < |ﬁi+1,i| then
fl(q)zﬁz)z+1 — |ﬁi+1,i|(1 + 36)51gn(fl(<I>zﬁz)z+1)

This enhancement, along with condition (7.8), will be shown in Sec. 7.1 to guarantee
that the algorithm will complete without any breakdowns.

7. Error Analysis of the Algorithm. The argument in this section is moti-
vated by the analysis in Bojanczyk et al. [3].
Note that for diagonal and for strictly lower-triangular F' we can write

| F1(@idii) — Ritil| < ca0e| D[l
Therefore, from the error analysis (5.6) of the hyperbolic rotation we obtain
(7.1) (Git1 + Baiv) = ([ @it 03 | + E3,141)0,
where

1B i1l < cave ([|Ralllldll + [[9:]]) -

It then follows that

(7.2) G107, — Dip107, = B0 @7 — 0;0] — My,

where

(7.3) [ Mitall < caze(llipa [l + 193l [[@ll® + (|95 [1 + [103]]%).-
Since

li = V1- f2 (I - fiF) ",

the following two equations hold

i = #(I— fiF)G, ;= #(F — fiD)l;.

Uy =
RV Vi-7?
Hence, following the proof of Theorem 3.2 we can establish that

n

1=1 =1

i=1

Define

R=30T
i=1
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and

E=R-R.
Then note that E satisfies
(7.5) E—-FEF" =) M,

i=1
since, we assume, 4; = u; and 01 = v;.
Now if
n R B B n R
E=R-Y L] = (R-R) + (R-)_LI),
i=1 =1

then

IEl < &l +

S-S
=1 =1

Using (6.3) and (6.4) we can establish that, for diagonal or strictly lower-triangular
F,

< cazel|R)|.

S -y il
1=1 =1

Therefore,

IE|| < caael| R + (I = F @ F)7|| D [IMill,

i=1

IR+~ F @ F)7 | D0 {@+ 12l llaall® + [[0:]°}

i=1

(76) S Co5€

7.1. Avoiding Breakdown. The above error analysis assumes that the algo-
rithm does not breakdown. That is, at every iteration the reflection coefficients of the
hyperbolic rotations are assumed to be strictly less than one in magnitude. In this
section we show that this can be guaranteed by imposing condition (7.8) on R and by
employing the enhancement suggested in Sec. 6.3.

The argument is inductive. We know that |®ju;|z > |v1|2. Now assume that the
algorithm has successfully gone through the first i steps and define the /; as in (6.2).
Define also the matrix S; that solves the displacement equation
(7.7) S; — FS;FT = 4;aT — 0;07

i i

as well as the matrix
i-1
Ri =) LI + S
j=1
Following the proof of Theorem 3.2 we can establish that

R; — FR;FT = oyt — 07 — § M;.
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If we further introduce the error matrix

E; = R— R,

we then note that it satisfies
i—1
E; - FE;FT =) " M;,
j=1

since, we assume, 4; = u; and U; = v;.
Then, as before, we can establish that
i—1
IR — Rill < cagel|Rill + [|(T — F @ F)7H| D 1M,
j=1
i-1
<ecore [|Rill + (T = F )7 YL+ 19507 a1 + NR:ll(L+ [1FI1%)}
j=1

where in the second step we use Lemma B.1. Now note that for diagonal, stable F,
|®i]| < 1; and if F is strictly lower-triangular then ||®;|| < | F||- Therefore, combining
both cases, we get 1+ ||®;]|> < 2 + || F||?, which leads to

i—1
IR = Ryl < cosell(I = F@ F) || @+ IFIP) [I1Rill + Y Il

i=1

It now follows that if the minimum eigenvalue of R meets the lower bound

i—1
Amin(R) > cogel|(I = F @ F)7M| 2+ |IFIP) [I1R:ll + D llagl* |

=1

then R; will be guaranteed to be positive-definite, and consequently, S; will be
positive-definite. Then, by positive-definiteness,

|®0i]i41 > |0ifig1-

But since we enforce fI(|®;d;|i+1) > |0i|it1, the algorithm can continue to the next
iteration.

This suggests the following lower-bound on the smallest eigenvalue of R in order
to avoid breakdown of the algorithm (i.e., in order to ensure the positive-definiteness
of the computed Schur complements):

(7.8)  Amin(R) > easell(I = F @ F)7' | 2+ IFIP) | IR+ D gyl

=1

7.2. Error Bound. From the discussion in the previous section, we can conclude
that:

THEOREM 7.1 (Error Bound). The generalized Schur algorithm for a struc-
tured positive-definite matriz R satisfying (7.8), with a stable diagonal or strictly
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lower-triangular F', implemented as detailed in this paper (see listing in Appendiz D)
guarantees the following error bound:

(7.9) IE|| < caoell (T = F @ F)~H| 2+ IFI%) [ IR+ llay]?
7j=1

The term ||(I — F ® F) 1| in the error bound is expected from the perturbation
analysis of Sec. 4. However, the presence of the norms of the successive generators
makes the error bound larger than the bound suggested by the perturbation analysis,
which only depends on the norm of the first generator matrix.

7.3. Growth of Generators. The natural question then is how big can the
norm of the generators be? An analysis based on the norm of the hyperbolic rotations
used in the algorithm gives the following bound

1+|pk|
— |pxl

(7.10) lli]l < esolfuall H

which is reminiscent of the error bounds of Cybenko for the Levinson algorithm [7].
A tighter bound can be obtained by using the fact that R is positive-definite to get
(recall (3.4))

(7.11) luill* < (7 = F @ F)~7| (1 + [IF*)* [|RI-

This shows that the growth of the generators depends on ||(I — F ® F)~!||. But for
a strictly lower-triangular F' a better bound is ||u;||? < ||R||. Therefore, for strictly
lower-triangular F' the error bound is as good as can be expected from the perturbation
analysis of Sec. 4.

What does this say about the stability of the generalized Schur algorithm for
a diagonal and stable F'? Clearly, when the eigenvalues of F' are sufficiently far
from 1 the method has excellent numerical stability. The algorithm degrades as the
eigenvalues of F' get closer to 1. This is to be expected from the perturbation analysis
(whether we use a slow or a fast algorithm). However, if the generators grow rapidly
(i.e., as fast as (7.11)) then the algorithm degrades faster than the rate predicted by
the perturbation analysis.

Is there anything further we can do to ameliorate this problem? One thing we
have not considered yet is pivoting, which is possible only when F' is diagonal. We
discuss this in Section 8.

7.4. F Strictly-Lower Triangular. When F' is strictly lower triangular the
error bound can be written in the alternate form
n
2+ () |
i=1

IE]| < care(2 + || FI?) (Z IIF’Ilz)

This shows that when F' is contractive (||F'|| < 1), the error bound is as good as can
be expected from the perturbation analysis, i.e.,

IRl + (gllﬂilﬁ)] :

|E|| < c3z€
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We observed in the previous section (Sec. 7.3) that ||u;]|> < ||R||. Therefore, if F' is
strictly lower triangular and contractive, then the algorithm is backward stable.

This includes the important class of positive-definite quasi-Toeplitz matrices,
which correspond to F' = Z. In this case, we strengthen the result of Bojanzyck
et. al. [3], which states that for quasi-Toeplitz symmetric positive-definite matrices,
the Schur algorithm is asymptotically backward stable. Our analysis shows that the
modified algorithm proposed here is backwards stable provided the smallest eigenvalue
of the quasi-Toeplitz matrix satisfies

)\min(R) > C32€ ”R” +Z||ﬁ’]”2

j=1

If F is strictly lower triangular but non-contractive then the error norm can
possibly depend on ||(I — F ® F)71||.

7.5. F Diagonal. For the special case of a stable diagonal F', the bound in (7.9)
may suggest that the norm of the error can become very large when the magnitude
of the diagonal entries of F' become close to one. But this is not necessarily the case
(see also the numerical example in the next section).

First note that the bound in (7.3) can be strengthened since the hyperbolic ro-
tations are applied to each row independently. By the assumption (7.8), the Schur
complement generated by (i;,?;) is positive-definite. Hence, by Theorem A.1,

|G| > | @it > |04],
and we conclude that
|Mit1| < cae(|@ipa @i |T + |l |@i] 7).
Define

oo bt
p],z—ﬁ .

It then follows from (7.7) that
Uj i, i
N o= DR )
(Sz)],k 1— fjfk ( pj,zpk,z)

Therefore,

|@5itkil o _1(Sikl IRl

p— — 2 .
1— fife 1= pjipri — 1 —max; (pF,)

Now using the expression (7.5) we obtain

|E'|_7k — |E?:1 Miquk < caqe Z?:l ||Rl”

Ll 1 —max;; (p5 ;)
This establishes the following alternative bound for the error matrix E,
n o=
[|E|| < c3se M,

1 — max; ; (p;’fﬂ.)

which is independent of the {f;}. In other words, if the coeflicients p; ; are sufficiently
smaller than one, then the algorithm will be backward stable irrespective of how close
the {|fi|} are to one.
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8. Pivoting with Diagonal F. When F' is diagonal it is possible to accom-
modate pivoting into the algorithm as suggested by Heinig [10]; it corresponds to
reordering the f;’s, u;;’s and v;;’s identically at the ¢th iteration of the algorithm.
This has the effect of computing the Cholesky factorization of PRPT, where P is the
product of all the permutations that were carried out during the algorithm.

In finite precision, pivoting strategies are employed in classical Cholesky factor-
ization algorithms when the positive-definite matrix is numerically singular. In the
context of the generalized Schur algorithm of this paper, the main motivation for
pivoting should be to keep the norm of the generator matrices as small as possible!
This is suggested by the expression for the error bound in (7.9), which depends on
the norm of the generators. Note that this motivation has little to do to do with the
size of the smallest eigenvalue of the matrix.

We would like to emphasize that pivoting is only necessary when the norm of F'
is very close to one as otherwise the generators do not grow appreciably (7.11).

8.1. A Numerical Example. The first question that arises then is whether
there exists a pivoting strategy that guarantees a small growth in the norm of the
generators? Unfortunately, we have numerical examples that show that irrespective
of what pivoting strategy is employed, the norms of the generators may not exhibit
significant reduction.

Consider the matrix R that satisfies the displacement equation R — FRFT =
GJGT with

0.26782811166721  0.26782805810159

= 0.65586390188981 —0.65586311485320 J= [ 1 0 ]
0.65268528182561  0.65268365011256 |’ ’
0.26853783287812 —0.26853149538590

and
F = diagonal{0.9999999, —0.9999989, 0.9999976, —0.9999765}.

The matrix R is positive-definite since the entries of the column vector v; were gen-
erated from the relation v;1 = wu;15(f;) where s(z) is the Schur function s(z) =
0.9999999z. The table lists the values of

n
D Ml
i=1

for all the 24 possible pivoting options of the rows of the generator matrix G. The
results indicate that none of the pivoting options significantly reduces the size of the
generators. Indeed, note that the norm of u; is approximately one, while the best
growth rate we achieve with pivoting is approximately 10%. This best case is achieved
when the diagonal entries of F' are approximately in increasing order of magnitude.



STABILIZING THE GENERALIZED SCHUR ALGORITHM 23

0>, @l
5.30 0.41
5.30 0.41
5.21 0.40
5.21 0.40
5.03 0.40
5.03 0.40
0.83 0.04
0.83 0.04
0.83 0.04
0.83 0.04
0.83 0.04
0.83 0.04

8.2. The Case of Positive F. This raises the next question: is pivoting useful
at all? It is useful when the the entries of the F' matrix are strictly positive (or
negative). In this case, we permute the entries of F' (and, correspondingly, the entries
of u; and vy) such that the diagonal of F is in increasing order in magnitude. Then
it is shown below that

1]l < 1RIIM?,

which makes the first order term of the upper bound on E depend only on the first
power of ||(I — F ® F)7!||. Indeed, we know that

1
V1I-=|fil?
where the top (i — 1) entries of u; and [; are zero. For j > 1,

N 1_fifj l_

U; = (I- fiF)l;,

72, 1_|f1|2 VA

and due to the ordering of the entries of F, and since |f;| < 1, we have

1-fif; < 1-f2 < V1—|fi]%
Therefore,
1—fif; <1,
V1=|fi?

and we conclude that
laall < Gl < IIRI1M2,

as desired.

8.3. The Non-Positive Case. When F' is not positive, the example in Sec. 8.1
suggests that pivoting may not help in general. However, it may still be beneficial to
try a heuristic pivoting strategy to control the growth of the generators. Ideally, at
the i — th iteration we should pick the row of the prearray G;;; which would lead to
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the smallest (in norm) postarray G;y1. Since there seems to be no efficient way to
do this we suggest picking the row that leads to the smallest reflection coefficient (in
magnitude) for the hyperbolic rotation ©;. As suggested by the example of Sec. 8.1,
an alternate strategy would be to order the f;’s in increasing order of magnitude.

We may stress that pivoting is relevant only when the norm of F is very close to
one, as indicated by the error bound (7.9) and (7.11).

8.4. Controlling the Generator Growth. We have shown in Secs. 7.4 and 8.2
that the generators do not grow i) if F' is strictly lower triangular and contractive or
ii) if F is a positive diagonal matrix with increasing diagonal entries. We now show
how to control the generator growth in general using an idea suggested by Gu [9].

It follows from (7.7) that

IG;IGT || = |IS;i = FS;F™||.

Let W;A;WT denote the eigendecomposition of G;JGT, where A; is a 2 x 2 real
diagonal matrix with (A;)11 > 0 and (A;)22 < 0. Then W;4/|A;| can be taken as a
generator for S; with the desirable property that

HWZ\/m

where ||R;|| ~ ||R||, to first order in e.

Therefore, whenever the generator grows, i.e., ||G;]|2 becomes larger than a given
threshold (say, 2||R||(1 + ||F||?)), we can replace it by W;+/|A;|. This computation
can be done in O((n —4)r? +r?) flops (r = 2 in the case under consideration) by first
computing the QR factorization of G;, say

2 —
= Al = 1S = FSFT|| < ISill(1 + 1FI1”) < IRill (1 + 1),

Gi=QiP;, Q:QT =1,

and then computing the eigendecomposition of the 2 x 2 matrix P;J PiT. We can then
get W; by multiplying @; by the orthogonal eigenvector matrix of P;JPT.

9. Solution of Linear Systems of Equations. The analysis in the earlier
sections suggests that for ||F|| sufficiently close to one, the error norm can become
large. However, if our original motivation is the solution of the linear system of
equations

Rx=b

then the error can be improved by resorting to iterative refinement if either the matrix
R is given or if it can be computed accurately from (F,G). In the sequel we show
that for a diagonal F', the matrix R can be evaluated to high relative accuracy if u;
and v; are exact.

9.1. Computing the Matrix R. Given a positive-definite structured matrix
R that satisfies

R— FRFT = uluf — vlvf,

with F' diagonal and stable, its entries can be computed to high relative accuracy as
we explain below.
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It follows from the displacement equation that
. . _ Yia Y51
_ Uintin — Uity MRt (1- )

A 1 fif; ’

where, by positive-definiteness, the ratios

Vil ond YEL
Ui,1 Uj,1
are strictly less than one.
The term ¢ = 1 — 221 %1 can be evaluated to high relative accuracy as explained

Ui, 1 Uj,1 .
earlier in the paper in Sec. 5.4, viz.,

If 2ol < 1/2

Ui,1 Uj,1 v s
then { =1 — 2L 2t
Ui,1 Uj,1
else
_ Juwial=lvia] _ Juial=lvjal
dy = luial 7 dy = luj,1l
E=dy +dy —dids
Likewise, we evaluate = (1 — f; f;) and then
Uz,1uj,1§

This guarantees
Pij =T (1 + c3607)-

9.2. Iterative Refinement. If the factorization LL7 is not too inaccurate, and
if R is not too ill-conditioned, then it follows from the analysis in [11] that the solution
Z of Rx = b can be made backward stable by iterative refinement.

ALGORITHM 9.1 (Iterative Refinement).

Set$o =2, r =b— Ry

repeat until ||7|| < care||R|| ||2]|
solve LLT§z =
set &; = T;_1 + oz
r=b— R%;

endrepeat

10. Enhancing the Robustness of the Algorithm. We now suggest en-
hancements to further improve the robustness of the algorithm.

To begin with, carrying out the hyperbolic rotation as in (5.5) enforces the relation
(5.7),

(10.1) Gip107, — Dip1074, = ®;007 ] — 0;0] — Nipa,
where
(10.2) I Nipall < eage(ll@igall® + 1Rall 1@l + [0 ]® + [19]])-

But the positive-definiteness of R further imposes conditions on the columns of
the generator matrix. Indeed,
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e for a diagonal and stable F', by Theorem A.1, a necessary condition for the
positive-definiteness of the matrix is that we must have

(10.3) |Gig1| > [Dig1],

where the inequality holds component-wise;
e for a lower-triangular contractive F', Lemma B.2 shows that a necessary con-
dition for positive-definiteness is

[lwill > [|vsl-

e in all cases, the condition |®;u;|;+1 > |vi|i+1 is required to ensure that the
reflection coefficient of the hyperbolic rotation, ©;, is less than 1.

We have found that if all these necessary conditions are enforced explicitly the algo-
rithm is more reliable numerically. An example of this can be found in Sec. 10.3.

We now show how the OD and H methods can be modified to preserve the sign
of the J-norm of each row of the prearray.

10.1. Enhancing the OD Method. The OD method can be enhanced to pre-
serve the sign of the J-norm of the row it is being applied to. For this purpose, assume
that

|®idiil; > [0il;-

Then from (5.6) we see that if the j — th row of the perturbed prearray has positive J-
norm then by adding a small perturbation to the j —th row of the computed postarray
we can guarantee a positive J-norm. If the j — th row of the perturbed prearray does
not have a positive J-norm, then in general there does not exist a small perturbation
for the 7 — th row of the postarray which will guarantee a positive J-norm. For such
a row, the prearray must be perturbed to make its J-norm sufficiently positive and
then the hyperbolic rotation must be reapplied by the OD method to that row. The
new j — th row of the postarray can now be made to have a positive J-norm by a
small perturbation. The details are given in the algorithm below. For the case of a
diagonal and stable F', all the rows of the prearray should have positive J-norm. The
algorithm should enforce this property.

In the statement of the algorithm, [ z y | stands for a particular row of the
prearray Giy1, [ #1 1 | stands for the corresponding row of the postarray G;;; and
© stands for the hyperbolic rotation. Here we are explicitly assuming that |z| > |y],
which is automatically the case when F' is diagonal and stable. Otherwise, since
[y 2 ]©=[y 1 ], the technique must be used with the elements of the input
row interchanged.

ALGORITHM 10.1 (Enhanced OD Method).

Assumption: |z| > |y|.
if [21] < [91]
Y1 ¢+ cre(|21]| + [91])sign(21)
V2 4= cre(|Z1| + [91)sign(g1)
if |§21 +’Yl| > |jl]1 - 72| then
1+ 2T1+m
91 01— 7
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else
M < cee(|z| + |y|)sign(z)
n2  ce(|z| + y[)sign(y)
[21 1 |« [2z+m y—n2 | O (via the OD method)
if |:),§1| > |Zj1| then Z; < Z; and 91 + 01
else
Y1 = cre(|Z1] + [91])sign(21)
Y2 < cre(|Z1] + [91])sign(g1)
T1 < Z1+m
g1 < 01— 7
endif
endif
endif

The computed columns 4;1 and 9;4; continue to satisfy a relation of the form (5.6).

10.2. Enhancing the H Procedure. Here again, [ z y | stands for a par-
ticular row of the prearray Gi_H, and [ 1 U ] stands for the corresponding row of
the postarray. We shall again assume that |z| > |y|. If that is not the case then the
procedure must be applied to [ y z |,since [y = |O=[y a1 |.

It follows from |z| > |y| and relation (5.10) that

|£1 +€1|2 — |g1 +€2|2 >0,

for the H procedure. Therefore, by adding small numbers to £; and §; we can guar-
antee |Z1| > |91].

ALGORITHM 10.2 (Enhanced H Method).

Assumption: |z| > |y|.
Apply the hyperbolic rotation © to [ # y ] using the H procedure.
If |&1] < [ga] then

71 + |£1]|(1 — 3e)sign(g1)

10.3. A Numerical Example. The following example exhibits a positive defi-
nite matrix R for which a direct implementation of the Schur algorithm, without the
enhancements and modifications proposed herein, breaks down. On the other hand,
the modified Schur algorithm enforces positive-definiteness and avoids breakdown as
the example shows. The data is given in Appendix E.

A straightforward implementation of the generalized Schur algorithm (i.e., with
a naive implementation of the hyperbolic rotation and the Blaschke matrix-vector
multiply) breaks down at the 8th step and declares the matrix indefinite.

On the other hand, our implementation, using the enhanced H procedure (see
Sec. 10.2) and the enhanced Blaschke matrix-vector multiply (see Sec. 6.3), success-
fully completes the matrix factorization and yields a relative error

IR~ LL"||

~ 0.15.
(1= [|F|I)) 2RIl

Furthermore, the relative backward error ||R — LLT||/||R|| is approximately 1011
(using a machine precision of approximately 10~16.)
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11. Summary of Results. The general conclusion is the following.

The modified Schur algorithm is backward stable for a large class of structured
matrices. Generally, it is as stable as can be expected from the analysis in Sec. 4.

More specifically,

e If F is strictly lower-triangular and contractive (e.g., F' = Z), then the mod-
ified algorithm is backward stable with no generator growth.

e If F' is stable, diagonal, and positive, then by reordering the entries of F' in
increasing order, there will be no generator growth and the algorithm will be
as stable as can be expected from Sec. 4. In particular, it will be backward
stable if || F|| is not too close to one (e.g., [|F|* <1— %).

e In all other cases, we can use the technique outlined in Sec. 8.4 to control the
generator growth and make the algorithm as stable as can be expected from
Sec. 4. In particular, it is backward stable if || F|| is not too close to one (e.g.,
IFI? < 1= L),

e If R is given or can be computed accurately (e.g., when F' is diagonal), iter-
ative refinement can be used to make the algorithm backward stable for the
solution of linear equations.

As far as pivoting is concerned, in the diagonal F case, we emphasize that it is
necessary only when ||F|| is very close to one.

o If F is positive (or negative), a good strategy is to reorder the entries of F' in
increasing order of magnitude.

e If F' has both positive and negative entries, then our numerical example of
Sec. 8.1 indicates that pivoting may not help in controlling the growth of the
generators.

In our opinion, for positive-definite structured matrices, with diagonal or strictly
lower-triangular F', the stabilization of the generalized Schur algorithm is critically
dependent on the following:

e Proper implementations of the hyperbolic rotations (using the OD or H pro-
cedures).

e Proper evaluation of the Blaschke matrix-vector product.

e Enforcing positive-definiteness to avoid early breakdowns.

e Controlling the generator growth.

12. Concluding Remarks. The analysis and results of this paper can be ex-
tended to positive-definite structured matrices with displacement rank larger than 2,
as well as to other forms of displacement structure, say the Hankel-like case

FR+ RFT =GJGT.

While the current analysis can also be extended to the bidiagonal F' case, the
error bound will further depend on the norm of the Blaschke matrices, which need
not be smaller than one. Further improvements seem possible and will be discussed
elsewhere.

We are currently pursuing the extension of our results to general nonsymmetric
structured matrices. In these cases, the hyperbolic rotations are replaced by coupled
rotations [16] and the OD and H procedures can be generalized to implement these
rotations accurately.
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Moreover, the results of this work suggest improvements to certain fast algorithms
in adaptive filtering and state-space estimation in view of the connections of these
algorithms to the Schur algorithm [15]. This is a subject of ongoing investigation.

The H procedure can also be extended to other elementary transformations like
Gauss transforms and Givens rotations. The implications of this fact will be addressed
elsewhere.
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APPENDICES

Appendix A. Schur Functions. A function s(z) that is analytic and strictly
bounded by one (in magnitude) in the closed unit disc (|z| < 1) will be referred to as
a Schur function. Such functions arise naturally in the study of symmetric positive-
definite matrices R that satisfy (3.1), with a stable diagonal matrix F' with distinct
entries. Indeed, let {u;1} and {v;1} denote the entries of the generator column vectors
u1 and vy,

U1 V11

U21 V21
Uy = . , U1 =

Un1 Un1

The following theorem guarantees the existence of a Schur function s(z) that maps
the u;1 to the v;; [19][Thm. 2.1], [15, 17].

THEOREM A.l. The matriz R that solves (3.1), with a stable diagonal matriz F
with distinct entries, is positive-definite if, and only if, there exists a Schur function
s(z) such that

(A1) vir = ua s(fi).
It follows from (A.1) that |v;1| < |us1| and, consequently, ||v1|| < ||u1]|-

Appendix B. Useful Lemmas. The following two results are used in the body
of the paper.

LEMMA B.1. If R — FRFT = uwu™ — voT then

[Joll* < flull® + [IRI (1 + (| FIJ).

The following is an extension of a result in [3].
LEMMA B.2. If R— FRFT = wuT —vv7T, and R is a positive-definite matriz and
F is a contractive matrix, then

[[o]|? < [lulf?.
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Proof. Taking the trace of both sides of the displacement equation we get
tr(R) — tre(FRFT) = ||ull® — |||,
Introduce the SVD of F, F = ULV with ¥;; < 1. Then
tr(FRFT) = tr(SVTRVE) < tr(VTRV) = tr(R),
from which the result follows. O
Appendix C. Error Analysis of the OD Method. In this section we analyze

the application of a hyperbolic rotation © using its eigendecomposition ® = QDQ7,
where

and
atp
p=| Ves 0
a—p0 ’
0 ath

for given number « and 3 such that |a| > |3|.
Let B = ©A. We shall now show that

(B+ E,) =0O(A + Ey),

where || Ez|| < c39¢||B|| and || E1|| < caoel|4]|-

First note that using the above expressions for D and @, their entries can be
computed to high componentwise relative accuracy (assuming that the square-roots
can be computed to high relative accuracy).

Next observe that, for any vector z,

FU(Dz);) = (De);(1 + c4165).
Therefore, ||Dz — Dz|| < caze||Dz||. Also, note that
FUQijz;) = Qijzi (1 + cazdo).
Hence, we can show that
fi(Qz) = Q(z +€) = Qz + Qe = Qz +ey,

where |lex|| = [le]| < casel|z]| = cazell f1{Qz)]|-
Now, let y = QDQTz. Then in finite precision we have

FlQTz) = QT (z + es3)
FUDQT (z + e3)) = DQ"(z + e3) + es

and

FUQDQT (z + e3) + e4)) = Q(DQ” (z + e3) + e4) + 5
=QDQ"(z +e1) — eg = 4.
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Thus,
J+es = QDQ"(z + e3) = O(z + e3),
where, by the bounds above,

llesll < cagellxll, [les|| < carellll-

Appendix D. Matlab Programs.

We include here a Matlab listing of the stabilized Schur algorithm suggested in
this paper. The program assumes that the input matrix is positive-definite and tries
to enforce it. The algorithm listed here can be easily modified to test if a structured
matrix is positive-definite.

D.1. The H Procedure. Input data: The ratio beta/alpha represents the reflection
coefficient, which is smaller than one in magnitude. Also, y/z is assumed smaller than
one in magnitude.

Output data: The entries [ z; y; | that result by applying a hyperbolic rotation to
[z y ], with |z1] > |y1]-

function | z1, yl | = h_procedure(z,y, beta, alpha)

c = (beta * y)/(alpha * z);

if ¢ < 0.5
zi=1—c¢;
else

dl = (abs(alpha) — abs(beta))/abs(alpha);

d2 = (abs(z) — abs(y))/abs(z);

xt =dl 4+ d2 — dl % d2;
end
z1 = (abs(alpha) * z * z1) /sqrt((alpha — beta) * (alpha + beta));
yl = 21 — sqrt((alpha + beta)/(alpha — beta)) * (z — y);
if abs(z1) < abs(y1)

yl = abs(z1) x (1 — 3 x eps) = sign(y1)

end

D.2. The Blaschke Matrix-Vector Product. We now list the program that
computes ®;u; for both a diagonal F' and a strictly lower-triangular F'.

Input data: An n X n stable and diagonal matrix F, a vector u, a vector v (such that
[v| < |ul), and an index i (1 <7 < n).

Output data: The matrix vector product z = ®;u, where &; = (I — f;F)~1(F — f;I),
and the vector ub = (I — f;F) u.

function | z, ub ] = blaschke 1(F,u,v,i,n)
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ub = u;
z=u;
forj=i:n
if F(i,1) = F(4,7) <0.5

else
dl =1 —abs(F(i,1));
d2=1— abs(F(j, 4));
zi =1/(dl + d2 — d1 * d2);
end

ub(j) = zi * 2(j);
z2(j) = (F(4,5) — F(i,7)) * ub(j);

if abs(z2(j)) < abs(v(j))
z(j) = abs(v(j)) * (1 + 3 * eps) * sign(z(j));
end
end

For a strictly-lower triangular F' we use the following.

Input data: An n x n strictly-lower triangular matrix F', a vector u, a vector v (such
that |v| < |u]), and an index i (1 < i < mn).

Output data: The matrix vector product z = Fu and ub = u.

function [ z, ub ] = blaschke 2(F,u,v,i,n)

ub = u;
z=Fxu;
2(i) = 0;

if abs(z(i + 1)) < abs(v(i + 1))
2(i+ 1) =abs(v(i + 1)) * (1 + 3 * eps) x sign(z(i + 1));
end

D.3. The Stable Schur Algorithm. We now list two versions of the stable
modified Schur algorithm — one for diagonal stable F' and the other for strictly
lower-triangular F'.

Input data: An n x n diagonal and stable matrix F', a generator G = [ u v ] in
proper form (i.e., v; = 0), with column vectors u, v.

Output data: A lower-triangular Cholesky factor L such that ||R — LLT|| satisfies
(7.9).

function L = stable_schur_1(u,v, F)
n = size(F,1);

fori=1:n-1
[ u, ub ] = blaschke 1(F,u,v,i,n);
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L(:,i) = sqre((L = F(,9)) * (1 + F(i,5))) * ub;

end
L(n,n) = (1/sart((1 = F(n,n)) * (1 + F(n,n)))) * u(n);
L(1:n—-1,n) = zeros(n — 1,1);

Input data: An n X n strictly lower-triangular matrix F, a generator G = [ u v |
in proper form (i.e., v1 = 0), with column vectors u, v.

Output data: A lower-triangular Cholesky factor L such that ||[R — LLT|| satisfies
(7.9).

function L = stable_schur _2(u,v, F)

n = size(F,1);
fori=1:n-1
[ u, ub | =blaschke 2(F,u,v,i,n);
L(:,1) = sqrt((1 — F(5,1)) * (1 + F(5,1))) * ub;
a=v(i+1);
b=u(i+1);
forj=i+1:n
if abs(u(j)) > abs(v(j))
[ u(s), v(j) | = hprocedure(u(j),v(j),a,b);
else
[ tempv, tempu | = h_procedure(v(j),u(j),a,b);
v(j) = temp_v; u(j) = temp_;
endif
end
(i +1) =0
end
L(n,n) = (1/sqrt((1 — F(n,n)) * (1 + F(n,n)))) xu(n);
L(1:n—1,n) = zeros(n — 1,1);

Appendix E. Example of Breakdown.

[ 0.29256168393970 0] [ 0.40000000000000 ]
0.28263551029525 —0.10728616660709 0.97781078411630
0.09633626413940  0.01541380240248 —0.00000000433051
0.06797943459994 —0.02572176567354 0.97646762001746

G = | 0.55275012712414  0.22069874528633 |, F =diag| —0.99577002371173
0.42631253478657  0.06821000412583 0.00000001005313
0.50468895704517  0.20125628531328 —0.99285659894698
0.23936358366577 —0.09527653751206 0.99789820799463

| 0.14608901804405  0.02337424345679 | | —0.00000001100000 |
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The matrix R that solves R— FRFT = GJGT is positive-definite since the entries
of v were computed from

v; = us(fi),

where s(z) is the Schur function

04—z
s(z) =04 1-04s
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