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Abstract. We consider the following problem: minx∈Rn min‖E‖≤η ‖(A+E)x− b‖, where A is
anm×n real matrix and b is an n-dimensional real column vector when it has multiple global minima.
This problem is an errors-in-variables problem, which has an important relation to total least squares
with bounded uncertainty. A computable condition for checking if the problem is degenerate as well
as an efficient algorithm to find the global solution with minimum Euclidean norm are presented.
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1. Introduction. In this paper we consider the following problem:

min
x∈Rn

min
‖E‖≤η

‖(A+ E)x− b‖,(1.1)

where A is an m × n real matrix and b is a real n-vector. This problem is a special
case of the errors-in-variables problem, which we have given the formal name of the
degenerate bounded errors-in-variables problem. For ease of reference we usually call
the problem the degenerate min-min problem, since degenerate bounded errors-in-
variables problem is a bit long. This problem can be viewed as a total least squares
(TLS) problem [3, 4] with bounds on the uncertainty in the coefficient matrix, which
we will explain in more detail in section 3. In this paper we make frequent use of
the terms degenerate and nondegenerate. Simply put, a degenerate problem is one
where multiple solutions exist. The nondegenerate case of this problem occurs when
η is small and b is in some sense far from the range of A. That η should be small
is intuitive, since for η = 0 we are left with the least squares problem, which is
nondegenerate (unique solution) when A has full column rank. Conversely, when η is
larger than the smallest singular value of A, we would anticipate degeneracy (multiple
solutions) as the perturbed matrix A + E is not guaranteed to be full column rank.
The intuition behind b needing to be far from the range of A for nondegeneracy
comes from the fact that if b were close enough that multiple perturbations E existed
such that b was in the range of A + E, then multiple solutions (degeneracy) would
exist. In [2] we considered the nondegenerate case of this problem and showed how to
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compute its unique solution in O(mn2) flops. In this paper we consider the problem
when it is degenerate; that is, when it has multiple solutions. In particular, we
present an O(mn2) algorithm to find the solution with the minimum Euclidean norm.
The degenerate case is actually the generic case for this problem, and hence is more
important than the nondegenerate case. This can be seen from the simple discussion
above, since the nondegenerate case holds only for certain combinations of b and A
when η is smaller than the smallest singular value of A. This is very restrictive, and
hence the claim.

We begin this paper with a motivational problem, which shows the advantage
of considering this criterion. We proceed by outlining the proof and presenting the
algorithm to solve the problem. We then proceed with the full proof of the problem.
We conclude with a tabulation of the results and an extension to the problem of a
column partitioned matrix with uncertainty in only one partition.

2. Motivation. Many different methods exist for solving the basic estimation
problem of finding some vector of unknowns x, from a vector of observations b, by
using a matrix of relations A. Probably the two best known methods are least squares
and TLS. We now want to get a feel for how these problems operate on a simple
example and to see if there is any room for improvement. Consider, for example, a
simple one dimensional “skyline” image that has been blurred. A “skyline” image is
a one dimensional image that looks like a city skyline when graphed, and thus is the
most basic image processing example. “Skyline” images involve sharp corners, and
it is of key importance to accurately locate these corner transitions. Blurring occurs
often in images; for example, atmospheric conditions, dust, or imperfections in the
optics can cause a blurred image. Blurring is usually modeled as a Gaussian function
or Gaussian blur, which incidentally is a great smoothing filter. The Gaussian blur
causes greater distortion on the corners, which is exactly where we do not want it to
happen. The Gaussian blur with standard deviation, σ, can be modeled as a matrix,
A, with the component in position, (i,j), given by

Ai,j = e−(i−j)2σ.

If we go on the presumption that we do not know the exact blur that was applied (σ
unknown) we cannot expect to get the exact system back. We realize that we will
not be able to perfectly extract the original system, but we want to see if we can get
a little more information than we have now. We “know” the blur is small compared
to the information so we are confident that we should be able to get something. The
least squares solution fails completely, yielding a result that is about three orders
of magnitude off; see Figure 1. We notice that the TLS solution is better than the
least squares solution, but still not acceptable. The degenerate min-min problem
yields great results. From this simple example we can see that there is room for
improvement.

3. Geometric understanding. Probably the easiest way to understand the
problem at hand is to look at it geometrically. For ease of drawing we will consider
A and b to be vectors of length 2. Note that while this is useful for getting a basic
understanding some of the key features of the problem do not appear in this case.
For instance, when A has multiple columns the problem can be degenerate for small
values of η. In such a case the degenerate min-min problem has several advantages
over other formulations, such as TLS. One such advantage is the perturbation on
A is much smaller in the degenerate min-min problem than in the TLS problem.
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Fig. 1. Skyline problem.

For comparison we start with the classic problem of least squares (see Figure 2).
The solution to the least squares problem is found by projecting b into A. This is
a common geometric view of the problem, but forms a basis for understanding the
other problems.
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Fig. 2. Least squares.

In TLS, we allow A to be perturbed by a matrix E and b to be perturbed by a
vector f (see Figure 3). The net effect is that both A and b are projected into a plane
between the two such that the norm of [E f ] is minimized. The TLS problem can
thus be formulated as min ‖[E f ]‖ such that (b+f) ∈ R(A+E). Note that because
of this A can be moved arbitrarily far.

In the general min-min problem (degenerate or not), we project A and b into a
plane between the two as we did in the TLS problem, but we put a bound on how far A
can be perturbed (see Figure 4). Note that the cone around A shows us the boundary
of possible perturbations to A. We are in essence solving the problem min ‖[E f ]‖
such that (b+f) ∈ R(A+E) and ‖E‖ ≤ η. The problem at hand can thus be thought
of as a TLS problem with bounds on the errors in A.
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Fig. 3. Total least squares (TLS).
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Fig. 5. Degenerate min-min problem.

To get a better understanding of the degenerate problem, we will consider one
of the ways the problem can become degenerate. The easiest to visualize, and the
only one that can be drawn in two dimensions, is the case when b lies in the cone of
possible perturbations of A (see Figure 5). In this case we see that any x̂ such that
xl ≤ x̂ ≤ xu is a solution to the problem. The perturbations E(x̂) change, but each x̂
in the range still solves the problem. We are now left with a problem, namely, which
x̂ do we choose. The most conservative choice is to pick the smallest one, which is
what we do. This choice has a lot to recommend it, but a full discussion is outside
the bounds of the paper at hand. In section 6, we take advantage of this basic insight
(picking the smallest solution) to reformulate the problem into a unique problem.

4. Proof outline. The proof is long and technically involved, so we provide this
overview. The cost function presented is useful for seeing how this problem handles the
uncertainty in the matrix A, but it is not immediately useful in solving the problem.
For instance, checking if a problem is degenerate in the original form of the problem
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is tedious. We thus desire to rewrite the problem into a simpler form, and then find
a computable condition for degeneracy. We start the proof with the cost function of
the problem we want to solve,

min
x∈Rn

min
‖E‖≤η

‖(A+ E)x− b‖,

and the degeneracy condition which was found in [2],

η‖x‖ ≥ ‖Ax− b‖.

Since the nondegenerate case is already solved, we proceed by assuming the degeneracy
condition holds. The first step is to minimize the cost function over ‖E‖ ≤ η, and find
that the optimal cost is zero. Since the problem is degenerate and the cost function
is zero, we choose the solution with the smallest norm to obtain the problem

min
‖Ax−b‖≤η‖x‖

‖x‖.

The condition η‖x‖ ≥ ‖Ax− b‖ is not practical for checking for degeneracy in a
problem, as mentioned above, since it requires the checking multiple values of x to
hopefully find one that holds and thus showing the problem is degenerate. The second
step is thus to find a computable condition for degeneracy. We proceed by squaring
the condition for degeneracy and using the singular value decomposition (SVD) of A
to find the two cases in which the problem is degenerate. The first case is when η is
larger than the smallest singular value of A. The first case is always degenerate. The
second case is when η is not larger than the smallest singular value of A. The second
case is degenerate only when

bT (I −A(ATA− η2I)−1AT )b ≤ 0.

While we now know when the problem is degenerate, we still need to show how
to get the solution. We would like to be able to use Lagrange multiplier techniques
to find the solution. We thus need to reduce the inequality η‖x‖ ≥ ‖Ax − b‖ to an
equality if possible. The third step of the proof is a proof that the solution, x̂, is
actually on the boundary of the inequality, and thus η‖x̂‖ = ‖Ax̂− b‖.

We then proceed in the fourth step to use Lagrange multiplier techniques to
parameterize the solution, x̂ = x(α), in terms of a single variable, α, thus reducing
the problem to finding the zeros a secular equation. A secular equation is a rational
expression of one variable, which we construct so that all the critical points of the
original problem occur at zeros of the secular equation. The secular equation reduces
our n-dimensional search for the solution, x̂, to a one dimensional search. We denote
the solution to the original problem as x(αo), and note that it will occur at one of the
2n zeros of the secular equation. The zero of the secular equation which corresponds
to x(αo) is denoted αo.

The remainder of the proof is concerned with showing which zero is αo. Toward
this end we start the second half of the proof with an assertion of the answer. The
unique zero of the secular equation in the interval [max(−σ2

n,−η
2), ησ1] is α

o, where
σ1 is the largest singular value of A and σn is the smallest. We prove this by a process
of elimination.

To begin with we us Lagrange techniques (first and second order conditions on
the Lagrangian) to narrow down the search area. By employing these techniques, we
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find that αo must lie in the interval [max(−σ2
n−1,−η

2), ησ1]. This still admits several
possibilities; see Figure 6. First of all there are two critical points (α = −σ2

n and
α = −σ2

n−1) which could be α
o. Second, αo could be in either interval ((−σ2

n, ησ1) or
the interval (−σ2

n−1,−σ
2
n)).
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Fig. 6. Secular equation.

In particular, note that the interval (−σ2
n−1,−σ

2
n) can have multiple zeros in it, so

we must also deal with this possibility. We put the arguments that only the rightmost
root in the interval (−σ2

n−1,−σ
2
n) is a candidate to be α

o in Appendix B. With this
dealt with there are only four candidates zeros of g(α) to handle, which we denote
by α1 through α4. We thus introduce the four candidates: α1 ∈ (−σ2

n, ησ1], α2 is
the rightmost root in (−σ2

n−1,−σ
2
n), α3 = −σ2

n, and α4 = −σ2
n−1 (see Figure 6). To

show that αo is the unique root in [−σ2
n, ησ1], we examine six cases. Most of the

work is involved at this stage, and hence most of the mathematical difficulties occur
here. The basic idea is to eliminate the possibility that any root except the one that
occurs in the interval [max(−σ2

n,−η
2), ησ1] can be α

o. Additionally we must show the
existence and uniqueness of the zero. With this established we can then use bisection
or Newton’s method to find the root in our algorithm.

You might be wondering why we need to use six cases to prove the assertion that
αo lies in the interval [max(−σ2

n,−η
2), ησ1]. The reason lies in three basic factors

which affect the shape of the secular equation. The first and most obvious is the size
of η. Note, for instance, that if η < σn, then only one of the zeros α1 is a candidate for
αo since we have from an earlier condition (first order condition on the Lagrangian)
that αo > −η2. Obviously to consider some of the candidates, such as α4, we need to
assume that η is large enough to admit the possibility. The cases just let us organize
the assumptions into convenient groups to handle. See Figure 7. The dotted vertical
lines mark where the singular values are, and the dash-dotted vertical line indicates
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where −η2 is. We note that in Case 1 of Figure 7, it looks like the secular equation
becomes flat to the right of α = −0.5 but it does not. The scale makes the graph
hard to read, so we provide an expanded view of the region in Figure 8. In Case 1
we consider η small (η < σn), in Case 2 we consider the special case of η = σn, and
finally in Cases 3–6 we consider η to be large (η > σn).

When η is large there are more possibilities. The first is that the smallest singular
value might have multiplicity of two or more. This can be exploited to simplify the
problem. In particular, α2 does not exist in this case, and α3 = α4. The cases where
σn < σn−1 are the more difficult ones. The second is that b might be orthogonal
to the left singular vector(s) of A, which correspond to smallest singular value. This
drastically changes the shape of the graph of the secular equation in the region around
α = −σ2

n. See, for instance, the middle left graph in Figure 7. The pole which
normally appears at −σ2

n is not present. In fact, the only time α3 can be α
o is when
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b is orthogonal to the left singular vector(s) of A, which corresponds to the smallest
singular value (σn). Similarly, the only time α4 can be α

o is when b is orthogonal
to the left singular vector(s) of A, which corresponds to the second smallest singular
value (σn−1). Note that if the smallest singular value has multiplicity of at least two,
then σn = σn−1. This case is shown on the middle right graph of Figure 7. The
last four cases cover all the combinations of singular value multiplicity and b vector
orthogonality which occurs when η is large.

5. Algorithm. For the reader’s convenience we present pseudocode for the al-
gorithm in this section. The syntax has been designed to be Matlab-like. Three lines
deserve particular attention, though. The first one to appear states “solve nonde-
generate problem.” In this case the problem is not degenerate so you will need to
provide code for the nondegenerate case as outlined in [2]. The next line that could
be confusing starts with “pick any Θ.” In this case any unit vector, Θ, will solve
the problem. An additional condition could be placed on the solution, x̂, to select
a specific Θ or to meet special requirements of the specific problem, so we leave it
unspecified in our pseudocode. The final line that requires clarification starts with
α ∈

[

max(−σ2
n,−η

2), ησ1

]

. In this case you are finding the root of g(α) in the speci-
fied range, so any root finder you prefer (for instance, bisection or Newton’s method)
can be used.

[U,Σ, V ] = SV D(A);
b1 = UT b;
cond = 0;
if (η < σn) or (η = σn and b1(n) = 0)

if (bT (I −A(ATA− η2I)−1AT )b > 0)
solve nondegenerate problem

else
cond = 1;

end
else

if (η = σn)
cond = 1;

else
if (σn < σn−1) and (b1(n) = 0) and (g(−σ2

n) ≥ 0)
Σ̄1 = Σ(1 : n− 1, 1 : n− 1);
b̄1 = b1(1 : n− 1);

x̂ = V

[

(Σ̄2
1 − σ2

nI)
−1Σ̄1b̄1

±
√

g(−σ2
n
)

η2−σ2
n

]

;

elseif (σn = σn−k+1 < σn−k) and (‖b1(n− k + 1 : n)‖ = 0)
and (g(−σ2

n) ≥ 0)
Σ̄1 = Σ(1 : n− k + 1, 1 : n− k + 1);
b̄1 = b1(1 : n− k + 1);

r =
√

g(−σ2
n

η2−σ2
n

;

Pick any Θ ∈ Rk such that ‖Θ‖ = 1;

x̂ = V

[

(Σ̄2
1 − σ2

nI)
−1Σ̄1b̄1

rΘ

]

;

else
cond = 1;

end
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end
end
if cond == 1

α ∈
[

max(−σ2
n,−η

2), ησ1

]

such that g(α) = 0
x̂ = (ATA+ αI)†AT b;

end
Where g(α) is given by

g(α) = bT2 b2 + bT1
(

Σ2
1 + αI

)−2 (
α2I − η2Σ2

1

)

b1,

and

A = [U1 U2 ]

[

Σ1

0

]

V T ,

b1 = UT
1 b,

b2 = UT
2 b.

6. Minimization over E. We now start the full proof. The proof will be much
easier to read if the reader is familiar with the preceding papers [1, 2]. For the
reader’s convenience we will place major milestones in the proof in boxes at the end
of the sections where the milestone occurs. We assume that the problem is degenerate
and in particular that there exists an x such that η‖x‖ ≥ ‖Ax − b‖. We will soon
provide equivalent computable criteria for degeneracy; however, this formulation is
more useful for the present. Our goal in this section is to reduce the problem to
an equivalent formulation that does not involve E. The goal is accomplished by
showing the degenerate problem is equivalent to requiring the solution to be in the
set {x|η‖x‖ ≥ ‖Ax− b‖}. We begin by showing that the problem requires that we be
in the set, then show that any x̂ in the set solves the problem. Note that the method
used to get E is related to the formulation in [5], though we provide the full argument
for the ease of the reader. Under the assumption that the problem is degenerate it
follows that

min
x

min
‖E‖≤η

‖Ax− b+ Ex‖ = 0,

since for any x such that η‖x‖ ≥ ‖Ax− b‖ we can choose

E = −γη
(Ax− b)xT

‖Ax− b‖‖x‖
, 0 ≤ γ ≤ 1,

and obtain

0 ≤ min
x

min
‖E‖≤η

‖Ax− b+ Ex‖ ≤ ‖Ax− b‖

∣

∣

∣

∣

1− γ
η‖x‖

‖Ax− b‖

∣

∣

∣

∣

,

and for the choice

γ =
‖Ax− b‖

η‖x‖
≤ 1,

the upper bound is zero. Since there exists an E which makes the minimum zero, the
minimum value of the norm is zero. Therefore we only need consider the equation

Ax− b+ Ex = 0(6.1)
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with the constraint ‖E‖ ≤ η. This constrained equation is equivalent to being on the
set defined by

‖Ax− b‖ ≤ η‖x‖.(6.2)

To prove this, we first show that if the constrained equation (6.1) is met, then we are
in the set (6.2).

Ax− b+ Ex = 0,

Ax− b = −Ex.

Taking the norm of both sides we obtain

‖Ax− b‖ = ‖Ex‖

and we note that this implies

‖Ax− b‖ ≤ ‖E‖‖x‖.

Then using the constraint on the perturbation size, ‖E‖ ≤ η, we obtain

‖Ax− b‖ ≤ η‖x‖

and we have the desired result. We now show that if we are in the set (6.2), then the
constraint equation (6.1) is met. This is accomplished by showing that for any x in
the set, there exists a perturbation, E0, such that the constraint equation is satisfied.
To do this consider

E0 = −
(Ax− b)xT

‖x‖2
.

We first note that this perturbation satisfies the constraint on the size of the pertur-
bations (‖E‖ ≤ η).

‖E0‖ ≤
‖Ax− b‖

‖x‖
.

Since on the set ‖Ax− b‖ ≤ η‖x‖ we have

‖E0‖ ≤ η,

we now consider the equation given by Ax− b+ E0x. We note that this is

Ax− b+ E0x = Ax− b− (Ax− b).

Thus we have trivially that Ax− b+ E0 = 0 and the assertion is proven.
We know there are multiple solutions which will solve the problem as stated.

Since any will solve the original problem, we are free to add an additional constraint
which will simplify the solution and ensure the solution meets other requirements.
A reasonable choice is to pick the solution with the minimum norm. Other nice
properties of this choice also recommend it. For instance, it is possible under certain
conditions for the min-max solution (from [1]) to also solve the degenerate min-min
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problem. When this occurs the min-max solution is the solution to the degenerate
problem with minimum norm. We do not prove this for reasons of space, but it does
provide a good understanding of the relationships between the problems and gives
additional motivation for the choice. Using the choice of the minimum norm solution,
the problem can be rewritten into the better form, as follows.

The degenerate problem can be reformulated as a unique problem by considering

min
‖Ax−b‖≤η‖x‖

‖x‖.

7. Computable conditions for degeneracy. The constraint, ‖Ax − b‖ ≤
η‖x‖, defines the set on which our solution lies and is thus referred to as the fea-
sibility constraint. The feasibility constraint can be squared and expanded to obtain

xTATAx− 2xTAT b+ bT b ≤ η2xTx.(7.1)

Let A = UΣV T be the SVD of A conformally partitioned as follows:

U = (U1 U2 ) , Σ =

(

Σ1

0

)

,

and define both bi = UT
i b for i = 1, 2, and z = V Tx. These definitions are made solely

to simplify the expressions we are working with and provide a convenient shorthand
for the rest of the problem. Then inequality (7.1) can be simplified to obtain

zTΣ2
1z − 2zTΣ1b1 + bT1 b1 + bT2 b2 ≤ η2zT z.(7.2)

Now assuming that the singular values are in decreasing order, partition Σ1 as follows:

Σ1 =

(

Σ+ 0
0 Σ−

)

,

where Σ2
+ − η2I ≥ 0 and Σ2

− − η2I < 0. Also conformally partition z and b1

z =

(

z+
z−

)

b1 =

(

b1+
b1−

)

.

Then inequality (7.2) can be expanded into

0 ≥

zT+(Σ
2
+ − η2I)z+ − 2zT+Σ+b1+ + bT1+b1+

+zT−(Σ
2
− − η2I)z− − 2zT−Σ−b1− + bT1−b1−

+bT2 b2.

Now we observe that if Σ− is nonempty, then the inequality always has at least
one z which makes it true. In other words if ATA−η2I is indefinite, then the problem
is always degenerate. On the other hand, if ATA− η2I is positive-semidefinite, then
degeneracy depends on the vector b. To get a computable condition for degeneracy,
we first note that when x = 0 we have that the constraint is nonnegative. We proceed
by minimizing the expression

xT (ATA− η2I)x− 2xTAT b+ bT b
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and when η �= σi we obtain

xo = (ATA− η2I)−1AT b.

Now, when ATA− η2I is positive, we must have that the constraint is nonpositive at
this point. On plugging this back into the expression being minimized we obtain

bT (I −A(ATA− η2I)−1AT )b ≤ 0(7.3)

as the required computable condition for the problem to be degenerate when η < σn.

The problem is degenerate if either

η > σn

or

bT (I −A(ATA− η2I)−1AT )b ≤ 0.

8. Solution is on the boundary. We want to establish that the optimal so-
lution is obtained at the boundary of the feasible set; that is, at the minimum norm
solution the inequality is actually an equality. Mathematically this means the fea-
sibility constraint, ‖Ax − b‖ ≤ η‖x‖, is actually an equality, ‖Ax − b‖ = η‖x‖. To
prove this we use the shorthand developed in the last section that given the SVD of
A, then bi = UT

i b for i = 1, 2, and z = V Tx. The problem of finding the solution
with the smallest norm to the degenerate problem can now be recast as minimizing
zT z subject to the inequality constraint (7.3).

Now if b = 0, then clearly the minimum norm solution is z = 0 which does lie on
the boundary (0 = 0). So we restrict ourselves to the case when b �= 0. Let us denote
by f(z) the expression on the left-hand side of inequality (7.3). Then it is clear that
f(0) > 0, and therefore z = 0 is not a feasible point. Now suppose that contrary
to our hypothesis that the optimal solution occurs at an interior point. Denote that
optimal solution by z0. Since it is an interior point we must have 0 > f(z0). Let γ
denote a scalar and consider the function f(γz0) as γ varies. Since f(·) is a continuous
function it follows that as γ is decreased from 1 towards 0, the value of f(γz0) must
at sometime become equal to 0. But now we have a contradiction as ‖γz0‖ < ‖z0‖
for 0 < γ < 1. Hence we prove our hypothesis that the optimal solution must lie on
the boundary of the feasible set.

Therefore we can restrict our attention to the problem

min
‖Ax−b‖=η‖x‖

‖x‖.

We note that the problem is unaffected by squaring, thus to simplify the algebra we
will work with the squared problem.

The problem is equivalently stated as

min
‖Ax−b‖2=η2‖x‖2

‖x‖2.

9. Reduction to secular equation. Since we have reduced the problem to
an equality constrained minimization problem, we can use the method of Lagrange
multipliers. Letting λ denote the Lagrange multiplier we obtain the following set of
equations that characterize the critical points

x+ λ
(

AT (Ax− b)− η2x
)

= 0.



150 CHANDRASEKARAN, GU, SAYED, AND SCHUBERT

Simplifying, we obtain

(

ATA+
1− λη2

λ
I

)

x = AT b.

Make the definition (1− λη2)/λ = α. Then we have

x = (ATA+ αI)−1AT b.

Plugging this into ‖Ax− b‖2 = η2‖x‖2 and using the SVD of A we obtain

bT2 b2 + bT1 Σ
4
1(Σ

2
1 + αI)−2b1 − 2bT1 Σ

2
1(Σ

2
1 + αI)−1b1 + bT1 b1 = η2bT1 Σ

2
1(Σ

2
1 + αI)−2b1.

Simplifying we get

bT2 b2 + bT1 (Σ
2
1 + αI)−2(α2I − η2Σ2

1)b1 = 0.

Since we are interested in finding the values of α for which the right-hand side of the
above equation is zero, we define the function g(α) as

g(α) = bT2 b2 + bT1 (Σ
2
1 + αI)−2(α2I − η2Σ2

1)b1

and then study the zeros of this function. The function g(α) is called the “secular
equation,” since it is rational function of one variable. If σi denotes the ith singular
value of A, then the above secular equation has poles at −σ2

i .
This secular equation can have up to 2n real zeros. One of them will give us

the minimum norm solution to our problem, x(αo). We note that if α > ησ1 in the
secular equation, then we must have b = 0, which as we stated earlier requires z = 0,
and thus x = 0. Since we are considering b �= 0 we must have α ≤ ησ1.

The secular equation, g(α) is given by

g(α) = bT2 b2 + bT1 (Σ
2
1 + αI)−2(α2I − η2Σ2

1)b1.

10. Main theorem. We claim that in all cases where a degenerate solution
exists, the minimum norm solution is determined by the unique root of the secular
equation in the interval [max(−σ2

n,−η
2), ησ1].

The rest of the paper is devoted to establishing this claim. This is a difficult
task due to the nonconvex nature of the problem and the presence of multiple local
minima.
The solution to the problem, x̂, is given by x̂ = x(αo) with αo the unique zero of

g(α) = bT2 b2 + bT1 (Σ
2
1 + αI)−2(α2I − η2Σ2

1)b1

in the interval [max(−σ2
n,−η

2), ησ1].

11. First and second order conditions. Since the Lagrange multiplier must
be nonnegative at a local minimum and λ = 1/(α+ η2) we conclude that

α ≥ −η2.(11.1)

To narrow down the interesting zeros we look at the second order conditions for
a local minimum. Our Lagrangian was

L(x, λ) = ‖x‖2 + λ(‖Ax− b‖2 − η2‖x‖2).
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The second order condition for a local minimum is that the Hessian of L(x, λ) with
respect to x be positive-semidefinite when restricted to the tangent subspace of the
constraint. Differentiating once we have

∇xL(x, λ) = 2x+ λ
(

2AT (Ax− b)− 2η2x
)

.

Differentiating once more we get

∇2
xL(x, λ) = 2I + λ

(

2ATA− 2η2I
)

,

which on simplifying yields

∇2
xL(x, λ) = 2λ

(

αI +ATA
)

.

The constraint is

c(x) = ‖Ax− b‖
2
− η2 ‖x‖

2
.

The gradient of the constraint is

∇xc(x) = 2AT (Ax− b)− 2η2x,

which can be simplified by noting that

AT (Ax− b) = −αx

thus

∇xc(x) = −(α+ η2)x.

The tangent subspace of the constraint has n − 1 dimensions (even when η = σi).
We now construct a basis for this subspace. Using the SVD notation developed in
section 7 we have

V T∇xc(x) = −(α+ η2)z.

Similarly we can change the basis for the Hessian of the Lagrangian

V T∇2
xL(x, λ)V = 2λ

(

Σ2
1 + αI

)

.

We partition z as

z =

(

z1
z2

)

,

where z1 is a scalar. Let

H =

(

zT2
−z1I

)

.

Then HT z = 0. Therefore the restricted Hessian is

HTV T∇2
xL(x, λ)V H = 2λ

(

HTΣ2
1H + αHTH

)

.

We note that the second order condition requires that the restricted Hessian be
positive-semidefinite, and so we can apply Cauchy’s interlacing theorem. Cauchy’s
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interlacing theorem tells us that the smallest eigenvalue for this matrix must lie be-
tween the smallest and second smallest eigenvalues for the nonrestricted Hessian.
Thus for a local minimum the second smallest eigenvalue of the nonrestricted Hessian
must be greater than zero. For the condition on the second smallest eigenvalue to
be met, α must satisfy the constraint α ≥ −σ2

n−1, where σn−1 is the second smallest
singular value of A.

This raises the question of how many zeros of the secular equation are
larger than max(−η2,−σ2

n−1) and which of them corresponds to the global
minimum. We proceed by systematically eliminating zeros in this range. We have
two critical points (where the secular equation becomes infinite) which correspond
to α = −σ2

n−1 and α = −σ2
n. We also have two intervals to worry about, namely,

(−σ2
n, ησ1) and (−σ

2
n−1,−σ

2
n). In the first interval we can show that there is only one

zero, but this is not true for the second interval. In section 12 we use the second order
condition to rule out half of the zeros in the second interval. We show in Appendix B
that only the rightmost root in the second interval is actually a candidate. We are
left with four candidates, two in the intervals and two critical points, and we then use
six cases to prove which one corresponds to the global minimum.

αo > max(−η2,−σ2
n−1).

12. Squeezing the second order conditions. We can use the second order
conditions to discard some zeros in the interval (−σ2

n−1,−σ
2
n). Recall that the re-

stricted Hessian is

HTV T∇2
xL(x, λ)V H = 2λ

(

HTΣ2
1H + αHTH

)

.

This can be expanded to obtain

HTV T∇2
xL(x, λ)V H = 2λ

(

σ2
1z2z

T
2 + z2

1Σ
2
2 + αz2z

T
2 + αz2

1I
)

,

where

Σ1 =

(

σ1 0
0 Σ2

)

.

We then make the conformal partition

b1 =

(

b11
b12

)

and use the representation z = (Σ2
1+αI)−1Σ1b1 to simplify the expansion. Addition-

ally, we make the definition M = HTV T∇2
xL(x, λ)V H for ease of reading and we can

thus get the simplified expansion

M = 2λ
b211σ

2
1

(σ2
1 + α)2

(Σ2
2 + αI)

(

I +
(σ2

1 + α)3

b211σ
2
1

(Σ2
2 + αI)−2Σ2b12b

T
12Σ2(Σ

2
2 + αI)−1

)

.

We now compute the determinant,

det(M) =

(

2λb211σ
2
1

(σ2
1 + α)2

)n

det(Σ2
2 + αI)

(

1 +
(σ2

1 + α)3

b211σ
2
1

bT12Σ
2
2(Σ

2
2 + αI)−3b12

)

,
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which can be further simplified to obtain

det(M) =

(

2λb211σ
2
1

(σ2
1 + α)2

)n
(σ2

1 + α)3

b211σ
2
1

det(Σ2
2 + αI)

(

bT1 Σ
2
1(Σ

2
1 + αI)−3b1

)

.(12.1)

We recall the definition of the secular equation, g(α), given in section 9:

g(α) = bT2 b2 + bT1 (Σ
2
1 + αI)−2(α2I − η2Σ2

1)b1.

Then differentiating once we obtain

g′(α) = 2(α+ η2)bT1 Σ
2
1(Σ

2
1 + αI)−3b1.(12.2)

Using this we can rewrite (12.1) as

det(M) =

(

2λb211σ
2
1

(σ2
1 + α)2

)n
(σ2

1 + α)3

2(α+ η2)b211σ
2
1

det(Σ2
2 + αI)g′(α).

Therefore we see that when a root of the secular equation lies in the interval
(−σ2

n−1,−σ
2
n), then it can correspond to a local minimum only if g′(α) is nonpositive.

This essentially means that only half of the zeros in the interval correspond
to local minima.

A zero, αk, of g(α) in the interval (−σ
2
n−1,−σ

2
n) can correspond to a local minimum

of the Lagrangian (and thus have a chance of being the global minimum αo) only if

g′(αk) ≤ 0.

13. Four candidate zeros. At this point we can see several potential candi-
dates for α. First, we have the possibility of a root in the interval [−σ2

n, ησ1] designated
α1. The uniqueness and conditions for existence of α1 will be shown later. Second,
we potentially have many roots in the interval (−σ2

n−1,−σ
2
n), but only the rightmost

one matters as will be shown later and it is thus designated α2. Finally, we could have
up to two critical points, α3 = −σ2

n and α4 = −σ2
n−1. We summarize the candidates

in Table 1.

Table 1

Candidate zeros.

α1 ∈ [−σ
2
n, ησ1]

α2 ∈ (−σ
2
n−1,−σ

2
n)

α3 = −σ2
n

α4 = −σ2
n−1

The proof involves six cases, which cover special conditions for the problem. See
Table 2. The first two cases involve small values of η. The second two cases cover
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when b is orthogonal to the left singular vector(s) of the smallest singular value. The
last two cases cover when b is not orthogonal to the left singular vector(s) of the
smallest singular value. We now proceed to prove this and show which candidate root
will yield the solution to the problem, x̂.

Table 2

Six cases of the proof.

Case 1: η < σn

Case 2: η = σn

Case 3: η > σn, b1,n = 0, σn < σn−1

Case 4: η > σn, ‖b1,(n−k+1,n)‖ = 0, σn = σn−k+1

Case 5: η > σn, b1,n �= 0, σn < σn−1

Case 6: η > σn, ‖b1,n−k+1‖ �= 0, σn = σn−k+1

14. Case 1: η < σn. There is only one root in the interval [−η
2, ησ1] and this

must correspond to the global minimum, as there are no other local minima to worry
about. The only candidate zero is α1 because of the first order condition, (11.1). We
need to only prove the existence and uniqueness of α1.

Since α + η2 ≥ 0 from (11.1), it follows by using (12.2) that g′(α) is positive in
the interval (−η2,∞) when η ≤ σn. Therefore, there can be at most one root in the
interval [−η2, ησ1].

We now show that there is at least one root in the interval [−η2, ησ1]. Simplifying
the degeneracy condition in (7.3) by using the SVD of A we obtain

bT2 b2 − η2bT1 (Σ
2
1 − η2I)−1b1 ≤ 0,

which is identical to g(−η2) ≤ 0. Furthermore,

lim
α→ησ1

g(α) > 0.

Therefore, there must be a zero of g(α) in the interval [−η2, ησ1].

15. Case 2: η = σn. We claim that there is a unique root of g(α) in [−σ2
n, ησ1],

and this is the global minimum. Uniqueness is established by the same method as in
section 14, and thus if a root exists in the interval [−σ2

n, ησ1], it is unique. Only two
candidates, the zero α1 and the critical point α3, are possible because of the first order
condition, (11.1). We will proceed to prove the claim in two steps. Before we start
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the first step we note that if σn is multiple with multiplicity k, then b̃1 = b1,(n−k+1:n)

is the partitioning of b1 corresponding to the multiple singular values of σn.
The first case is when b1,n �= 0 or ‖b̃1‖ �= 0. We first note that in this case the

candidate zero α3 is not possible. To see this we first partition Σ1 as

Σ1 =

(

Σ̄1 0
0 σn

)

.

We similarly partition z into z̄ and zn, and b1 into b̄1 and b1,n. We can use these to
rewrite the Lagrange condition, (ATA+ αI)x = AT b, as

(

Σ̄2
1 + α3I 0
0 0

)(

z̄
zn

)

=

(

Σ̄1b̄1
b1,n

)

.

Since b1,n �= 0, we see that α3 cannot be α
o. The existence of a root in the interval

(−σ2
n, ησ1) follows from the observation that

lim
α→−σ2

n
+
g(α) = −∞,

lim
α→ησ1

g(α) ≥ 0.

Thus when b1,n �= 0 or ‖b̃1‖ �= 0, αo = α1.

The second case is b1,n = 0 when σn < σn−1 or ‖b̃1‖ = 0 when σn is multiple.
In this case we note that there is no longer a pole in g(α) at α = −σ2

n. By observing
the degeneracy condition given by (7.3) that the degeneracy in this case is determined
by b so for degeneracy, (7.3) must hold for a smaller problem. Simplifying the (7.3)
using the SVD of A we obtain

bT2 b2 − η2bT1 (Σ
2
1 − η2I)−1b1 ≤ 0,

which is identical to g(−η2) ≤ 0. Furthermore,

lim
α→ησ1

g(α) ≥ 0.

Therefore, there must be a root in the interval [−η2, ησ1], so α1 exists. We will show
that when α3 is α

o, then α3 = α1. To satisfy the equation

(

Σ̄2
1 + α3I 0
0 0

)(

z̄
zn

)

=

(

Σ̄1b̄1
0

)

,

we must have that

z̄ =
(

Σ̄2
1 + α3I

)−1
Σ̄1b̄1.

The constraint equation can be written in z and simplified to

α3b̄
T
1

(

Σ̄2
1 + α3I

)−1
b̄1 + bT2 b2 = 0.

We note that this is exactly g(α3) = 0. Thus for α3 to be a candidate it must also
be the unique root in the interval [−η2, ησ1]. The condition for α3 to be α

o is that
α1 = α3, and thus we can easily see that in all cases the unique zero which corresponds
to the problem solution, x(αo), is given by α1.
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16. Case 3: η > σn, b1,n = 0, σn < σn−1. We claim that there is a unique
root in [−σ2

n, ησ1] and this is the global minimum. We now establish this claim. Two
cases arise when b1,n = 0 by observing the equation

(

Σ̄2
1 + αI 0
0 σ2

n + α

)(

z̄
zn

)

=

(

Σ̄1b̄1
0

)

.(16.1)

First, we could have α = α3 = −σ2
n, which we note can only happen when b1,n = 0.

The second case is zn = 0. First, we note that we still have

lim
α→ησ1

g(α) ≥ 0.

We also know that g′(α) > 0 on the interval (−σ2
n−1,∞), thus if a root exists, it is

unique. We will start by finding the form of the solution x̂ when α = α3 and then
we will show the conditions for determining which candidate zero yields the global
minimum.

When α = −σ2
n the solution is found in two steps. First we solve for z̄ from

(16.1). We obtain

z̄ =
(

Σ̄2
1 − σ2

nI
)−1

Σ̄1b̄1.

We note that the constraint can be written in z as
∥

∥

∥

∥

Σ1z − b1
b2

∥

∥

∥

∥

2

− η2 ‖z‖
2
= 0.

We now separate zn in the constraint and obtain

b̄T1
(

Σ̄2
1 − σ2

nI
)−2 (

σ4
nI − η2Σ̄2

1

)

b̄1 + bT2 b2 +
(

σ2
n − η2

)

z2
n = 0.

We note that this can be rewritten in terms of g(−σ2
n) as

g
(

−σ2
n

)

+
(

σ2
n − η2

)

z2
n = 0.

We thus see there are two answers (positive and negative squares) for zn. The answers
for zn are given by

z2
n =

g
(

−σ2
n

)

η2 − σ2
n

.(16.2)

Note that for a solution for zn to exist we must have g(−σ2
n) ≥ 0. The solution is

then given by

x̂ = V

[ (

Σ̄2
1 − σ2

nI
)−1

Σ̄1b̄1

±
√

g(−σ2
n
)

η2−σ2
n

]

.

We still need to identify which of the potential roots is the actual one we want. We
break this into two steps. The first is when g(−σ2

n) ≤ 0, and the second is g(−σ2
n) > 0.

If g(−σ2
n) ≤ 0, then we trivially have a unique root in [−σ2

n, ησ1]. Moreover, no
root exists in the interval (−σ2

n−1,−σ
2
n) so α2 is not a candidate. We note that for

α4 = −σ2
n−1 to be a candidate, it must be true that b1,n−1 = 0. When b1,n−1 = 0, we

have g′(α) > 0 on the interval (−σ2
n−2,∞), which means g(−σ2

n−1) < 0. If we assume
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α = α4 and proceed similarly to section 16 we see that we must have g(−σ
2
n−1) ≥ 0

and thus α4 cannot be α
o. Note that when g(−σ2

n) < 0, it is impossible for α = −σ2
n.

When g(−σ2
n) = 0, the unique root is α = −σ2

n and thus the two remaining candidate
zeros can easily be seen to coincide. Thus when g(−σ2

n) ≤ 0, the unique zero is given
by α1.

When g(−σ2
n) > 0 no root exists in (−σ2

n, ησ1] so α1 is not α
o but as we saw in

section 16 this is the condition for α = α3 = −σ2
n. We note that when g(−σ2

n) > 0,
there can be a root in the interval (−σ2

n−1,−σ
2
n), but we know that the slope is

positive in this interval and by the results of section 12 it cannot be a minimum. The
only remaining question in this case is if α4 = −σ2

n−1 is a candidate when g(−σ
2
n) > 0.

We again recall that for −σ2
n−1 to be a candidate, it must be true that b1,n−1 = 0

and g(−σ2
n−1) ≥ 0. We must thus satisfy the equation





Σ̃2
1 + αI 0 0
0 σ2

n−1 + α 0
0 0 σ2

n + α









z̃
zn−1

zn



 =





Σ̃1b̃1
0
0



 .(16.3)

We proceed to show that −σ2
n−1 is not a candidate when g(−σ2

n−1) ≥ 0. We note
that since b1,n−1 = 0 = b1,n we must have g

′(α) > 0 on the interval (−σ2
n−2,∞). Now

introduce the parameter γ = ‖b1,n−1‖
2 and we will consider a continuity argument

on γ similar to the continuity argument we will consider in section 18. Since the
argument is very similar to the one we will be constructing, we will only sketch the
details here. Note that for γ �= 0 we have a root in the interval (−σ2

n−1,−σ
2
n) which

is not the global minimum. As γ goes to zero we make this root move to the left,
and it reaches −σ2

n−1 when γ = 0, since g(−σ2
n−1) ≥ 0. The derivative of the cost

with respect to γ can be seen to be negative in the interval (−σ2
n−1,−σ

2
n) by the

following method. First, take the derivative and note that there appears the term
dα(γ)/dγ, which we solve for by taking the derivative of g(α(γ)) = 0 with respect to
γ. Substituting back in and simplifying we see that as γ increases, the cost decreases
in the interval (−σ2

n−1,−σ
2
n) and thus the x corresponding to the root which appears

in the interval when γ �= 0 has a lower cost than the x which corresponds to −σ2
n−1.

The root is not a global minimum, however, and so neither can be αo at −σ2
n−1. The

only possibility when g(−σ2
n) ≥ 0 is thus αo = −σ2

n.

17. Case 4: η > σn, ‖b1,(n−k+1,n)‖ = 0, σn = σn−k+1. We claim that
there is a unique root in [−σ2

n, ησ1], and this is the global minimum. We now establish
this claim. For simplicity partition Σ1 as

Σ1 =

(

Σ̄1 0
0 σnI

)

,

where Σ̄1 corresponds to the singular values that are strictly greater than σn. We
similarly partition z into z̄ and z̃, and b1 into b̄1 and b̃1. Two cases arise when b̃1 = 0
by observing the equation

(

Σ̄2
1 + αI 0
0 (σ2

n + α)I

)(

z̄
z̃

)

=

(

Σ̄1b̄1
0

)

.(17.1)

First we could have α = −σ2
n, which we note can only happen when b1,n = 0. The

second case is z̃ = 0. First we note that we still have

lim
α→ησ1

g(α) ≥ 0.
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We also know that g′(α) > 0 on the interval (−σ2
n−1,∞), thus if a root exists, it is

unique.
When α = −σ2

n, the solution is found in two steps. First we solve for z̄ from
(17.1). We obtain

z̄ =
(

Σ̄2
1 − σ2

nI
)−1

Σ̄1b̄1.

We note that the constraint can be written in z as

∥

∥

∥

∥

Σ1z − b1
b2

∥

∥

∥

∥

2

− η2 ‖z‖
2
= 0.

We now separate z̃ in the constraint and obtain

b̄T1
(

Σ̄2
1 − σ2

nI
)−2 (

σ4
nI − η2Σ̄2

1

)

b̄1 + bT2 b2 +
(

σ2
n − η2

)

z̃T z̃ = 0.

Similar to what we saw in the last section, we note that the above equation can be
written in terms of g(−σ2

n). Doing so, we obtain

g
(

−σ2
n

)

+
(

σ2
n − η2

)

z̃T z̃ = 0.

We note that this defines a hypersphere with radius

r =

√

g (−σ2
n)

η2 − σ2
n

.

To be able to solve for the radius we must have g(−σ2
n) ≥ 0, and thus this is a

condition on the solution when α = −σ2
n. Let Θ be any vector with unit Euclidean

norm. The solutions for z̃ are given by

z̃ = rΘ.

The solution is then given by

x̂ = V

[
(

Σ̄2
1 − σ2

nI
)−1

Σ̄1b̄1
rΘ

]

.

We note that the second order condition requires that α ≤ −σ2
n and thus the

only candidates are α1 and α3. If g(−σ
2
n) ≤ 0, then we trivially have a unique root

in [−σ2
n, ησ1], and it is impossible for α = −σ2

n. If g(−σ2
n) > 0, no root exists in

(−σ2
n, ησ1] but as we saw above this is the condition for α = −σ2

n. When g(−σ2
n) = 0

the two zeros can easily be seen to coincide.

18. Case 5: η > σn, b1,n �= 0, σn < σn−1. We now claim that there is
a unique root in (−σ2

n, ησ1] and it is the global minimum. We note first that since
b1,n �= 0, we cannot have α = −σ2

n.
The existence of a root in the interval [−σ2

n, ησ1] follows from the observation
that

lim
α→−σ2

n
+
g(α) = −∞,

lim
α→ησ1

g(α) ≥ 0.
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Uniqueness is established by the same method as in section 14.
We now proceed to show that of the three candidate roots only the one in the in-

terval (−σ2
n, ησ1] can be the global minimum. The argument proceeds by continuation

on β = b21,n. We begin by defining

ḡ(α) = bT2 b2 + b̄T1
(

Σ̄2
1 + αI

)−2 (
α2I − η2Σ̄2

1

)

b̄1.

We can thus rewrite the secular equation g(α) in terms of α and β as

g(α, β) = ḡ(α) + β
α2 − η2σ2

n

(σ2
n + α)2

.

We note that when β = 0, we have g(α, 0) = ḡ(α). Also note that ḡ′(α, 0) > 0 when
α lies in the interval (max(−σ2

n−1,−η
2),∞). Let α1(β) denote the unique root in the

interval (−σ2
n, ησ1] and α2(β) denote the rightmost root in the interval (−σ

2
n−1,−σ

2
n)

of g(α, β). Also let y1(β) denote the stationary point V
T x̂ corresponding to α1(β)

and similarly for y2(β) corresponding to α2(β).
When ḡ(−σ2

n) < 0, we note that neither α1(β) nor α2(β) converge to −σ
2
n as

β goes to zero. As already observed, at β = 0 we have that g′(α, 0) > 0 when α
lies in the interval (max(−σ2

n−1,−η
2),∞), and since ḡ(−σ2

n) < 0 this implies that
g′(α, 0) > 0 when α lies in the interval (max(−σ2

n−1,−η
2),−σ2

n). Thus we know that
y2(β) does not exist at β = 0 and thus it must not exist for some open neighborhood
around β = 0. For y2(β) to be a candidate there must exist some value of β, say, β2,
for which y2(β) first exists. At the point β2, α2(β2) must be at least a double root,
and thus the slope of g(α2(β)) must be zero at β2. From section 12, we note that
α2(β2) cannot be the α

o, so we note that we must have ‖y2(β2)‖
2 ≥ ‖y1(β2)‖

2.
We now proceed with the case when ḡ(−σ2

n) ≥ 0, and we will then show that in
both cases ‖y2(β)‖

2 gets larger as β increases, while ‖y1(β)‖
2 decreases. It is easy to

note from the form of g(α) that

lim
β→0+

α1(β) = −σ2
n = lim

β→0+
α2(β)

when ḡ(−σ2
n) ≥ 0. We now proceed to show that

lim
β→0+

|y1,i(β)| = |y1,i(0)| = |y2,i(0)| = lim
β→0+

|y2,i(β)| , 1 ≤ i ≤ n.

First observe that this is trivially true for i �= n. Next we note that ḡ(α) is continuous
at α = −σ2

n; thus

lim
β→0+

(

y2,n(β)
2 − y1,n(β)

2
)

= lim
β→0+

(

σ2
n

α2(β)2 − η2σ2
n

α2(β)
2 − η2σ2

n

(α(β) + σ2
n)

2 β

−
σ2
n

α1(β)2 − η2σ2
n

α1(β)
2 − η2σ2

n

(α(β)+ σ2
n)

2 β

)

=
1

σ2
n − η2

lim
β→0+

(

α2(β)
2 − η2σ2

n

(α2(β) + σ2
n)

2 β + ḡ(α2(β), β)

−
α1(β)

2 − η2σ2
n

(α1(β) + σ2
n)

2 β − ḡ(α1(β), β)

)
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=
1

σ2
n − η2

lim
β→0+

(g(α2(β), β)− g(α1(β), β))

= 0.

We note that we have shown what we desired to and therefore, ‖y1(β)‖ and ‖y2(β)‖
are continuous for β ≥ 0, with ‖y1(0)‖ = ‖y2(0)‖.

We now examine the derivative of the cost function, ‖x‖2, with respect to β. We
will use this to show that in both cases ‖y1(β)‖ is less than ‖y2(β)‖ for all β ≥ 0. The
derivative is

d ‖x(α(β))‖
2

dβ
=

σ2
n

(σ2
n + α(β))

2 − 2
dα(β)

dβ
bT1
(

Σ2
1 + α(β)I

)−3
Σ2

1b1.

We need to calculate the derivative of α(β) with respect to β, so we take the derivative
of g(α(β)) = 0:

0 =
dg(α(β))

dβ

=
α(β)2 − η2σ2

n

(α(β) + σ2
n)

2 + 2
(

α(β) + η2
) dα(β)

dβ

(

bT1
(

Σ2
1 + α(β)I

)−3
Σ2

1b1

)

.

Solving for the derivative of α(β) with respect to β yields

dα(β)

dβ
= −

α(β)2 − η2σ2
n

2 (α(β) + η2) (σ2
n + α(β))

2
(

bT1 (Σ
2
1 + α(β)I)

−3
Σ2

1b1

) .

Substituting this into the derivative of ‖x‖2 with respect to β we obtain

d ‖x(α(β))‖
2

dβ
=

σ2
n

(σ2
n + α(β))

2 +
α(β)2 − η2σ2

n

(α(β) + η2) (σ2
n + α(β))

2 .

Simplifying this we get

d ‖x(α(β))‖
2

dβ
=

α(β)

(α(β) + η2) (α(β) + σ2
n)
.

Clearly, for increasing β we have that α1(β) decreases the cost function when α1(β) <
0, while α2(β) increases the cost function for all β. When 0 ≤ α1(β) ≤ ησn we have
that dα(β)/dβ ≥ 0 and we note that the cost is increasing for both y1(β) and y2(β).
Since the cost is increasing for y1(β) when 0 ≤ α1(β) ≤ ησn, we know that ‖y1(β)‖

2 ≤
‖y1(ησn)‖

2 on this interval. Additionally, note that for α1(β) in the interval [ησn, ησ1]
we have dα(β)/dβ ≤ 0 and the cost increases with increasing β. Note that while these
observations are true for [ησn,∞], we specify the interval [ησn, ησ1] because the root
cannot lie in [ησ1,∞]. Observe that we now have ‖y1(β)‖

2 ≤ ‖y1(ησn)‖
2 when α1(β)

is in the interval [ησn, ησ1]. Thus the maximum value of the cost, when α1(β) is in
the interval [ησn, ησ1], occurs at β = ησn. We can easily find the maximum rate of
change for the cost, when α1(β) is in the interval [0, ησ1], to be

max
d ‖x(α(β))‖

2

dβ
=

ησn
(ησn + η2) (ησn + σ2

n)
.
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Simplifying we obtain

max
d ‖x(α(β))‖

2

dβ
=

1

(η + σn)
2 .

We can do similar calculation for the interval (max(−η2,−σ2
n−1),−σ

2
n−1) and we find

that the minimum increase in the cost occurs at β = −ησn and is given by

min
d ‖x(α(β))‖

2

dβ
=

1

(η − σn)
2 .

We now note that the maximum rate of increase for y1(β) is less than the minimum
rate of increase for y2(β), and for β sufficiently small, we have ‖y1(β)‖ ≤ ‖y2(β)‖.
We can now easily see that ‖y1(β)‖ ≤ ‖y2(β)‖ for all β; thus α2 cannot be the global
minimum.

We now consider the third candidate zero, namely, −σ2
n−1. We note that for it

to be a candidate we must have that b1,n−1 = 0 and g(−σ2
n−1) ≥ 0. We observe that

similar to what we saw in Appendix B, the minimum on the interval (−σ2
n−2,−σ

2
n)

must occur between the second to the rightmost and the rightmost roots of the secular
equation on the interval. Recall in that section the only options were the roots
themselves, but in this case there is also the possibility of −σ2

n−1. Note that if −σ
2
n−1

is not one of the two rightmost roots on the interval (−σ2
n−2,−σ

2
n), then it cannot be

the global minimum. We already know the rightmost root, designated α2, is not the
global minimum, and additionally the second most right root cannot be the global
minimum since the slope of g(α), is not negative at this point.

We now reintroduce the parameter γ = ‖b1,n−1‖
2 and we will consider a continuity

argument on γ similar to the continuity argument presented in this section. Since the
argument is very similar to the one we constructed, we will again only sketch the
details here. Note that for γ �= 0 we have multiple roots in the interval (−σ2

n−1,−σ
2
n),

none of which are the global minimum. As γ goes to zero we make all of the roots
move to the left, and all but the rightmost either reaches −σ2

n−1 or pops off the real
line as γ → 0, since g(−σ2

n−1) ≥ 0. The derivative of the cost with respect to γ can
be seen to be negative in the interval (−σ2

n−1,−σ
2
n) by the following method. First

take the derivative and note there appears the term dα(γ)/dγ, which we solve for
by taking the derivative of g(α(γ)) = 0 with respect to γ. Substituting back in and
simplifying we see that as γ increases the cost decreases in the interval (−σ2

n−1,−σ
2
n)

and thus the x which corresponds to the root which appears in the interval when
γ �= 0 has a lower cost than the x which corresponds to −σ2

n−1. That root is not a
global minimum, however, and so neither can the root be at −σ2

n−1. We can thus
exclude the possibility that −σ2

n−1 is α
o, and we are done.

19. Case 6: η > σn, ‖b1,n−k+1‖ �= 0, σn = σn−k+1. We again claim that
there is a unique root, α1, in the interval (−σ

2
n, ησ1] and it is the global minimum.

The existence of a root , α1, in the interval (−σ
2
n, ησ1] follows from the observation

that

lim
α→−σ2

n
+
g(α) = −∞,

lim
α→ησ1

g(α) ≥ 0.

Uniqueness is established by the same method as in section 14.
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Table 3

Degeneracy conditions.

η < σn and b
T (I −A(ATA− η2I)−1AT )b ≤ 0

η = σn, b1,n = 0, and b̄T1 (I − Σ̄2
1(Σ̄1 − η2I)−1)b̄1 ≤ 0

η = σn, b1,n �= 0

η > σn

Since ‖b1,n−k+1‖ �= 0, we cannot have α = α3 = −σ2
n. Note that the second order

condition gives us the additional requirement that α ≥ −σ2
n. Since α ≥ −σ2

n then
trivially we do not have additional roots to worry about. The only candidate is thus
the unique root, α1, in the interval (−σ

2
n, ησ1].

20. Summary of results. The problem we have been considering is

min
x∈Rn

min
‖E‖≤η

‖(A+ E)x− b‖,

where A is an m × n real matrix and b is an n-dimensional real column vector. We
assume that the problem is degenerate and in particular that there exists an x such
that η‖x‖ ≥ ‖Ax − b‖. Degeneracy can be easily checked as outlined in Table 3. To
obtain a solution to the degenerate problem we consider the optimization problem

min
‖Ax−b‖≤η‖x‖

‖x‖.

The SVD of A is given by

A = [U1 U2 ]

[

Σ1

0

]

V T ,

and we define b1 = UT
1 b and b2 = UT

2 b. When b1,n = 0 if σn is unique or ‖b1,n−k+1,n‖ =
0 if σn is of multiplicity k, we can partition Σ1 as

Σ1 =

(

Σ̄1 0
0 σnI

)

.

We similarly partition b1 into b̄1 and b1,n = 0. The secular equation is given by

g(α) = bT2 b2 + bT1 (Σ
2
1 + αI)−2(α2I − η2Σ2

1)b1.

Given these definitions, the solution to the problem is given in Table 4. Note that
to find the unique root of the secular equation, g(α), in the interval specified can be
easily and quickly done by a method such as bisection or Newton’s method.
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Table 4

Solution to the problem.

Condition Solution

η > σn, σn < σn−1,
b1,n = 0, g(−σ2n) ≥ 0

x = V

[(

Σ̄2
1 − σ2nI

)−1
Σ̄1b̄1

±

√

g(−σ2
n)

η2−σ2
n

]

η > σn, σn = σn−k+1,
‖b1,(n−k+1,n)‖ = 0, g(−σ2n) ≥ 0

x̂ = V

[

(

Σ̄2
1 − σ2nI

)−1
Σ̄1b̄1

rΘ

]

r =

√

g(−σ2
n)

η2−σ2
n

‖Θ‖ =1

else
x = (ATA+ αI)†AT b

α1 ∈ [max(−σ2n,−η
2), ησ1] such that g(α1) = 0

21. Restricted perturbations. We have so far considered the case in which all
the columns of the A matrix are subject to perturbations. It may happen in practice,
however, that only selected columns are uncertain, while the remaining columns are
known precisely. This situation can be handled by the approach of this paper as we
now clarify.

Given A ∈ �m×n, we partition it into block columns,

A = [A1 A2 ] ,

and assume, without loss of generality, that only the columns of A2 are subject to
perturbations while the columns of A1 are known exactly. We then pose the following
problem:

Given A ∈ �m×n, with m ≥ n and A full rank, b ∈ �m, and nonnegative real
number η2, determine x̂ such that

min
x̂

min
‖δA2‖≤η2

{‖[A1 A2 + δA2 ] x̂− b‖} .(21.1)

If we partition x̂ accordingly with A1 and A2, say,

x̂ =

[

x̂1

x̂2

]

,

then we can write

‖[A1 A2 + δA2 ] x̂− b‖ = ‖Ax̂− b+ δA2x̂2‖ .

Assuming the fundamental condition for this case, which is

η2‖x̂2‖ ≥ ‖Ax− b‖,

and following the development of section 6 we conclude the problem is equivalent to

min
‖Ax−b‖2=η2

2
‖x2‖2

‖x‖2.
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We note that we can rewrite the constraint as

‖Ax− b‖2 + η2
2‖x1‖

2 = η2
2‖x2‖

2 + η2
2‖x1‖

2,

which becomes
∥

∥

∥

∥

[

A1 A2

η2I 0

] [

x1

x2

]

−

[

b
0

]∥

∥

∥

∥

2

= η2
2‖x‖

2.

We now define the following:

Ã =

[

A1 A2

η2I 0

]

and

b̃ =

[

b
0

]

.

The problem thus becomes

min
‖Ãx−b̃‖2=η2

2
‖x‖2

‖x‖2,

which is easily seen to be of the same form as our original problem, though of slightly
larger dimension. This can thus be solved by the method discussed earlier in this
paper.

Appendix A. Piecewise convexity of ‖x(α)‖.
We now show that ‖x(α)‖2 is strictly convex in the interval (−σ2

n−1,−σ
2
n), which

will allow us to show that only the zero closest to −σ2
n can correspond to a potential

candidate for the global minimum.
We have that

‖x(α)‖2 = bT1 Σ
2
1(Σ

2
1 + αI)−2b1.

Differentiating once with respect to α we get

d

dα
‖x(α)‖2 = −2bT1 Σ

2
1(Σ

2
1 + αI)−3b1.

Differentiating once more we get

d2

dα2
‖x(α)‖2 = 6bT1 Σ

2
1(Σ

2
1 + αI)−4b1,

from which we can conclude that ‖x(α)‖2 is strictly convex on the interval (−σ2
n−1,−σ

2
n)

and hence that it has a unique minimum on that interval.

Appendix B. Rightmost root.
We now show that of all the roots in the interval (−σ2

n−1,−σ
2
n) only the rightmost

one can possibly correspond to the global minimum.
Let α0, . . . , αl denote the zeros of the secular equation g(α) in the interval (−σ

2
n−1,

−σ2
n), in increasing order; that is,

−σ2
n−1 < α0 < α1 < · · · < αl < −σ2

n.
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From the result in section 12 we know that only the roots corresponding to neg-
ative slopes of the secular equation can correspond to local minima. Since

lim
α→−σ2

n
−
g(α) = −∞,

it follows that

g′(αl) < 0 and g′(αl−1) > 0.

(We ignore the degenerate multiple root cases for now as the argument can be extended
to them by continuity.)

Now there are two possibilities. Either ‖x(αl)‖ ≤ ‖x(αl−1)‖ or not. The first case
implies that ‖x(αi+1)‖ < ‖x(αi)‖ due to the convexity of ‖x(α)‖ on (−σ

2
n−1,−σ

2
n).

For the second case we have that ‖x(αl−1)‖ < ‖x(αl)‖. We need to show this
implies ‖x(αl−1)‖ < ‖x(α)‖ for −σ2

n−1 < α < −αl−1, and that this is not the global
minimum. Toward this end we take the derivative of x(α) with respect to α and get

dx(α)

dα
= −

(

ATA+ αI
)−1

x(α).

We have already shown that ‖x(α)‖ is convex on this interval, and thus it suffices to
find if the derivative of ‖x(α)‖2 with respect to α is negative at αl−1, which shows
that x(α) is then decreasing. We note that the derivative of ‖x(α)‖2 is obtained by
premultiplying the derivative of x(α) by x(α)T . To do the analysis we use the SVD
of A and thus have

d‖x(α)‖2

dα
= −bT1 Σ

2
1

(

Σ2
1 + αI

)−3
b1.

We note that the matrix in parenthesis is indefinite and thus we must determine if the
expression is negative or not at α = αl−1. To do this we consider another function
whose derivative we have already examined. Consider the constraint function, ‖Ax−
b‖2−η2‖x‖2, and since at α = αl−1 we are entering the infeasible region for increasing
α, the derivative of the constraint must be positive. This condition can be expressed
as

2(αl−1 + η2)bT1 Σ
2
1

(

Σ2
1 + αI

)−3
b1 > 0.

We note that 2(αl−1 + η2) > 0, thus the condition is

bT1 Σ
2
1

(

Σ2
1 + αI

)−3
b1 > 0.

This trivially gives us

d‖x(α)‖2

dα
< 0,

and thus x(α) must be decreasing at α = αl−1 for increasing α. Applying convexity
to this result gives us ‖x(αl−1)‖ < ‖x(α)‖ for −σ2

n−1 < α < −αl−1, and thus the
minimum feasible value for x(α) on −σ2

n−1 < α < −σ2
n is x(αl−1).

Now since x(αl−1) does not correspond to a local minimum it follows that there is
a neighborhood of x(αl−1) of the constraint surface such that in this neighborhood we
have ‖x‖ < ‖x(αl−1)‖. Thus since x(αl−1) does not correspond to a local minimum,
we can discard it from further consideration, since it is not the global minimum.
Either way we are down to only the rightmost in the interval (−σ2

n−1,−σ
2
n).
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