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Abstract. We prove a general result concerning time-variant displacement equations with posi-
tive solutions in a general operatorial setting. We then show that the solutions of several completion
problems, recently considered in connection with classical interpolation and moment theory, follow as
special cases of the main result. The main purpose of this paper is to show that under supplementary
finite-dimensionality conditions, a so-called generalized Schur algorithm, which naturally arises in
connection with displacement equations, can be used to prove the above mentioned result. We also
discuss the associated transmission-line interpretation in terms of a cascade of elementary sections
with intrinsic blocking properties.
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1. Introduction. We prove a general result concerning time-variant displace-
ment equations with positive solutions. More specifically, we show that a contractive
upper-triangular operator S can always be associated with a Pick solution R(¢) of a
time-variant Lyapunov (or displacement) equation. This result is actually a variation
of the commutant lifting theorem of Sarason-Sz.Nagy-Foias and many other formula-
tions have been considered in the literature (see, e.g., [2, 13, 16, 20, 21, 22]). Under
supplementary finite-dimensionality and nondegeneracy conditions, we further derive
a so-called generalized Schur algorithm and discuss an associated system-theoretic
interpretation in terms of a cascade of elementary sections with intrinsic blocking
properties. These considerations lead to a constructive proof of the previous result
about displacement equations. Several classical algorithms proposed in the literature
for the solution of interpolation problems, such as Schur, Nevanlinna-Pick, and ex-
tensions thereof, follow as special cases of the general framework presented here. We
also extend the content of our companion paper [26] where several other applications
of the algorithm are presented.

The paper is organized as follows: In Section 2 we introduce our notation and
define the class of time-variant structured matrices. We also prove the main result con-
cerning the existence of an upper-triangular operator S in connection with Pick solu-
tions of time-variant Lyapunov equations. In Section 3 we show that several moment,
interpolation, and completion problems, and extensions thereof, follow as special cases
of the main theorem of Section 2. In Section 4 we derive a computationally-oriented
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recursive procedure that leads to a constructive realization of all possible solutions
S in terms of a cascade of elementary sections with certain intrinsic blocking prop-
erties. In Section 5 we further elaborate on possible simplifications and describe the
associated Schur parameters.

[ An early account of the results of this paper was announced in [9]. We further
remark that after submitting this paper, a closely related result to Theorem 2.2 was
independently derived in [11] ].

2. Displacement Structure and Abstract Interpolation. We first intro-
duce our notation. The symbol Z denotes the set of integers, and for two Hilbert
spaces H and H we write L(H, 7{’) to denote the set of bounded linear operators act-
ing from # into H'. We further consider three families {{/(t), V(¢), R(t) }+cz of Hilbert
spaces depending on the parameter ¢ € Z, two families of bounded linear operators
G(t) e LU ®V(t),R(t)) and F(t) € LIR(t—1),R(t)), and we define the symmetry
J(t) = (Iy) ®—Iy(s)) acting on U(t) ®V(t), where I;(;) denotes the identity operator
on the space U(t). We partition G(t) = [ U(t) V(t) |, where U(t) € LU(t),R(t))
and V(t) € L(V(¢),R(t)). We also use the symbol * to denote the adjoint operator
and we write F*(t) = (F(t))*.

DEFINITION 2.1. A family of operators {R(t) € L(R(t))}tcz is said to have a
time-variant displacement structure with respect to {F(t), G(t)}tez if {R(t)}tez is
uniformly bounded, viz., there exists 7 > 0 such that ||R(¢)|| < r for allt € Z, and
R(t) satisfies the time-variant Lyapunov (or displacement) equation

(2.1) R(t) — F(t)R(t — 1)F*(t) = G(t)J(£)G*(t).

The cardinal number r(t) = dimU(t) + dimV(t) is called the displacement rank of
R(t) in (2.1). We say that (2.1) has a Pick solution if R(t) is positive-semidefinite
for every t € Z.
[ For more discussion on the application of time-variant structured matrices in adap-
tive filtering, matrix factorization, and interpolation problems, the reader is referred
to the companion papers [25, 26, 29] ].

We further introduce some assumptions that will guarantee the existence of a
unique family with time-variant displacement structure with respect to a given set of
generators {F(t), G(t) }+ez. To this effect, we consider the infinite (block) matrices

Ut)y=[... FO)FE-1)U(t—-2) F@)UE-1) U®) ] ,
Vit)=[... FO)Ft-1)V(Et-2) F@E)V(E-1) V()] ,

and assume that for each t € Z and h € R(t) we have

(2.2a) F*t—n)F*(t—n+1)...F*¢t—-1)F*t)h -0 as n—> o0 ,
(2.2b) U(t) and V() are well-defined bounded linear operators,

Ut) € L( @ U(H),R(F)) , V(t) € L(© V(5),R(2))-

J<t Jj<t
(2.2¢) {U(#),V(t)}tez are uniformly bounded families:

¢y > 0 and ¢, > 0 such that ||U(t)|| < ey and ||V(t)|| < ¢y forall t € Z.
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The above assumptions imply that equation (2.1) has a unique uniformly bounded
solution given by

(2.3) R(t) = U{)U*(t) — V() V*(2).

We should remark that assumptions (2.2a)-(2.2c) are automatically satisfied in some
special, though frequent, cases such as:

1. {G(t)}sez is a uniformly bounded family, viz., 3 ¢, > 0 such that ||G(t)|| <
¢g, and F'(t) = 0 for |¢| sufficiently large.

2. {G(t) }+ez is a uniformly bounded family and {F'(¢)}:cz is a stable family,
i.e., 3 c¢; > 0 such that ||F(t)|| < cf < 1, Vt.

3. {F(t)}tez is a uniformly bounded family and G(¢) = 0 for |¢| sufficiently
large.

The following result shows that the existence of a Pick solution of (2.1) is equiva-
lent to the existence of an upper-triangular contraction relating U(t) and V(¢), which
will play a fundamental role in subsequent sections.

THEOREM 2.2. The displacement equation (2.1) has a Pick solution R(t) if,
and only if, there exists an upper-triangular contraction S € [,(tEBZV(t), 1tGBZL{(t)),

€ €

(ISl <€ 1), such that

(2.4) V(t) =U(t)Pyu(t)S/ ‘%V(j) for every t e Z

where Py(t) denotes the orthogonal projection of @& U(t) onto GLB U(j).
teZ J<t

Proof. One implication is immediate. If an upper-triangular contraction S exists
such that (2.4) holds then the solution given by (2.3) is a Pick solution. The converse
is a consequence of a commutant lifting theorem. Thus assume equation (2.1) has
a Pick solution. Then R(t) = U(t)U*(t) — V(¢)V*(t) are positive operators for all
t € Z. Hence, there exist contractive operators S(t) (i.e., ||S(t)|| < 1),

S(t) € L(J@tv(j),R(U* ®)) ,

such that V(¢) = U(¢)S(¢) for all ¢ € Z, where R(U*(¢t)) denotes the closure of
the range of U*(t). Let us define, for every ¢ € Z, the shift (or marking) operator
My(t): & U(j) — & U(3),

Jj<t-1 J<t

My (t) = 0 (1;

It is easy to check that for all t € Z, U(t)My(t) = F(¢t)U(t — 1) and V(t)My(t) =
F(t)V(t —1). Hence,
My ()S*(£)U*(t) = M) V™ (t) = V™ (t — 1)F*(t)
= §*(t—1)U*(t — 1)F*(t) = §*(t — 1) M;;(t)U*(¢).

We now use the comutant lifting theorem of Sarason-Sz.Nagy-Foias [13, 23] in its
“time-variant” formulation in [4] — actually we use a slight variation in [8] — in order
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to conclude that there exists a family {S(t) € £( 6<9 V(5), 6<9 U(j)) }+ez of contractions,
J<t J<t

with the properties: S*(t) = $*(t)/R(U*(t)), and S(t)My(t) = My (t)S(t — 1). This

is a rather standard argument by now — see [21], the proof of Theorem VIII-2.2 in

[13], or Theorem 5.C.4 in [16]. We then conclude from the last equality that there

exists an upper-triangular contraction S € £(t€Bz V(t), tEBZU (t)) such that S(t) =
€ €

Py(t)S/ & V(j). This can be viewed as a time-variant version of Lemma V-3.5 in
i<t

[31]. Consequently, S satisfies (2.4) and the proof is complete. O

We have thus shown that an upper-triangular contraction S can always be asso-
ciated with a Pick solution of time-variant displacement equations of the form (2.1).
This is a general result that includes, as special cases, solutions of several interpola-
tion, completion, and moment problems considered in the literature. In fact, it will
become clear throughout our discussion that the solutions of these problems corre-
spond to determining the appropriate contraction S that is associated with the Pick
solution R(t) of (2.1) for specific choices of F(t),G(t), and J(t). Some examples to
this effect are discussed in the next section. It should be noted though that the ar-
gument used in the above proof only assures the existence of S. It does not show
how to construct such an S. We shall, however, describe later in Section 4 a recursive
algorithm that, under suitable finite-dimensionality conditions, leads to a constructive
proof of Theorem 2.2.

3. Connections with Completion Problems. In this section we illustrate the
application of Theorem 2.2 to the solution of some moment and completion problems
(and extensions thereof).

3.1. A Positive Completion Problem. We begin by considering the following
moment-type problem. We fix a positive integer p and a family {£(n)}necz of Hilbert
spaces.

PROBLEM 3.1. Given a family {Qi;/ i,5 € Z, |j—i| < p} of operators such that
Qij = Q~;‘Z and Qi; € L(E(§),£(3)), it is required to find conditions for the existence
of a positive definite kernel M = [Qij]i,jez such that for i,j € Z and |j — i| < p we
have Q;; = Qs;.

By a positive-definite kernel we mean an application M = [Qij]i,jez onZxZ
such that for ¢, j € Z we have Q;; € L(£(j),£(3)) and Ez‘jzfn < Qijhj, hi > >0, for
every integer n > 0 and every set of vectors {h_n, h_pny1,.-.,hn}, hi € E(k), |k| <n.
We show here how to solve the above problem by using Theorem 2.2 and connections
with displacement structure theory.

We can assume, without loss of generality, that Qi = I for all i € Z. We also
define the Hilbert spaces R(¢t) = ké E(—t+k),U(t) = V(t) = £(—t), and the operators
=0

I 0
Q—t+1,—t Q—t+1,—t
Ul)=| Q-tr2—t | | V(t)= | @-t+2—

Q—H—p,—t Q—t+p,—t

We further consider the operators J(t) = (Iyz) & —Ivy)), G(t) = [ U(t) V(1) ],
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and

(3.1) Fit)=
I 0
The elements {F(t), G(t), J(t) }+cz, as defined above, specify a displacement structure
of the form (2.1). Using the result of Theorem 2.2 we conclude the following.
THEOREM 3.2. Problem 3.1 has solutions if, and only if, the displacement equa-
tion (2.1), associated with the data {F(t),G(t),J(t)}:cz defined above, has a Pick
solution.

Proof. Using the defined operators {F'(t), G(t), J(t) }+cz we readily check that the
solution R(t) of the corresponding (2.1) can be written as

I Q_t,—t4+1 Q_t—t4p
Qi1 I Q11

RO =UMU () -VEOV @) =| = T o
Q—tip—t Q-tip—t+1 --- I

We thus conclude that if Problem 3.1 has positive-definite solutions M then R(t) is

a positive block matrix for all ¢t € Z. Conversely, if (2.1) has a Pick solution R(t)

then, by Theorem 2.2, there exists an upper triangular contraction S = [S;] ijez €

E(tgaz V(t), tgazU(t)) such that V() = U(¢t) Py(t)S/ G%V(j). If we take the structure
J

of U(t) and V(t) into account we then conclude that Sy = 0 for all t € Z. We
define Qij = ;;:lj_’_l Qi’.’,cs_k’_j + S—i,—j7 for i > j, |j - ’L| > p, Qi]’ = Q;l for i < j,
|7 —i| > p, and Q;; = Qi; for |j —i| < p, and consider the kernel M = [Qij]ijer
We now check that M is indeed a positive definite solution of Problem 3.1. For this
purpose, we consider a positive integer N > p and define the operators

I 0
o= | S = | O
Q—tJ.rN,—t Q—tJ-rN,—t
Then
I Q_t—t+1 Q_t—t4N
G DY OO UR () - VOV
Q—tJ;N,—t Q—t4N,~t+1 - I
— Un (01— 5,5} U (1) ,
where S; = Py(t)S/ jE<BtV(j). Consequently, M is positive-definite. O

We further remark that the well-known trigonometric moment problem [1] corre-
sponds to the special case Qij = Q~‘ j—i| (i-e., the entries of the specified band exhibit
a Toeplitz structure). The case £(n) = 0, for |n| large enough, was considered and
solved in [12].
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3.2. The Hermite-Fejér Interpolation Problem. The solution of the pos-
itive completion problem corresponds to the special choice of the operator F'(t) as
in (3.1). The statement of Theorem 2.2, however, allows for other choices of F(¢).
Indeed, choosing F(t) in a general Jordan form leads to the solution of a general
interpolation problem of the Hermite-Fejér type as we now elaborate.

We first introduce some notation. We consider three families of Hilbert spaces
{U(t),V(t), F }tcz, and a bounded upper-triangular operator

T e [’(téezu(t)’t?zv(t))7 T= [Tij]i,jez ) Tij € [:(U(]),V(Z)),

T-1,-1 T-10 T-1,1
" O |
Ti1  Ti2 Tis

where denotes the (0,0) entry of T. We further consider a stable family of
operators {f(t) € L(F)}ez, viz., 3 ¢ > 0 such that |[f(t)] <c< 1 forall t € Z.

We also introduce the symmetric functions s,(cn)

That is, s = 1 and
(n) -
s, (T1,22,...,%n) = E Tiy Tig - - - Ti, -
1<i1<..<ix<n

For example, n = 3 corresponds to s(()s) =1, 553)(301,302,41:3) = x1 + T2 + x3,

of n variables (taken k at a time).

(3) _ (3) —
Sy (21, %2,23) = 2122 + T123 + 223, and s3° (L1, L2, 23) = T1L223.
For a uniformly bounded family of operators {u(t) € L(V(t), F)} ez, viz., I ¢ >
0 such that ||u(t)|| <€ for all t, we define the operator u(t) ¢ T(f(¢)) as follows

u(t) @ T(f(t)) = u()Tee + f(H)u(t — )Ti—1,e + fF)f(t — Dul(t — 2)Ts—2 + - . ..

This corresponds to a time-variant tangential evaluation along the “direction” defined
by u(t). More generally, we define the operators (for p > 0)

oo

u(t) e I%T(”)(f(t)) =) sTPf(E), f(t— 1),y fE—m—p+ D] u(t —m—p)Ts - pye -
We shall also use the compact notation | uy(t) wu2(t) |eHZ(f(t)) to denote the oper-
ator [ ui(t) e T(f(t)) wui(t) e LTM(f(t)) +uz(t) e T(f(t)) ], which we also write
as

[wa(t) w(t) ] o [ T(f(1) HTO (1) ] .

T(f(t))
More generally, we write [ ui(t) w2(t) ... ur(t) | e HR(f(t) =
T(f(t) HTO(FER) - T E)
T(f(t)) e T ()

[(wi(t) wa(®) ... us(t) | :
O T(f(¢)) T (F()
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To formulate the Hermite-Fejér problem we again consider three families of Hilbert
spaces {U(t), V(t), Fi}tez,0<i<m, and m stable families {c;(t) € L(F(t))}scz for i =
0,1,...,m — 1. We associate with each «a;(t) a positive integer 7; > 1 and uniformly
bounded families of operators a;(t) and b;(t) partitioned as follows

ait)=[ ) ) ... ] B =[s00 @) ... WD ],

where v\’ (t) € LU(t),F;) and v\ (t) € L(V(t),F:),j = 1,...,r;, are uniformly
bounded families of operators.

PROBLEM 3.3. Given m stable families {c;(t)} with the associated uniformly
bounded data a;(t) and b;(t), as described above, it is required to find mecessary

and sufficient conditions for the existence of upper-triangular contractive operators
S (||S|lec < 1) that satisfy

(3.2) b;(t) = a;(t) e Hg' (a;i(t)) for 0<i<m-—1 and t € Z.

The first step in the solution consists in constructing three operators F'(¢), G(¢),
and J(t) directly from the interpolation data: F'(t) contains the information relative to
the operators {a;(t)} and the dimensions {r;}, G(t) contains the information relative
to the direction operators {a;(t),b;(t)}, and J(t) = (Iy) ® —Iy)). Define, for

1=0,1,....m—1,R;(t) =F, & F;®...®F; (r; times), and R(t) = mE}Sl Ri(t). The
=0

operators F'(t) and G(t) are then constructed as follows: we associate with each a;(t)
an operator in Jordan form F;(t) € L(R;(t — 1),Ri(t)) (= L(R:(t)), in this case),

and two operators U;(t) and V;(t), respectively, which are composed of the operators
associated with a;(t), viz.,

0 v ()
(%) (%)
v=| "9, wy=| 2"
ul? (t) v (t)

Un1(t) Vina(®)

We shall denote the diagonal entries of F(t) by {fi(t)}", (for example, fo(t) =
fi(t) = ... = fry—1(t) = ao(t)). We have thus specified all the elements of a displace-
ment equation as in (2.1).



8 CONSTANTINESCU, SAYED, AND KAILATH

THEOREM 3.4. The tangential Hermite-Fejér Problem 3.3 is solvable if, and only
if, the displacement equation (2.1), associated with the interpolation data above, has
a Pick solution.

Proof. The result follows by showing that the interpolation conditions (3.2) follow
from Theorem 2.2. The assumptions made in the statement of Problem 3.3 guarantee
that conditions (2.2a)-(2.2c) are satisfied. If R(¢) is a Pick solution then there exists
an upper-triangular contraction S that satisfies (2.4). Now, by comparing terms on
both sides of (2.4) and by invoking the special constructions of {F'(t), G(t)} as above,
we conclude that expression (2.4) can be rewritten as

b;(t) = a;(t) e HG (oi(t)) , for i=0,1,..., m—1,

which is the desired interpolation property (3.2). Conversely, assume there exists an

interpolating solution S that satisfies (3.2). Then, by comparing terms on both sides

of (3.2), we conclude that the it* entry of U(t)Py(t)S/ @ V(j) is the it* entry of
i<t

V(t). Hence, S satisfies V(&) = U(t)Py(t)S/ ® V(j) for every t € Z. Consequently,
J<t
R(t) is a Pick solution. O

3.3. A Special Case: The Carathéodory-Fejér Problem. The Hermite-
Fejér problem includes as a special case the following so-called Carathéodory-Fejér
problem.

PROBLEM 3.5. Given families of Hilbert spaces {U(t),V(t) ez, and n families
{B:(t)}, 1 =0,1,...,n — 1, of operators B;(t) € L(V(t),U(t — n + 1)), it is required
to find necessary and sufficient conditions for the existence of an upper-triangular
contraction S € E(thzV(t),thzU(t)), S = [Sijl; jezs such that for all t € Z we have

St—it = Bi(t) fori=0,1,...,n—1.

The classical Carathéodory-Fejér-Schur interpolation problem [1] corresponds to
the special case 3;(t) = B; forallt € Z andi = 0,1,...,n—1. Several other contractive
completion problems, such as those considered in [4], also follow as special cases of
Problem 3.5 by choosing 8;(t) = 0 for sufficiently large values of ¢.

To put the above problem into our framework, as described in the previous section,
we construct the operators

I Bo(t)
vo=|" . vi= ﬂl:(t) :
0 ﬂn—l(t)
as well as J(t) = (Iyw) ® —Iy), G(t) = [ U(t) V(t) ], and
0
I 0
(33) F(t) = )
I 0

COROLLARY 3.6. Problem 3.5 has solutions, if and only if, |M(t)|| < 1 for all
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t € Z, where

Bo(t)

M) = /81'(t) Bo(t —1)

Boilt) ... C Bo(t—n+1)

3.4. A Special Case: The Nevanlinna-Pick Problem. The Hermite-Fejér
problem also includes as a special case, the following so-called time-variant version of
Nevanlinna-Pick introduced in [10] and further studied and extended in [5].

PROBLEM 3.7. Given families of Hilbert spaces {F;,U(t),V(t) }+cz, and n stable
families of operators {a;(t)}, i = 0,1,...,n — 1, a;(t) € L(F;), with two uniformly
bounded families of operators {u;(t),vi(t) }tez, 1 =0,1,...,n—1, u;(t) € LU(t), F:),
v;(t) € LV(t),F;), it is required to find necessary and sufficient conditions for the
existence of an upper-triangular contraction S € £(téBZ V(t), tg)ZL{(t)) such that for all

t € Z we have u;(t) ® S(a;(t)) = v;(t), ¢=0,1,...,n—1.

The classical Nevanlinna-Pick problem [1] corresponds to the special case a;(t) =
a;, ui(t) = u;, and v;(t) = v; for all ¢t € Z and ¢ = 0,1,...,n — 1. Following the
construction given in the previous section we get

2 (t) w(t)  volt)
ai(t) O uy (t) v1(t)
F(t) = O ‘ , G(t) = : :
. an—l(t) un—l(t) Un—l(t)

COROLLARY 3.8. The Nevanlinna-Pick Problem 3.7 has solutions if, and only if,

n—1
[{wi®u; () —vi®)v; (O} o Nog(i®)] 20 forall teZ,
J i,j=
where, for a stable family {a(t)}icz, the upper-triangular operator N, is defined by
(No)wt =1, and (No)i—je =a(t—j+ La(t—j+2)...a(t) for j > 1. (The stability
of {a(t) }rez assures that N, is a well-defined bounded operator).

4. A Recursive Solution. The examples considered in the previous sections
reveal the significance of Theorem 2.2 in the solution of moment and interpolation
problems. However, the result of Theorem 2.2 only provides an existence statement,
i.e., it only assures the existence of an upper-triangular contraction S that satisfies
(2.4). It does not show how to construct or find such an S. The several applications
mentioned above though, motivate the need for an alternative route that would also
lead to a construction of S. In this section we shall, following the arguments in
[25, 26, 28, 24], describe a recursive procedure that will lead us to what we shall call a
generalized Schur algorithm, and which will allow us to provide an implementation for
S in terms of a cascade of elementary sections. The derivation that follows, however,
is only applicable to the case where the involved Hilbert spaces are finite-dimensional.
More specifically, we consider displacement equations as in (2.1), viz.,

R(t) — F()R(t — ) F*(t) = G{)J(£)G*(t) |
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where R(t) € L(R(t)), G(t) € LU() ® V(t),R(t)), F(t) € LR(t — 1),R(t)), and
J(t) = (Iy) ® —Iy(y)), and assume the following finite-dimensionality conditions:

-1
(4.1a) There exists a finite positive integer n such that R(t) = "® Ri(t), V t;

i=0
(4.1b) dimR;(t) are all equal and finite for allt € Z and ¢ =0,1,...,n — 1;
(4.1¢c) dimU(t) = p(t) < oo and dimV(t) = ¢(t) < oo for all t € Z.

We further assume that:

(4.1d) {F(t)} is a uniformly bounded family of lower triangular
operators with stable families of diagonal entries {fi(t)}1=";
(4.1e) {G(t)} is a uniformly bounded family.

By condition (4.1a) we can write R(t) = [r,-j(t)]?;:lo, with block entries r;;(t) €
L(R;(t), Ri(t))-

4.1. A Time-Variant Embedding Relation. A major tool in our analysis is
a so-called embedding result for displacement equations. This result was derived in
[14] in the time-invariant case and further explored and discussed in [19]. Its relevance
to rational interpolation problems was detailed in [24, 25, 27], and in connection with
time-variant interpolation problems in [5, 25, 26]. Here we discuss the general time-
variant case following the pattern developed in [25, 26].

For this purpose, we consider again the time-variant displacement equation (2.1)
and, in addition, assume that {R(t)}+cz is also uniformly bounded from below, viz.,

(4.1f) 3 7y >0 such that 0<riI <R(t) forall teZ.

THEOREM 4.1. Suppose (4.1a)-(4.1f) hold, then there exist uniformly bounded
families of operators {H (t)}tcz and {K (t)}icz,

H(t) € LR(t —1),U(t) @ V(1)) , K(t) € LU(t) d V(L)) ,
such that the following time-variant embedding relation is satisfied

e (1 Z 11 )18 ST - )

Proof. Tt is easy to check (as in [19, 24, 25]) that the followmg choices for H(t) and
K (t) satisfy the embedding relation (we use the notation © () to mean (©(t)) !):

H(t) = 0~ (1) J ()G (1) [R%(t) — r(OR¥ (t — 1)F*(t)] [r(t)R—%(t —1)— R—%(t)F(t)] ,

K(t) = 0~1(t) {I — J®)G* () [R%(t) — ()R} (t - 1)F" (t)] - R—%(t)G(t)} ,

for an arbitrary J(t)— unltary operator @(t) and an arbitrary unitary operator 7(t),
whenever the inverse of R3(t) — 7(t)R*(t — 1)F*(t) exists. Here, R(t) denotes
the operator defined by R(t) = Rz (t)R3(t). [ The finite-dimensionality conditions
guarantee that it is always possible to choose a unitary matrix 7(¢) so as to assure
the invertibility of R (t) — T(t)R3 (t — 1)F*(t) .
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We now show that we can choose O(t) and 7(¢) adequately so as to guarantee the
uniform boundedness of the families { H(t), K (t) }+cz- By our hypothesis, there exist
r1 > 0 and ro > 0, independent of ¢, such that 0 < T < R(t) < 7ol forallt € Z. Tt
follows that we can always find 7(¢) such that

[R3(t) — T()R3 (t — 1) F*(t)] [RE(t) — T()RE(t — )F*()] > el >0 ,

for some € > 0. Indeed, define A(t) = R2(t — 1)F*(t)R % (t). If A(t) = O then
the claim is obvious, otherwise write A(t) = (A41(t) ® 0) with respect to the de-

compositions R(A*(t )) ® Ker A(t) and R(A(t)) & Ker A*(t) of R(t) and R(t — 1),
respectively. We readily conclude that A;(t) is invertible. If we define 7(t) =
(A3 [A1(0) AT (D)) 1/ZGBB( t)), with respect to the above decompositions, and for an
arbitrary unitary operator B(t), then it follows that [7*(¢) — A(t)] [7(¢) — A*(¢)] > I.
Therefore, R? (t) — 7(t)R3 (t — 1) F*(t) is invertible and the family

{[R¥(t) - r(®)R3 (¢t - VF* ()] hrez

is uniformly bounded. Taking ©(t) = I for all t € Z leads to uniformly bounded
families {H(t), K () }+cz- a

4.2. Generalized Schur Algorithm. We now use the embedding result of The-
orem 4.1 to derive a generalized Schur algorithm for block matrices R(t) = [r;; (t)]z;:lo
along the lines presented in [25, 26, 28]. More precisely, we focus on the time-variant
displacement equation (2.1) and show that it allows the successive computation of
the Schur complements of R(t) to be reduced to a computationally efficient recursive
procedure applied to the so-called generator matrix G(t).

Let R;(t) denote the Schur complement of the leading 7 x i submatrix of R(¢). If
1;(t) and d;(t) stand for the the first column and the (0,0) entry of R;(t), respectively,
then (the positive-definiteness of R(t) guarantees d;(t) > 0 for all 7)

(43) RO - 604 050 = o 5.0 | = RBenlo)

Hence, starting with an n X n matrix R(t) and performing n consecutive Schur com-
plement steps, we obtain the triangular factorization of R(t), viz.,

RO = w0d OG0+ | 0 a0 ]G, |+ = Hopone

where D(t) = diag{do(t),.-.,dn_1(t)} (D71(t) stands for (D(t))~!), and the (nonzero
parts of the) columns of the lower triangular matrix L(t) are {lo(t),...,ln_1(¢)}-
The point, however, is that this procedure can be speeded up for matrices R(t) that
exhibit a time-variant displacement structure as in (2.1). In this case, the above
(Gauss/Schur) reduction procedure can be shown to reduce to a recursion on the
elements of the generator matrix G(t). The computational advantage then follows
from the fact that the column dimension of G(t), viz., 7(t) = p(t) + ¢(t), is usually
small when compared to the dimension of R(t). The following theorem shows that
the triangular factor at time (¢ — 1), viz., L(t — 1), can be time-updated to L(t) via a
recursive procedure on G(t).

THEOREM 4.2. The Schur complements R;(t) are also structured with generator
matrices Gi(t), viz., Ri(t) — Fi(t)Ri(t — 1)FF(t) = Gi(t)J(t)Gi(t), where G;(t) is
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a matriz that satisfies, along with 1;(t), the following generator recursion: Go(t) =
G(t)a FO(t) = F(t):

o 1. G HOMO)
[w) Gia(8) ]—[Fxt)li(t—l) Gi(t) ][ng:(t) J(O)kF ()T (2) ]

where g;(t) is the top (block) row of G;(t), F;(t) is the submatriz obtained after deleting
the first (block) row and column of F;_1(t), and h;(t) and k;(t) are arbitrary matrices
chosen so as to satisfy the time-variant embedding relation

(4.4) [ fi(t)  gi(t) ] [ dit—1) 0 ] [ fi(t)  g9i(t) ]* _ [ di(t) 0 ]
hi(t)  ki(t) 0 J(@) || hit) Ki(2) 0 J@) ]’

where d;(t) satisfies the time-update d;(t) = fi(t)d;(t — 1) f7(t) + 9:(t)J (£) g} (t).

Proof. We prove the result for i = 0. The same argument is valid for 7 > 1.
Let do(t),lo(t), and go(t), denote the (0,0) (block) entry of R(t), the first (block)
column of R(t), and the first (block) row of G(¢), respectively. It then follows from
the displacement equation (2.1) that lo(t) = F(t)lo(t — 1) f5(¢) + G(t)J(t)gg(t) and
do(t) = fo(t)do(t —1)f5(t) +g0(t)J(t)gd (t). Let Fi(t) be the submatrix obtained after
deleting the first (block) row and column of F(t). Using the expressions for [y(¢), do(2),
and (4.3), it is straightforward to check that we can write Ry (t)— F(t) Ry (t—1)F*(t) =

G()JI(t) {I(t) — 95(t)dy " (t)g0( t)}J ()G (2)
—F®)lo(t=1)fs (t)dal(t) 9o(
- G(t)J ()95 (H)dg * (8) fo (t)15 (¢ — 1) F* (t)
(4.5a) F(t)lo(t —1) [dy (¢t — 1) = fa ()dg " (1) fo(8)] 1§ (t — 1) F*(2) -
We now verify that the right-hand side of the above expression can be put into the form
of a perfect square by introducing some auxiliary quantities. Consider a (block) column
vector hg(t) and a matrix ko(t) that are defined to satisfy the following relations (in

terms of the quantities that appear on the right-hand side of the above expression -
this is always possible as explained ahead)

(4.5b) hg (8)J (t)ho(t) = do* (t = 1) = f5 (t)dy " () fo(t) ,

ka(t)J(H)ko(t) = J(t) — g5 (t)dg " (H)go(t) , kg ()T (£)ho(t) = g5 (t)dg ™ () fo(t) -

Using {ho(t), ko(t)}, we can factor the right-hand side of (4.5a) as G1(t)J ()G (t),
where G'1(t) = F(t)lo(t — 1)hg(t)J(t) + G(t)J (t) kg (t)J (t). Recall that the first (block)

row and column of R;(t) are zero. Hence, the first (block) row of Gi(t) is zero,
Git) =[ 0 GT() ]T. Moreover, it follows from (4.5b) (and from the expression
for do(t)) that

[ fo(t)  g0(t) ]* [ dy'(t) 0 ] [ fo(t)  go(t) ] _ [ dg*(t—1) 0

ho(t)  ko(t) 0 J(t) ho(t) ko(t) 0 J@) |

which is equivalent to (4.4) for i =0. 0

The existence of uniformly bounded families {h;(t), k;(¢) }scz that satisfy (4.4)
follow as a special case of Theorem 4.1, since d;(¢) satisfies a time-variant displacement
equation, viz.,

di(t) = fi(t)di(t — 1) f7(t) + 9:(8) T (1) g (1)
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the finite-dimensionality conditions stated prior to Theorem 4.1 are satisfied, and the
families {d;(t), gi(t) }+cz are uniformly bounded as shown next.

LEMMA 4.3. The sequences {d;(t) }scz and {gi(t) }+cz obtained through the recur-
siwe Schur reduction procedure are uniformly bounded. More specifically, there exist
real numbers bg, cq, and ¢, (independent of t) such that

0 < bgl <di(t) <cql, |lgs(t)|| <cy for all t.

Proof. Tt is clear {do(t) }+cz is uniformly bounded from above since {fo(t)}:cz is
stable and {go(t)J(¢) g5 (¢) }tez is uniformly bounded. A similar argument shows that
{lo(t)}tez is also uniformly bounded. It further follows from 0 < r1I < R(t) that
the sequence {dy(t)}+cz is uniformly bounded from below, viz., do(t) > r1I > 0 for
all ¢. Hence, by Theorem 4.1, we can always choose uniformly bounded sequences
{ho(t) }tcz and {ko(t)}:cz so as to satisfy the embedding relation (4.4). From the
generator recursion we get g1 (t) = er F(¢)lo(t — 1)h§(t)J(t) + er G(¢) J(t) k5 () J(¢). It
then follows that {g1(¢) }+cz is also uniformly bounded. Repeating this argument we
conclude, by induction, that there exist real numbers ¢; > 0 and ¢, > 0 such that
di(t) < cqI and ||g;(¢)|| < ¢y for all t € Z.

To show that the sequence {d;(t)}+cz is uniformly bounded from below, we use
the fact that the successive Schur complements R;(t) also satisfy relations similar to
(2.1). For this purpose, we rewrite each step of the Schur reduction procedure (4.3)
in the form

*

Ri(t):[li(t)di_l(t) In_o,-_l Hd’ét) R,-+01(t) ] I:li(t)dz'_ () In_oi_l ;
(4.6)

which exhibits a congruence relation. We define, for notational simplicity,

Ai(t) = [li(t)df(t) In—Oi—l ] ’

which is an invertible lower triangular matrix. Assume R;(t) > ¢;I for some ¢; > 0
independent of t (¢¢ = r1 since 0 < r1I < R(t)). Then clearly d;(t) > ¢;I and
A;(t) is uniformly bounded. For any nonzero column vector y, we can always write
y = A% (¢t)x for some nonzero column vector x, since A;(¢) has full rank. Therefore,

y diét) Rz-+01(t)] _X*A()[d Ripa(t ] X

>eillx|? = el A7)yl = eallyll®

where in the last equality we defined €;.1 and used the fact that {A;"(¢)}scz is uni-
formly bounded. Consequently, d;11(t) > €;11 and we can choose by = ming<;<n 1 €;.
We thus conclude that {d;(t)}+cz is uniformly bounded from below. d;(¢)

We finally remark that we can also conversely show that if {d;(¢) }+cz is uniformly
bounded from below, then {R(t)}+cz is also uniformly bounded from below. To see
this, we apply the same argument and use (4.6) backwards starting with R,_1(¢) =
dn—1(t) down to Ro(t) = R(¢). O

4.3. Recursive Construction of S. The question now is: How does the recur-
sive algorithm in Theorem 4.2 relate to the result of Theorem 2.27 The relevant fact
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to note here is that each recursive step gives rise to a linear discrete-time system (in
state-space form)

fi (@) hi (8)J (1) ]
J(t)gi (t) J(@)ki@)JI(E) |

which appears on the right-hand side of the generator recursion in Theorem 4.2. This
can be thought of as the (state-space) transition matrix of a linear system as follows

, AT =T , fi(t) ki (t)J(t)

(4-7) [ xz(t-i- 1) YZ(t) ] = [ x,(t) Wz(t) ] [ J(t)g;"(t) J(t)k;"(t)J(t) ,
where x;(t) denotes the state, w;(t) denotes an input vector, and y;(¢) denotes an
output vector at time ¢.

The second important observation, which we shall verify very soon, is that each
such section exhibits an intrinsic blocking property. The cascade of n sections would
then exhibit certain global blocking properties, which will be shown to be equivalent
to the desired result (2.4). Interesting enough, these blocking properties simply follow
from the fact that each step of the Schur reduction procedure yields a matrix with a
new zero row and column (as in (4.3)), which translates to a generator matrix with a
new zero row as in Theorem 4.2.

4.3.1. Properties of the First-Order Sections. Let T; = [ T(z) ]

l,j=—00
denote the upper-triangular transfer operator associated with (4.7), where the {Tl(j)}
denote the time-variant Markov parameters of T; and are given by

T = JOkOIO) T, = JQg O+ 1T +1)
T = JWg O FFU+ V) +2) .. f1G - DRIG)IG), for j>1+1.

The output and input sequences of T; are clearly related by
[ o yi(=D) [yi0)] v .. ] = [ o owi(=1) [wi(0)] wi(1) ... ]T

After n recursive steps (recall that G(¢) has n rows) we obtain a cascade of sections
T =TTy ...T,—1, which may be regarded as a generalized transmission line.
LEMMA 4.4. FEach first-order section T; is a bounded upper-triangular linear
operator.
Proof. We already know that {f;(¢)}:cz and g;(t)}:cz are stable and uniformly
bounded sequences, respectively, and that {h;(t), k;(t)}+cz can always be chosen to
be uniformly bounded sequences as well. It is then a standard result that the corre-

sponding transfer operator T; is bounded (see, e.g., [15]). d
Moreover, if we define the direct sum J = & J(¢), it then follows that each T;
tez

also satisfies the following J-losslessness property.
LEMMA 4.5. FEach first-order section T; satisfies T; 3T} =J and T;JT; = J.
Proof. The proof is a direct consequence of the embedding construction (4.4),
which leads to the relations

AT O F:(8) + B (O TOh(t) = d7 (¢ = 1).
F(Od; 0)gi(t) + BT Oki(t) = 0.
g (Od; (©)9:(8) + K (O T(Oks(t) = T (2).
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Therefore, we can expand d; ' (t) and write

d;t(t) = hi(t+ 1)J(t+ Dhi(t+1) +
fFFE+DhIt+2)JE+2)hi(t+2)fi(t+1) +
fFFE+DfFE+2)h @t +3)J(t+3)hi(t+3)fi(t+2)fit+1)+...

Now the t*" element on the main diagonal of T;JT;* (denoted by );) is given by

Xt = J(t) [k} (6) T () ki (t) + gF (t)h; (¢ + 1) T (t + L)hi(t + 1)gs(¢)+
GO FF(E+ DRE(E+2)T( + 2)hi(t + 2) fi(t + 1)gi(t) +...] J(8).

Using the expression for d; ' (t) we obtain
A = J(t) = J(£)gi (¢) [di* (t) — di (0] gs(1) T (2) = I (1)

The same argument can be used to show that the off-diagonal elements of T;JT;" are
zero. For proving that T;J7T; = J we use a similar procedure. O

Furthermore, each section T; satisfies an important blocking property in the fol-
lowing sense.

THEOREM 4.6. Fach first-order section T; satisfies

[ L@fit-Dat—2) fihgit-1) ¢) ?]T=[0 7],

where g;(t) is at the t*" position of the row vector. Consequently, g;(t) e Ti(fi(t)) = 0.

Proof. This follows directly from the embedding result (4.4) (as well as from the
fact that each step of the generator recursion in Theorem 2.2 produces a new zero
row). The output of T; at time ¢ is given by

yvi(t) = ...+ fi(®) fi(t = 1)gs(t = 2)Ty_2 4 + fi(t)gi(t — 1)T3_1,4 + gi(t) T4
=[—di(t — 1)+ di(t — 1)] fs(®)h} (t)J(t) =0 ,

where we substituted the expressions for the Markov parameters {7};};<; and used

di(t) = gi(t)J (t)g; (t) + fi(t)gi(t — 1)J (¢ — 1)g; (t — 1) fi (t) +
fi@)fi(t —1)ga(t — 2)J(t = 2)g; (¢ = 2) £ (E = 1) fi () + ...

The same argument holds for the previous outputs. a

In general terms, the blocking property means that when g;(¢) (which is the first
row of G;(t)) is applied to T; we obtain a zero output at f;(t) at time t. We say that
fi(t) is a time-variant transmission-zero of T; and g;(t) is the associated time-variant
left-zero direction. We remark that the concepts of transmission zeros and blocking
directions are central to many problems in network theory and linear systems [17].

We can now put together the two main pieces proved so far: the Schur reduc-
tion procedure and the blocking properties of the elementary sections. This leads to
the following constructive proof of Theorem 2.2, assuming finite-dimensional spaces
{R(t),U(t),V(t)}scz and the supplementary nondegeneracy condition U(t)U*(¢) >
u >0 for all t € Z, where p is a fixed constant.

THEOREM 4.7. Assuming finite-dimensional spaces {R(t),U(t), V(t)}tcz and the
nondegeneracy condition U(t)U*(t) > u > 0, V ¢, the time-variant displacement
equation (2.1) has a Pick solution R(t) such that R(t) > €l > 0 for a constant €
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and for all t, if, and only if, there exists an upper-triangular strict contraction S
ISl < 1), S e L( @zV(t), @Zu(t)), such that
te te

(4.8) V(t) =U(t)Pu(t)S/ jE?tV(j) for everyt € Z.

Proof. One implication is immediate. We now give a constructive proof of the
converse statement. So assume the displacement equation (2.1) has a Pick solution
R(t) such that R(t) > el > 0 for a constant ¢ and for all {. Then applying the
Schur reduction procedure (or the generalized Schur algorithm) to {F(t), G(¢)} leads
to a cascade of elementary sections, viz., T = ToT; ...T,, 1. Following an argument
similar to that presented in [19] for the time-invariant case and in [24, 26] for the
time-variant case, we readily conclude that the entire cascade admits the following
state-space description:

F*(t) H*(t)J(t)
[x(t+1) y@® ]=[x(t) w() ] [ J()G* (1) J(t)K*(t)J(t)] ’

where {H(t), K(t)}tcz are, due to our assumptions, uniformly bounded operators
that satisfy the embedding relation

o [79 1™ 1[5 T-[% 4]

Moreover, it follows from the blocking properties of the sections T; that the entire
cascade T satisfies the global blocking relation

(410) [ ... F@)F(t-1)G(t-2) F#)Gt—-1) Git) o ...|]T=[0 ?],

where G(t) appears in the t*" position.
We further partition the matrix entries Tj; of the cascade T accordingly with J(I)
and J(j),

T TY
Tij=| 45 | >
T21 T22

and consider the triangular operators
T11 = [Tll‘{] s T21 = [TZI{] s T12 = I:T:g] s T22 = I:TZZ%] s for — o0 < l,] < 0.

We now verify that T2_21 is an upper-triangular and bounded operator and that
T12T2_21 is a strictly contractive upper-triangular operator, such that

V(t) = —U(t) Py (t)T12T5y / ,G<9tV(j) for all t € Z.
i<

For this purpose, note that it follows from the J—Ilosslessness property of T that

(4.11) TyoT3, > 1, T5,Ta > I
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Hence, T, is invertible and ||T5; || < 1. Define X (t) = Py (t)Ta2/ e<9 V(j), then it
i<t

follows from (4.11) that X*(¢)X (¢t) > I. Define T(t) = Pygy(t)T/ 6<5 U@G) ® v(y)
i<t

and J; = 6<3 J(j). It follows from the embedding relation (4.9) that
i<t

J—TH)LT(t)=[ ... F®)G(t—1) G@t) |"R*®)[ ... Ft)Gt—1) G¢) ]>0.

Hence, X (t)X*(t) > I and we conclude that X () is invertible for every ¢t € Z and that
the family {X ~!(¢)}scz is uniformly bounded by 1. Define the following operators
(acting on the same space as Taz),

() = [ Xét) g].

Then X (¢t + 1) and X (¢) satisfy the following nested property (they differ by just one
block column)

(4.12) X(t+1) = [ Xét) Z ] ,

where ? denotes irrelevant entries. Hence, {X (t)}:cz strongly converges to a bounded
operator X as t — oco. It is easily checked that X is upper-triangular and that it
actually coincides with T, .
The fact that T12T,, € E(tEBZV(t), teazu(t)), is an upper-triangular strictly
€ €

contractive operator is a consequence of the J-losslessness of T. We thus conclude
that § = —T152T,5 € [,(tg)z])(t), tgzu (t)) is a strictly contractive upper-triangular
operator that satisfies (4.8). 0

Remark: The above argument is based on a recursive construction of T. We can
also give a direct (nonrecursive) proof of the same result as follows: first prove the
embedding relation (4.9) as in Theorem 4.1 and the blocking property (4.10) as in
Theorem 4.6. We then conclude the argument as above.

4.3.2. Parametrization of all Solutions. We now show how to parametrize
all solutions S that satisfy (4.8).

THEOREM 4.8. Assuming finite-dimensional spaces {R(t),U(t), V(t) }tez and the
nondegeneracy condition U(t)U*(t) > u > 0, YV t, and that the displacement equation
(2.1) has a Pick solution R(t) such that R(t) > el > 0 for a constant € and for all t.
Then all strictly contractive upper-triangular solutions S € £(t®ZV(t), 1tGBZZ/{(t)) are

€ €

given by
S = —[T11K + T1] [T K + Tao] ",
for arbitrary upper-triangular contractive operators

Kecl(a VE), © U{) with ||K| <1.
teZ teZ

Proof. One implication is immediate. Consider a K as above. Since T5, is a
bounded upper-triangular operator, it follows that

S =— [TllK + T12] [T21K + T22]_1
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is bounded upper-triangular and, using the J(t)—losslessness of T, we conclude that
||S|| <1. Let S =T{1 K +Tis and Sy = Ty K + Tss. Then,

St | K
B]-r ]
and, because of the blocking property of T, we obtain that S is a solution of (4.8).
For the converse implication we follow the pattern developed in [6] and adapted for
the time-variant Nevanlinna-Pick problem in [5]. Because our framework is more gen-

eral, we shall indicate the necessary changes. For an upper-triangular operator X €
L(E,K), where £ = @ £(t) and K = @ K(t) are two families of Hilbert spaces, we
tez teZ

define X (t) = P () X/ 62 KC(j). We also denote by U, the set of upper-triangular op-
i<t
erators in L( @ V(t), @ (U(t) ®V(t))). We claim that TU, = {X € U, /G(t) X (t) =
tez tez

0, teZ} where G(t)=]... FO)F(t-1)G(t—-2) F@t)G(t—-1) G(t) ].In-
deed, take Y € U, then G(¢)(TY)(t) = G(¢t)T(¢)Y (¢) = 0, by the blocking prop-
erty of T. Conversely, take X € U,, G(¢t)X(t) = 0 for all ¢ € Z and define
Y = T7!X = JT*JX. Due to the structure of the Markov parameters of T, it
is readily checked that all the entries of Y under the main diagonal are zero. That is,
Y € U, and the claim is proved. From now on the arguments in Theorem 3.1 of [5]
for getting the required representation of the solution of (4.8) apply directly. d

5. Schur Parameters. There are special choices of the parameters {h;(t), ki ()}
in (4.4) that would greatly simplify the generator recursion of Theorem 4.2 and lead
to the so-called Schur parameters and the corresponding lattice sections. These pa-
rameters, which first appeared in the classical paper of Schur [30], have encountered
applications in several areas including the study of orthogonal polynomials, inverse
scattering, digital filtering, etc.. [18]. They were also studied in a general operatorial
framework in [3, 7]. However, we want to emphasize that in our paper the Schur pa-
rameters are not the parameters associated with the load (i.e., the upper-triangular
contractive operator K in Theorem 4.8), but rather the parameters associated with
the recursive construction of the strictly contractive solution S = —T15T5, .

We shall not go into the details of the lattice structures here. The reader is
referred to [24, 26] for a detailed derivation. We shall instead show how certain so-
called time-variant Schur (or reflection) parameters appear in two important special
cases. In both cases we assume dimR;(t) = 1 but in the second case we further
assume that F(t) is strictly lower triangular.

We continue to require the finite dimensionality assumptions and the nondegen-
eracy condition U(¢)U*(t) > p > 0, V t, of the previous section. But we now further
assume that dimR;(¢t) = 1 and that there exists b > 0 such that

(5.1) b <|g:i(t)J(t)g;(t)| for all t € Z.

We remark that conditions (5.1) and {d;(t)} bounded from below are independent,
as can be shown by simple examples. We distinguish between two special cases:
9:(t)J(t)gi (t) > 0 or g;(¢)J(t)g; (¢t) < 0. That is, g;(¢) has either positive or negative
J(t)—norm. We partition g;(t) accordingly with J(¢), viz., g;(t) = [ wi(t) wvi(t) ].

5.1. The Positive Case. In the positive case, we have

9: (1) ()g] (t) = wi(t)u] (t) — vi(t)v] (¢) > 0,
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and, by a well known factorization result (see [21]), it follows that there exists a con-
traction ;(¢) : R(v}(t)) — R(uj(t)) such that v;(t) = u;(t):(t), and ||7:(¢)|| < 1. We
can extend this contraction by zero to another contraction v;(t) € L(U(t), V(t)) that
still satisfies ||:(¢)|| < 1 and v;(t) = u;(¢)7y:(¢). If we now construct the J(¢)—unitary
operator

o [ Ty —%@® [ =@y @)/? 0
o= Z T ]| 0 (I =3 Ow@) 2 ]
we readily conclude that ©;(t) reduces g;(t) to the form g;(t)©;(t) = [ &(t) 0 ],
for a certain d;(t). Now note that

6i(t)6; (t) = 9:(£)©:(t) J (1) O (t)g; (t) = 9i(t) I ()gi (t) > b ,

and consequently, using the boundedness of {g;(¢t)J(t)g; (¢)} from below, there exists
a constant k > 0 such that ||©;(¢)|| < k for all t.

5.2. The Negative Case. In the negative case, we have
9:(1)J(8)g7 (£) = wi(t)u; () — vs(t)v; (¢) <O,

and, by the same argument as above, we conclude that there exists a contraction
() € LU, V(b)) (|1:(t)]] < 1) such that u;(t) = v;(t)7y;:(t). If we now define the
J(t)—unitary operator

o) [ Jun O | [ =00 0
' —7i(t) Iy 0 (=@ e)—> ]~
we readily conclude that ©;(t) reduces g;(t) to the form g;(t)0;(¢t) = [ 0 &(¢) |,

for a certain 6;(t). It also follows from
—6i(£)6; (t) = 9i(£)0:i(t) J (1) ©7 (t)g; (t) = 9:(£) J (¥)g; (t) < =b ,

that ||©;!(¢)|| < k for some & > 0.
The contractions {y(t)};cz are called the Schur parameters of the underlying
displacement structure (2.1).

5.3. Strictly Lower-Triangular F(t). An important special case that often
arises is the case of strictly lower triangular F'(t). That is, f;(¢) =0 for all ¢t € Z and
1=0,1,...,n — 1, and consequently, d;(t) = g;(¢t)J (t)g; (t). But {d;(¢)} is uniformly
bounded from below, viz., d;(t) > € > 0 for all t. Hence, we now always have

wi(t)u; (t) —vi(t)vi(t) >e>0 forall teZ ,

i
and there always exist Schur parameters «;(¢) such that v;(t) = w;(t)v;(t), with the
corresponding J(t)—unitary operator defined by

T k=@ 1T =i (e) 0
Qw‘[—ﬁb v ][ 0 a—ﬁmwm>w]

The generator recursion in Theorem 4.2 can then be shown to reduce to the compact
form (see also [29])

0 1 0 0 0
= F;(t)Gi(t —1)0;(t —1 + Gi(t)O,(t
[Gm(t)] (G:(E =10 )[0 0] © ()[Of(r(t)—l)]
which has the the following interpretation: multiply G;(¢t) by ©;(t) and keep the last
columns; multiply the first column of G;(t — 1)0;(¢t — 1) by F;(t); these two steps
result in G41 ().
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6. Concluding Remarks. We proved a general result (Theorem 2.2) concerning
time-variant displacement equations of the form (2.1) with Pick operator solutions
R(t). We considered several moment, completion, and interpolation problems whose
solutions followed as special cases of Theorem 2.2. These problems were stated in a
general operator setting, including a time-variant version of the tangential Hermite-
Fejér interpolation problem. Under supplementary finite-dimensionality and nonde-
generacy conditions, a recursive procedure was derived that led to a recursive con-
struction and parametrization of all solutions of the general result of Theorem 2.2.
We also considered special cases where further simplifications were possible.
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