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A LOOK-AHEAD BLOCK SCHUR ALGORITHM FOR
TOEPLITZ-LIKE MATRICES *

ALI H. SAYED! AND THOMAS KAILATH?

Abstract. We derive a look-ahead recursive algorithm for the block triangular factorization
of Toeplitz-like matrices. The derivation is based on combining the block Schur/Gauss reduction
procedure with displacement structure and leads to an efficient block-Schur complementation algo-
rithm. For an n X n Toeplitz-like matrix, the overall computational complexity of the algorithm is

3
O(rn? + ™) operations, where r is the matrix displacement rank and ¢ is the number of diagonal
blocks. These blocks can be of any desirable sizes. They may, for example, correspond to the smallest
nonsingular leading submatrices or, alternatively, to numerically well-conditioned blocks.
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1. Introduction. The triangular factorization of a matrix is a useful tool for
many problems. Such a factorization is guaranteed to exist whenever the matrices
are strongly regular, i.e., all leading principal minors are nonzero [11]. The standard
Gaussian elimination technique (also known as Schur reduction) may then be used
to compute the triangular factors of the matrix. Also, in many applications, one is
often faced with matrices that exhibit some structure, e.g., Toeplitz, Hankel, close-
to-Toeplitz, close-to-Hankel, and related matrices. Such structure is nicely captured
by introducing the concept of displacement structure [18, 20]. In this context, an
n X n structured matrix R is characterized by an n x r matrix G (called a generator
of R) with r < n usually. The minimum column dimension of G is called the dis-
placement rank of R. The triangular factorization of such strongly regular R can be
computed efficiently and recursively in O(rn?) operations (additions and multiplica-
tions) [19, 23, 32]. This is achieved by appropriately combining Gaussian elimination
with displacement structure. The resulting algorithm can then be regarded as a far
reaching generalization of an algorithm of Schur [1, 36], which was chiefly concerned
with the apparently very different problem of checking whether a power series is ana-
lytic and bounded in the unit disc; hence the name generalized Schur algorithm. The
reader may consult the recent survey paper [21] for detailed discussions on the topic
of displacement structure.

Now most fast factorization algorithms that have been derived so far in the lit-
erature assume that the involved structured matrices are strongly regular. In several
instances, however, it might be more appropriate to perform block Schur complemen-
tation steps. This happens, for example, when the assumption of strong regularity is
dropped, which then requires the use of the smallest nonsingular leading minor, or
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a numerically well-conditioned leading minor of appropriate dimensions, in order to
proceed with a block Schur reduction step.

Indeed, many authors have worked on the problem of extending the fast algo-
rithms to nonstrongly regular matrices, where the sizes of the block Schur complemen-
tation steps were determined by the sizes of the smallest nonsingular leading minors.
Among these we may mention the works of Heinig and Rost [15], Delsarte, Genin,
and Kamp [9], and Gover and Barnett [13] who generalized the classical Levinson
algorithm for solving Toeplitz systems of linear equations (or equivalently factoring
the inverse of the Toeplitz coefficient matrix); a so-called split-Levinson algorithm
was later considered by Ciliz and Krishna [7]. Pombra, Lev-Ari, and Kailath [28]
also derived both Levinson and Schur type algorithms for Toeplitz matrices by gen-
eralizing the three-term recursion for polynomials orthogonal on the unit circle. The
case of nonstrongly regular Hankel matrices arises in many applications as well, such
as the partial realization problem and decoding of BCH codes [4, 8]. Algorithms for
computing the triangular factorization and/or inversion of arbitrary Hankel matrices
have been derived by Berlekamp [3], Massey [25], Kung [22], Citron [8], etc.. More
recently, Zarowski [37] used the algorithms of Heinig and Rost [15] and Delsarte et al.
[9] to induce Schur type algorithms for Hermitian Toeplitz and Hankel matrices with
singular minors.

All these algorithms are applicable to Toeplitz and Hankel matrices only. Re-
cently, Pal and Kailath [26, 27] derived recursive algorithms that are applicable to a
larger class of matrices called quasi-Toeplitz and quasi-Hankel. These are congruent
to Toeplitz and Hankel matrices in a certain sense. The derivation exploits this fact
and, among other results, shows that the determination of the size of the smallest
nonsingular minor is reduced to counting the number of repeated zeros at the origin
of a certain polynomial.

But Toeplitz, Hankel, quasi-Toeplitz, and quasi-Hankel matrices are all struc-
tured matrices with displacement rank » = 2. In many applications however, such as
system identification, image processing, and multichannel filtering, block structured
matrices arise that have displacement ranks larger than 2. In these cases, the previous
algorithms are not applicable. Moreover, in the above varied approaches, the sizes of
the block Schur complements were set equal to the sizes of the smallest nonsingular
minors, which thus requires the verification of the occurrence of exact singularities.
This may pose considerable difficulties from a numerical point of view.

Alternatively, one can determine the sizes of the block steps by looking for nu-
merically well-conditioned blocks. This has recently been studied by several authors
trying to devise effective numerical algorithms for general Toeplitz systems of equa-
tions. An early paper was the one of Chan and Hansen [6]. Among many others we
mention Gutknecht [14] and Freund [10], which give extensive references.

In this paper, we provide a new fast look-ahead (block-Schur) algorithm for ma-
trices with very general displacement structure, which include the Toeplitz case as a
special instance. We study arbitrary Hermitian Toeplitz-like matrices and derive an
algorithm that leads to a factorization of the form R = LDL*, where L is a lower
triangular matrix and D is a block diagonal matrix whose block entries are easily
invertible. The overall computational complexity of the algorithm is O(rn? + n?/t)
elementary operations (addition and multiplication), where ¢ is the number of diago-
nal blocks in D. In the strongly regular case we have ¢ = n and the complexity reduces
to the usual O(rn?) figure. The diagonal blocks in D can be of any desirable sizes.
They can be chosen, for example, as the smallest nonsingular minors, or as the sizes
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of numerically well-conditioned blocks, etc.. For this reason, our development will
consist of two independent steps. We shall first derive the block Schur algorithm as-
suming arbitrary choices for the sizes of the blocks, thus leading to a general-purpose
fast Schur complementation procedure that does not depend on the specific choices
for the sizes of these blocks. We shall then focus in Section 5 on the particular choices
that correspond to the smallest (exactly) nonsingular leading blocks. This is done
here because, apart from numerical possibilities, the fast block-Schur complementa-
tion algorithm also has several theoretically interesting features as well. For example,
the explicit formulas for the block diagonal matrix in the block triangular factoriza-
tion can give simple rules for computing the inertia of general structured matrices,
with important applications in root distribution of polynomials.

The paper is organized as follows. In Section 2 we review the class of structured
matrices and describe the Schur/Gauss reduction procedure for the triangular fac-
torization of strongly regular matrices. In Section 3 we combine the Schur reduction
procedure with displacement structure and derive the generalized block Schur algo-
rithm. In Section 4 we separately consider the special cases of strongly regular and
block steps along with the corresponding computational complexities. In Section 5
we address the issue of determining the sizes of the smallest (exact) nonsingular mi-
nors. In Section 6 we show how to exploit the matrix structure in order to efficiently
compute the QR factors of the blocks of D. In Section 7 we give a system (and
state-space) interpretation of the derived recursions and we conclude with Section 8.

2. Structured Matrices. The concept of displacement structure and struc-
tured matrices can be briefly motivated by considering the much-studied special
case of a Hermitian Toeplitz matrix, T = [ci*j]?,;:lo ,Ck = c" 4. Since T depends
only on n parameters rather than n2, it may not be surprising that matrix prob-
lems involving T' (such as triangular factorization, orthogonalization, inversion) have
complexity O(n?) rather than O(n3). But what about the complexity of such prob-
lems for inverses, products, and related combinations of Toeplitz matrices such as
T YT T, Ty — ToTy 'Ty, (TyTo) 'T3,...7 Though these are not Toeplitz, they are
certainly structured and the complexity of inversion and factorization are not ex-
pected to be very different from that for a pure Toeplitz matrix, T'. It turns out that
the appropriate common property of all these matrices is not their “Toeplitzness”,
but the fact that they all have low displacement rank. The displacement of an n x n
Hermitian matrix R was originally defined by Kailath, Kung, and Morf [20] as

(2.1) VR = R- ZRZ* ,

where the symbol * stands for Hermitian conjugate transpose of a matrix (complex
conjugation for scalars), and Z is the n x n lower shift matrix with ones on the first
subdiagonal and zeros elsewhere; ZRZ* corresponds to shifting R downwards along
the main diagonal by one position, explaining the name displacement for VR. If VR
has low rank, say r, independent of n, then R is said to be structured with respect
to the displacement defined by (2.1), and r is referred to as the displacement rank of
R. In this case, we can (nonuniquely) factor VR as VR = GJG*, where J = J* is a
signature matrix that specifies the displacement inertia of R: it has as many +1's on
the diagonal as VR has positive and negative eigenvalues, J = (I, ® —I;), p+qg=r,
and G is an n x r matrix. Here, I, denotes the p x p identity matrix. The pair {G, J}
is called a generator of R. For a Hermitian Toeplitz matrix T' = [¢;— J']Zj_:lo ,Ck = CYp,
with ¢g = 1, it is straightforward to verify that (2.1) leads to a compact description
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of T. Indeed, if we subtract ZT Z* from T we get

*

1 0 1 0
2.2 T-ZTZ* o “ 10 o °
Cn—1 Cp—1 Cph—1 Cn-1

which shows that T'— ZT' Z* has rank 2, or equivalently, 7" has displacement rank 2,
independent of n.

To motivate more general structures, and to clarify the importance of direct fac-
torization problems as opposed to inversion problems, we consider a simple example
that shows the need for more general structures such as R — FRF™*, with lower trian-
gular F.

Consider again the case of an n x n Hermitian Toeplitz matrix T for which T' —
Z,TZ} has rank 2 (Z,, now denotes the n x n lower shift matrix), and assume we are
interested in factoring T~!. If we form the block matrix (see [19] for more examples
and discussion)

-1

I 0

it is then straightforward to check that the displacement rank of M with respect to
M — Z5,MZ3, is equal to 4. However, we can get a lower displacement rank by using
a different definition, viz.,
Z, 0 Z, 01"
U I T I
which corresponds to choosing F' = Z,, ® Z,, in the definition R — FRF™* (rather than
F = Z,,, the 2n x 2n lower shift matrix).

The question is then how to exploit the structure of M in order to obtain fast
factorization of T~1. The answer is that the (generalized) Schur algorithm operates
as follows: it starts with a generator matrix G of a structured matrix (say the gen-
erator of M), and it recursively computes generator matrices of the successive Schur
complements of the matrix. So the first step of the algorithm gives us G1, which is
a generator of the Schur complement of M with respect to its (0,0) entry. The next
step gives us G, which is a generator of the Schur complement of M with respect to
its 2 x 2 leading submatrix, and so on. After n such steps, we obtain a generator of
the nt® Schur complement, which is T7~!. This procedure can be shown to provide
the triangular factorization of 71 (see, e.g., [19, 21]).

Hence, by performing the direct factorization of the extended matrix M we also
obtain the factors of the inverse matrix 7!; this is an alternative to the use of the
Levinson algorithm for this problem. Applications with more general matrices F'
(such as diagonal or in Jordan form) include interpolation problems [5, 33, 34] and
adaptive filtering [35].

In this paper we study n xn Hermitian matrices R with Toeplitz-like displacement
structure of the form

(2.3) R— FRF* =GJG* ,

where F' is an n x n lower triangular matrix with diagonal elements { fo, f1,- .-, fn—1},
G is an n X 7 so-called generator matrix (with 7 < n), and J is an r X r Hermitian
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signature matrix satisfying J2 = I, such as J = (I, ® —I;), p+ ¢ = r, or some other
convenient form (as will be the case in Section 5.5). We further assume that R is
invertible but not necessarily strongly regular, and that 1 — f;f} # 0 for every 1, j.
The latter condition guarantees the existence of a unique solution R of (2.3) (but it
can be relaxed as discussed in [21]). We say that R has a Toeplitz-like structure with
respect to F' and {G, J} is called a generator pair of R.

2.1. The Block Schur/Gauss Reduction Procedure. The Gaussian elim-
ination (or Schur reduction) procedure is a recursive algorithm that computes the
triangular factors of a matrix. To clarify this, consider a Hermitian and invertible
(but not necessarily strongly regular) matrix R, and let 79 denote the desired size of
the leading (invertible) block, Do, with respect to which a Schur complementation
step is to be performed. The 1y may stand for the size of the smallest nonsingular
minor of R or, alternatively, for the size of a numerically well-conditioned block (as
in [6, 10], for example), or for some other convenient choice. If Ly represents the first
7o columns of R then

0

R— LoDi'Li = [ O 0

] = Rl ’

where R; is an (n—mng) X (n —1o) matrix that is called the Schur complement of Dy in
R. Also, Lg is an n x 1y matrix whose leading 79 x 19 block is equal to Dy. We shall
say that R; has one (block) zero row and one (block) zero column (the size of the
block being 7). If we further let 7; denote the desired size of the leading (invertible)
block of R; (denoted by D;) and consider the corresponding first 7; columns of R;
(denoted by L1), then we also have

0

Ry — LiD{'L} = [ OTI10><7/1 R,

:IERZa

where R» is now an (n—19 —n1) X (n — 1o — 71) matrix that is the Schur complement
of D; in R;. Repeating this recursive procedure, viz,

(2.4) [ Omoxm R?+1 ] =Ri— L;D7'L:, i>0,

we clearly get, say after ¢ steps,

R=LD3'L* =
—1 7% 0 X —1 0 X * 07]0X7]2 —1 Onoan
LoD, L0+[ "21"1 ]Dl [ "21"1] + | Opixn. | D3 05, 572 +.o.,
Ly Ly

where Dp = (Do @ D1 & ... ® D;_1) is block diagonal, and the (nonzero parts of
the) columns of the block lower triangular matrix L are {Lg,...,L;—1}. Here t is
the number of reduction steps, i.e., n = Z:;é 7n;. We also define, for later reference,
o = Zﬁ;& ni, a9 = 0. The computational complexity of the above procedure is O(n?)
elementary operations and it leads to a block triangular factorization of R.

It is clear at this point that the following are among the major issues and/or

questions that arise during the block triangular factorization procedure: (i) How to
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efficiently exploit any Toeplitz-like structure of R; (ii) How to efficiently compute the
triangular factors L; and D;; (iii) How to compute (or avoid) the inversion of the
diagonal blocks D;; (iv) How to determine an alternative triangular factorization of
the form R = LD ;' L*, with L lower (not block) triangular and with a block-diagonal
matrix D whose block entries are easily invertible; (v) How to determine the sizes
of the block steps, 7;.

We address the first four questions in the next two sections and postpone the
discussion of the last question to Section 5, where we focus on a particular choice for
the 7; that is determined by the sizes of the smallest nonsingular minors of R. It will
be clear from the derivation that follows that, in order to increase the computational
efficiency of the resulting algorithm, these questions should be answered by essentially
restricting ourselves to the use of the entries of the generator matrix of R, without
the need to explicitly form its successive block Schur complements, R;.

3. Block Schur Algorithm for Toeplitz-Like Matrices. We now exploit
the fact that R is a structured (Toeplitz-like) matrix. That is, we show that the
successive computation of the Schur complements of R in (2.4) can be carried out
in a computationally efficient recursive procedure by exploiting the structure implied
by (2.3). To begin with, we define F; to be the submatrix obtained by ignoring the
first a; columns and rows (or the first ¢ block columns and rows) of F' (recall that
a; =10+ ...+ m;_1). This means that Fj; is a submatrix of F;, viz.,

_[F o _
Fz—[? E+1:|,FO_F,

where ? denotes irrelevant entries and F is the n; x ; leading submatrix of F}. In other
words, F;11 is obtained by deleting the first n; rows and columns of F;. The following
theorem, first stated in general terms, shows that the successive Schur complements
of a Toeplitz-like matrix inherit its structure and thus satisfy a displacement equation
similar to (2.3).

THEOREM 3.1. The it" Schur complement R; of a Toeplitz-like matriz R, as in
(2.8) and (2.4), is also Toeplitz-like with respect to F;, viz., R; satisfies a displacement
equation of the form R; — F; R, F; = G;JG}, where the generator matriz G; satisfies
the following recursive construction: start with Go = G, Fy = F, and repeat for i =
0,1,...,t—1:

1. At step i we have F; and G;. Let G‘i denote the top n; rows of G;.
2. The it" triangular factors L; and D; are the solutions of the equations

(3.1a) D; = EiD;Fy + G;JGT | Ly = FL;F? + G;JG.

3. Choose arbitrary r X n; and r X r matrices H; and Ki, respectively, so as to
satisfy the embedding relation

F, G, 1[D: 0 . 1" _[Di o
(3:10) ER I IR
4. A generator for R;y1 is then given by

(3.1c) [ O xr ] = F,L:HJ+G;JK}J.
Giy1
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Proof. We prove the result for G;. The same argument applies to {G;, i > 1}. It
follows from (2.3) that the leading submatrix Do and the corresponding 7y columns
Ly are solutions of the equations: Dy = 13'0D013'6" + éoJéa and Ly = FLOﬁ’g + GJG’S.
Substituting these expressions into the definition of R; in (2.4) and computing the
difference Ry — FR, F* we get

Ri— FRF* =GJ {J - éngléo} JG* +
(3.2) FL, [Do—l . F;Dglﬁo] LyF* —
FLoFyDy*GoJG* — GIGE Dy Fy Ly F*

We now verify that the right-hand side of the above expression can be put into the
form of a perfect square by introducing some auxiliary quantities. Consider an r x 1o
matrix HO and an r X r matrix KO that are defined to satisfy the following relations
(in terms of the quantities that appear on the right-hand side of the above expression.
We shall see very soon that this is always possible.):

H;JHy = Dy' — By Dy Fy, KiJKo=J —GiDy'Go, KiJHy = —GiD; E.

Using (Hy, KO)A we can factor the right-hand side of (3.2) as ~G’l JG*, where Gy =
FLoH;J+GJK(J. But the first block row and block column of R; are zero. Hence, Gy

is of the form G1 = [ 0,5,y GT ]T . Moreover, it follows from the above expressions
for (ﬁo,K’o) that F‘O, GO, I-:TO, and K'o satisfy the relation

By Go1'[Dg" o[ F Go]_[Dg' o
Hy Ky 0o J Hy Ky 0o J]’
which is equivalent to (3.1b) for i = 0. 0 o
We still need to show how to choose matrices (H;, K;) so as to satisfy the em-

bedding relation (3.1b). Following an argument similar to that in [24] we get the
following result.

LEMMA 3.2. All choices of H; and K; that satisfy (3.1b) can be expressed in
terms of Ey, Gy, and D; as follows :

A

. R N —1

f,=0:1JG: [Im - Tz-F,.*] Di\(nl, - F)

N N ~.1-1 N
(3.3) K=ot {Ir — JG; |1, = miFY ] Di‘lGi} ,

where ©; is an arbitrary J—unitary matriz (©;J0F = J) and ; is an arbitrary unit-
modulus scalar (1| =1).

Substituting expression (3.3) for H; and K; into the generator recursion (3.1c) we
obtain the following algorithm, which we shall refer to as the generalized block Schur
algorithm. This algorithm allows us to compute generator matrices for the successive
(block) Schur complements of R, viz., G — G1 — G2 — ..., which can then be used
to solve for the triangular factors via (3.1a).

ALGORITHM 3.3 (Block Schur Algorithm). The generators G; of the successive
Schur complements R; satisfy the recursion

(3.4) [ 2:’:1 ] = {G,- + (17 F; — In_o,) LD (I, — T;F,-)*lc‘;,-} 0; ,
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where ©; is an arbitrary J—unitary matriz and 7; is an arbitrary unit-modulus scalar.
The it" triangular factors L; and D; are found by solving (3.1a).

4. Computational Issues and Simplifications. The point to stress here is
that we have so far shown the following: the triangular factors L; and D; can be found
by solving equations (3.1a), which are completely specified in terms of F; and G; and
without the need to explicitly form R;, since the Gs can be recursively computed via
(3.4). To further stress this point we now take a closer look at recursion (3.4) and
equation (3.1a).

4.1. Strongly Regular Steps. We first consider the special case that corre-
sponds to 7; = 1, and which we shall refer to as a strongly regular step. In this case, it
is possible to further simplify the generator recursion (3.4). To this effect, we notice
that the triangular factor L; is now a column vector, which we denote by the lower-
case letter /;, the diagonal factor D; is a scalar, denoted by d;, the first ; rows of
G; collapse to a single row vector, denoted by g;, and the quantity F; is also a scalar
equal to f,, (we are using lower case letters to refer to quantities in a strongly regular
step). A direct consequence of these facts is that we can now explicitly solve for d;
and /; in (3.1a). More specifically, we get

9iJ9;

= J¥ I e = EY G Jar.
(413;) dz 1_ |fal 2 lz (In—az fa,'FZ) GZJg‘L

Substituting these expressions into the generator recursion (3.4) we readily verify that
it simplifies to

leT Jg’."gi
41b = Gz cI)i_In—a' Gz; G)z ’
(4.1b) [Gm] { T ) giJg;,}

where ®; is a “Blaschke matrix” or “Blaschke-Potapov” factor (see [29]) of the form

1—7',';

(4.1C) q’z’ = : (Fz - fa,-In—a,-)(In—ai - f;,-Fi)il'
Ti — fai

The difference between (4.1b) and the general form (3.4) is that recursion (4.1b) is
written in terms of F; and G; only, while expression (3.4) still involves L; and D;*.
We now move a step further and show that (4.1b) can be further simplified by

conveniently choosing the free parameters ©; and 7;. An obvious choice is ©; = I,

and 7; = ii;ﬁf’ (this choice for 7; leads to ®; = (F; — fo,In—a;)(In—a; — 2, Fi)71).

There are other convenient choices for ©; as well, such as the one we describe next:
a strongly regular step clearly implies that d; # 0 and consequently g;Jg; # 0. That
is, g; has nonzero J—norm. Hence, we can always find a J—unitary rotation ©; that
reduces g; to the form

(4.2) gi®i=[0 ... 0 :I:Z(j) 0o ... 0]7

with a nonzero entry in a single (convenient) column, say the j** column. So assume
we use this choice for ©;, which can be implemented in a variety of ways : we may use
elementary rotations such as Givens or hyperbolic [12], Householder transformations
[12, 30], etc.. Using the above choice leads to the following algorithm in the strongly
regular case.
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ALGORITHM 4.1 (Strongly-Regular Step). The generator recursion for a strongly
reqular step is given by

0 I, 0 0 0, 0 0
(4.3) [G :|=Gz@z 0 0 0 + ¢,G;0; 0 1 0 s
il 0 0 I, 0 0 0,

where ®; = (F; — fo,In—o;)In—o; — fC*HFi)*l. That is, Gi+1 is obtained as follows:
choose a convenient J—unitary rotation that reduces the first row of G; to the form
(4-2); multiply the 51" column of G;©; by ®; and keep all other columns unchanged;
these steps result in a generator G;11. The triangular factors are given by d; =

9:J g7 /(1= |fau?) and b = (In-a, = J5,F) 7G0T [ 0 ;Y 0 |
An alternative form for the generator recursion that corresponds to using ©; = I,
instead of (4.2), is given by

01y Jg; gi
= G, q)z - In—a- G, g -
[ Git1 ] * ) 9iJ g}

In this case, we compute l; via l; = (In—o, — f;iFi)’lGiJg;", and d; is the leading
entry of l;.

We shall assume throughout that F' is a sparse matrix in the sense that com-
puting F'z, for any n x 1 column vector z, requires O(n) operations. It can then be
checked that each step of recursion (4.3) requires O(r(n — ;)) operations. Further-
more, we may not need to explicitly compute the inverse matrix (I,,_,, — f;iFi)_l
that appears in the expressions for ®; and [;. We can instead, in the case of [; for
example, solve a triangular system of linear equations of the form (I,,_o, — f5. F;)x =

Gi©®;J[0 1 0 ]T. Moreover, in many applications the matrix F has zero diago-
nal entries (i.e., fo; = 0), in which case computing /; and ®; is trivialized since the
inverse term disappears.

As remarked above, a strongly regular step corresponds to d; # 0, or equivalently,
9iJg; # 0. There is however a trivial special case with d; = 0, which can still be
incorporated into a strongly regular step. This happens when g; is itself a zero row
vector. That is, G; is of the form

This implies that the first row and column of R; are zero. Going back to the descrip-
tion of the Schur reduction procedure in Section 2.1 we see that we can proceed in
this special case by choosing [; = [ 10 ... 0 ]T and by setting G;;1 = G; and
F; 11 equal to the submatrix obtained by deleting the first row and column of F;.

4.2. Block Steps. We now consider the case ; > 1, and which we refer to as
a block step. In this case, the triangular factors L; and D; are block matrices and
it is not possible, in general, to solve for L; and D; and write down simple explicit
expressions in terms of F; and G; only, as in the strongly regular case (see (4.1a)).

We can however proceed with (3.4) and use the simple choices ©; = I, and 7; = 1.
Under these conditions, we can rewrite the generator recursion (3.4) in the following
form.
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ALGORITHM 4.2 (Block Step). The generator recursion for a block step can be
expressed as

(4.4a) [ Onxr ] =G+ X; ,
Git1

where X; = (F; — In,ai)LiDgl(Ini - ﬁ',-)‘léi. The triangular factor L; is obtained
by solving the equation (the leading n; x n; submatriz of L; provides D;)

(4.4b) L; = F;L;F¥ + G JG?.

Expression (4.4a) shows that G;; is obtained by adding the last (n — ;1) rows
of X; and G;, while the top rows of X; should cancel the top rows of G;.

4.2.1. Computing L;. Solving for L; in (4.4b) is not a major problem in most
applications such as linear prediction, inverse scattering, solution of (structured) linear
systems, least-squares problems, interpolation problems, etc.., because the matrix F’
arises in sparse forms, e.g., F = Z, F = Z+ M\, F = diagonal {fo, f1,---, fn_1}, F =
(Z+XxoD)B(Z+MID)®. .., F = Z+diagonal {fo, ..., fn_1}. Consider, for instance, this
last bidiagonal form. Denote the 7; columns of L; by L; = [ lio lix ... lini—1 |,
and the 7n; rows of G; by {gi0, gi1,-- > 9i,ni—1} (9i = gio)- It is then straightforward to
check, using (4.4b), that the columns of L; can be recursively computed as follows:

lio = (In-a; — fa, Fi) "' GiJgj,

lij = (In—ai — ;i—i-jFi)il [Gngz*] + Filz”j_l] , for i=1...,m—1.
Once again, the inversion (I, _q, — f%,, ;Fi) " can be avoided by solving a sparse trian-
gular system of linear equations. The computational complexity needed in computing
L; is O(rni(n — a;)).

4.2.2. Computing X;. We now consider the operation count for one possibility
for computing X; (other possibilities clearly exist). Recall that L; has D; as its leading

block. To show this explicitly we partition L; as follows: L; = [ Df WT ]T . Then

LiD;'=[1I, (W.D;hHT ]T . At this stage we introduce the QR decomposition of
D,, viz., D; = Q;P;, where Q; is an 7; x n; unitary matrix (Q;Q} = I,;) and P; is an
n; X m; nonsingular upper triangular matrix. Invoking the fact that D; is Hermitian
(i.e., Q;P; = P;Q?) we conclude that D' = Q; P, *. The point is that we shall show
later in Section 6 that @; and P; can be efficiently computed with O(n?) operations
by using only strongly regular steps (this is despite the fact that the leading minors of
D; may be singular). Assume, for the moment, that this is indeed the case. We can
then rewrite X; in the form

o P ] poeip i
(45) Xi= (Fi= Lo | g, | P = )76

We now evaluate the operation count needed in computing X;. The term Y; =
(I; — F;)7'G; can be evaluated in O(rn;) operations (by solving r lower triangular
linear systems, for instance). The product Y> = P[*Yl can also be reduced to the
solution of r triangular linear systems, viz., P;Y> = Yi, and thus requires O(rn?)
operations. The term Y3 = W;Q;Y> requires O((n? + rn;)(n — ait1)) operations.
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Y;

Finally computing the last (n — ajt1) rows of (F; — I,,_q,) [ v,
3

] requires O(n;(n —

@j4+1)) operations.

It is not necessary to perform these computations in the above specified order.
Other orders are possible and may be more suitable depending on the problem at
hand. We may even ignore the QR factorization of D; altogether and simply invert
D;. But we opted here for introducing the QR representation of D; simply because, as
we shall show in a later section, this factorization can be computed rather efficiently
due to the Toeplitz-like structure of R and, moreover, it will also lead to an alternative
convenient factorization for R itself, as shown in the next section.

But for now we note that the computational cost involved in computing G;11 and
L; in the block case is O((n — a;iy1)(n? + n; + 2rn;) + 0?2 + r0; + rnimi—1) operations.
To get an idea of the overall computational complexity, i.e., for i = 0,1,...,t — 1,
we assume that the 7)s are equal, viz., 5o = m = ... = n—1 = n/t. It is then
straightforward to verify that the above operation count reduces to O(rn? + T;—S) (In
the strongly regular case we have t = n and 7; = 1, in which case the complexity
reduces to the usual O(rn?) figure).

4.3. An Alternative Triangular Factorization. The factors L; and D; lead
to a triangular factorization of the form R = LD,}lL*, as discussed in Section 2.1,
where Dp is block diagonal with entries equal to D; and L; is block lower triangular.
We can instead use the QR factors of D; to write an alternative factorization for
R, where L is replaced by a lower triangular matrix L, and Dp is replaced by a
block diagonal matrix Dg with unitary and triangular blocks. To clarify this, we
introduce the block-diagonal unitary matrix Q@ = Qo ® Q1 ® ... ® Q;_1 and the block
diagonal matrix P = Py " @ P; * @ ... ® P, }, where the diagonal blocks P, * are
lower triangular. Then LDZ'L* = LQQ*D3'QQ*L*. If we define L, = LQ then we
obtain the alternative factorization

R=1PQL*,

)
O

@{
w

where L is lower triangular. In fact, the (nonzero part of the) i*" block column of L

has the f [ P

as the form WiQ;
been computed in the generator recursion. We further remark that the inverses P; *
in P may not be needed explicitly since using the factorization R = ﬁﬁ,}lﬁ* to solve
a linear system of equations, for example, requires knowledge of the P/s only. In
summary, we get the following algorithm.

] , where P;* is lower triangular and the term W;Q; has already

ALGORITHM 4.3 (Fast Block Triangular Factorization). Consider a Hermitian
invertible and Toeplitz-like matriz R, viz., R satisfies R — FRF* = GJG*. A trian-
gular factorization for R can be recursively computed in O(rn? + "73) operations as
follows: start with Gy = G, Fy = F, and repeat for i > 0:

1. At step 1 we have F; and G;.

2. Choose the size n; of block Schur complementation step.

3. If n; = 1 then update G; to Giy1 using Algorithm 4.1 and compute the cor-
responding l; = [ d; w¥ ]T
¢ =1 and p; = d;.

. A QR factorization for d; can be trivially chosen as
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4. If n; > 1 then compute L; = [ DF WT ]T as described in Section 4.2.1
and determine the QR factors of D;, viz., D; = Q;P; as described in Section 6. Also
update G; to Giy1 using Algorithm 4.2.

5. Construct the (nonzero parts of the) columns of L via [ Pi ] or [ P ] .

Wigi WiQi
This leads to a triangular factorization of the form R = LPQL* where Q = Qo &
Q1®.. Q1 and P=P;, "o P["®...0 P_}.
The standard block triangular factorization, R = LDE,IL*, can also be obtained

by simply ignoring the QR factorizations specified above and directly using the L; and
D;.

5. One Possibility for Choosing the Block Sizes 7;: The Exact Case. As
mentioned earlier, the sizes of the block steps (7;) can be determined in different ways.
They may denote the smallest (exact) nonsingular minors, or the sizes of numerically
well-conditioned blocks, or some other convenient choices. In this section we shall
focus, however, on the first choice in order to highlight some theoretically interesting
features that arise in the ezactly singular case. But we hasten to add that the block
factorization algorithm of the previous section is equally applicable to other choices
for the 7;.

5.1. Checking for n; = 1,2,3. We first remark that for a Toeplitz-like matrix R
as in (2.3), determining whether 7; = 1,2, or 3 in the exactly singular case is a simple
task. To clarify this, recall from Theorem 3.1 that the successive Schur complements
of R are also Toeplitz-like, viz., they satisfy displacement equations of the form

(5.1) R; — F;RtF: = GIJG: ,

where F; is lower triangular with diagonal entries equal to {fa;, fait1y---5fn_1} It
thus follows that the top-left corner element of R; is given by (where g;o denotes the
first row of G;) di = gioJ g5/ (1 = fa: fa,)- If di # 0, or equivalently, gy Jgj, # 0, then
n; = 1. If this is not the case, then we have to check for the nonsingularity of the
2 x 2 leading submatrix of R;, which has to be of the form

0 g
o ]

Using (5.1) it is easy to verify that r(()il) = gi0J 951 /(1 = fa. f4,41), which implies that

n; = 2 if, and only if, g;0Jg}, = 0 and gijoJg;; # 0. If this test fails then we proceed
to check for the leading 3 x 3 submatrix of R;, viz.,

0 o Y
(5.2) o Y Y|
ros) i) el
where, using (5.1) again, r$) = gioJ gl /(1= fai fria)s T2 = 91 T5 /(1= fast1 f211)s

r3 = g9uJ g/ (1= far1 foys), and 1) = giaJgl/ (1~ fars2fs, ). Hence, for ; = 3
we need gi0Jgl # 0 and g;1Jg} # 0. In summary we have the following.

LEMMA 5.1. The following are simple tests for n; = 1,2, or 3 in the exactly
singular case:
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If ginJgip # 0 then m; =1
else if ginJg; # 0 thenn;, = 2
else if gioJg # 0 and g;1Jg} # 0 thenn; =3
else n; > 4.
Observe that for n; < 3 the leading nonsingular submatrix of R; has a reversed
lower triangular form. The inversion or QR factorization of these submatrices can be
easily evaluated. For example, the QR decomposition of (5.2) is

#(1)  x() (9

0 01 Toz'  Tiz' Tap
p=forof| T
100 o o0 7

Moreover, G’JC:’;‘ also has the same reversed lower triangular form for n; = 1,2,3

(AGA, being the first n; rows of G;). For example, the conditions for 7; = 3 mean that
G;JG7 has to be of the form

GiJGr =

8 © O
8 8 ©
8 8 8

The above discussion suggests the following result.

LEMMA 5.2. For some k, the leading k x k submatriz of G;JG has a nonsingular
reversed lower triangular form with antidiagonal entries

{mo,k—1, mi,k—2,---, mk—1,0},

if, and only if, n; = k and the leading nonsingular submatriz D; has the same reversed
lower triangular form.

Proof. The claim is certainly sufficient and necessary for k = 1,2, 3, as discussed
prior to the statement of the lemma. To verify the claim for larger values of k we
consider a general k x k matrix E in reversed lower triangular form with antidiagonal
entries {eg kx_1,€1,k—2,---,€k—1,0}, and let F; denote the leading k X k submatrix of
F;. Tt is then easy to check that we can find a matrix E of this form that solves the
equation

Mo, k—1
E - FEF; = O

mk,1’0 X

In fact, we can write down explicit formulas for the desired entries of E in terms of the
known entries on the right-hand side of the above equality. For example, the diagonal
entries of F are given by

mo k-1 e o= mi g—2
1- faif;iq_kfl ’ ’ 1- fai+1f;i+k—2

which shows that we can always find an invertible solution E. But the leading & X k
minor of R; satisfies the same equation as E. It follows from the uniqueness condition
1-7 fi #0, for all 4, j ) that we must have D; = E. Conversely, assume that D; has

€0,k—1 =

g e g
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the suggested reversed lower triangular form then it readily follows that D; — F'iD,-ﬁ’i*
is nonsingular and has the same reversed lower triangular form. O

We should stress that the lemma does not state that the nonsingular submatrices
D; always have a reversed lower triangular form. It only states that if D; happens
to have this form then G;JG? also has the same form (and vice-versa). In fact, the
triangular structure of D; is not necessarily valid for higher sizes n; as can be easily
checked. For example, a nonsingular 4 x 4 leading submatrix of R; may have one of
the following forms

0 0 0 =z 0 0 0 =z 0 0 =z =z
0 2z z =2 0 0 z = 0 0 =z =z
) y Or
0 z =z =z 0 z =z =z T T T
T T T T T T T T T T T T

We can, however, give a stronger statement in the important special case of displace-
ment rank r = 2.

5.2. Displacement Rank r = 2. We now consider the special case of structured
matrices R as in (2.3) but with displacement rank r = 2, i.e., G has two columns.
We further assume that J = (1 @ —1) and that F' is a stable matrix, or equivalently,
that its diagonal entries have less than unit-modulus magnitude,

X 1 0 *
(53) R— FRF =|:110 Vo][o _1:||:II0 V(]] .
Our purpose is to show that for this class of structured matrices we can derive an
explicit test for all n}s in the exactly singular case. Special cases of (5.3) were studied
earlier in [16, 27]. Iohvidov [16] studied the special case of Toeplitz matrices, which
corresponds to the special choice F' = Z and a special generator matrix of the form
(recall expression (2.2))

1 ¢ ... cpo1 T
G =
0 ci ... Cp-1

Pal and Kailath [26, 27] considered the wider class of so-called quasi-Toeplitz matrices,
which still corresponds to F' = Z but one where the columns uy and vy of G are
arbitrary and not as restricted as in the Toeplitz case above. Such matrices can be
shown to be congruent to Toeplitz matrices in a certain sense, hence the name quasi-
Toeplitz. The derivation in [26, 27] exploits this fact and, among other results, shows
that the determination of the size of the smallest nonsingular minor is reduced to
counting the number of repeated zeros at the origin of a certain polynomial.

We provide here a general statement that goes beyond the F' = Z case. We follow
a matrix-based argument that also reveals under what conditions on F' the derived
test is not applicable. (see also [2] for generalizations of the Iohvidov laws using the
theory of reproducing kernel Hilbert spaces).

We start again with the displacement equation of the it Schur complement, viz.,

(5.4) R; — F;R;F} = GiJG? ,

and denote the entries of the now two-column generator G; by

T
Wii Ui U .
Gi — i i+1,2 i+2,1 — [ u v ] .

Vii  Vitl4d Vit2
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Assume we encounter a singularity d; = 0, or equivalently, g;Jg} = |ui;|*> — |vii|> = 0.
Then either of the following two cases could have happened: g; is a zero row, which
corresponds to the trivial case discussed at the end of Section 4.1, or g; is a nonzero
row, which corresponds to a block step that we now discuss in more details.

5.3. A Preliminary Result and Definitions. Before proving the main the-
orem we first state an easily verifiable result that follows from the following type of
argument: an equality such as g;Jg; = 0 clearly implies that v;; and u;; are related via
vii = ug;e’¢ for some phase angle ¢ € [0,27]. More generally, we have the following.

LEMMA 5.3. The entries of the first k rows of G; satisfy
Viti,i = ul-i-i,iejg ) = 0,1,.. '7k -1,

for some phase angle & € [0,2n], if, and only if, the leading 2k x 2k submatriz of
G;JG} has the form

Opxr  Mpxy ]
5-5 n[* b
( ) [ kxk X

where M is a rank 1 matriz and X denotes irrelevant entries. That is, G;JG has
a k x k leading zero block.

For a column vector x and a square matrix A, we let K™ (A4, x) denote the Krylov
matrix K™(4,x) = [ x Ax ... A™!x]. We further define some auxiliary
quantities that will be used in the statement and proof of the next theorem: for
a positive number k, we define the column vectors {a,b,x,y} as follows:

Ui Vig Uitk,i Vitk,i
Ui41,4 Vit1,i Ui4-k+1,4 Vitk+1,i
(5.6a) a b | = ) i o [x y]= . ‘
Uitk—1,4 Vitk—1,i Ui42k—1,i Vit2k—1,4

That is, {a, b} contain the entries of the first k rows of G;, while {x,y} contain the
entries of the next k£ rows of G;. Recall that g; is a nonzero row vector with zero
J—norm. Consequently, both u;; and v;; must be nonzero since if one of them is zero
then the other one must be zero, due to the relation v;; = u;;e/é. We also define the
column vectors

a+e b x —e /¢

(5.6b) pzT, VzTy,foragivenf,

and partition F; as follows

O

(5.6¢) F, = A ,
?

~ e 3

where ﬁ’z and Ai are k x k lower triangular matrices.
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5.4. Main Result for Displacement Rank r = 2. The next result gives an
explicit test for the determination of the sizes of the nonsingular minors for the class
of structured matrices as in (5.3), with extra conditions on the entries of F'. This
extends earlier results in [16, 27].

THEOREM 5.4. The size of the smallest nonsingular leading submatriz of R; is
2k and has the block form

(5.7a) [ Okxk  Nixk ]

Ni o Crxk

where N is invertible if, and only if, the kxk matriz K°°(F;, p)K**°(A;,v) is invertible
and the entries of the first k rows of G; satisfy

(57b) Vitii = ’U,l+,’,i8j€ ) l= 0, ]., ey k-1 s

for some phase angle £ € [0, 27].

Proof. If uyy;; and vj4,,; satisfy (5.7b) then it is straightforward to verify that the
leading 2k x 2k submatrix of R; has a leading zero block as in (5.7a) (similar to the
argument in Lemma 5.3). The converse is also true. If the leading 2k x 2k submatrix
of R; has a leading zero block as in (5.7a) then w;4;; and v;4,,; satisfy (5.7b). We
still need to prove that (5.7a) is the smallest nonsingular minor. For this purpose, it
is enough to verify that N is invertible.

It follows from (5.4) that N satisfies the (non-Hermitian) displacement equation

N-FENAi=[a b]J[x y],

where {a, b, x,y} were defined in (5.6a). But conditions (5.7b) imply that b = efa.
Also, the eigenvalues of the lower triangular matrices F; and A; are strictly less than
unit magnitude. Hence, we can write

N = K>(F;,a)K*®(4;,x) - K=(F;,b)K*>(4;,y)
1
T2

K°°(13',-,a—e*jfb)K*oo(fL-,x—}—e*jEy)}

{KW(E, a+ e Eb)K*®(4;, x — e Hy) +
= Koo(ﬁ"t’p)K*oo(Au V) )
where p and v were defined in (5.6b). We thus conclude that N is full rank. O

5.4.1. Remarks. The last theorem states that, provided the following condition
is satisfied

(5.8) K>®(F;, p)K*®(A;,v) is invertible |

the determination of 7; reduces to checking the proportionality condition (5.7b), viz.,
whether the first k& elements of v; are unit-modulus multiples of the first & elements
of u;. It is clear that necessary conditions for (5.8) to hold are

K>®(Fy,p) and K**®(A;,v) must have full rank.

For those familiar with system theory [17], the above necessary conditions are equiva-
lent to saying that the pair (F}, p) must be controllable and the pair (A}, v*) must be
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observable. For example, if F',- is similar to a Jordan structure with repeated Jordan
blocks for the same eigenvalue then the pair (73, p) will not be controllable. A similar
remark holds for /i,-.

Furthermore, condition (5.8) is automatically satisfied in the special case F' = Z
studied in [16, 27]. Indeed, F = Z implies that K> (F}, p) = K*=(Z,p) = [ L(p) 0 ]
and K*®(A;,v) = K*(Z,v) = [ L(v) 0 ], where the notation L(z) denotes a lower
triangular Toeplitz matrix whose first column is z. But L(p) and L(v) are full rank
matrices since the top entries of p and v are nonzero. Hence, L(p)L*(v) is invertible
and (5.8) is satisfied. It also follows that IV is strongly regular.

Moreover, using (5.7a) we get

_ ~N"*CN~* N~
Di ! = N—l 0 ]

which shows that inverting D; essentially reduces to inverting a strongly regular ma-
trix N, which has a non-Hermitian Toeplitz-like structure. This can be done in
strongly regular (i.e., scalar) steps. Following this reasoning we can show that in
this case (F' = Z), the inversion of D; (or N) and the generator recursion (4.4a)
reduce to the algorithm derived in [27], which involves only scalar operations. We
shall not go into the details here mainly because the derivation (and simplifications
thereof) relies heavily on the special structure in question (r = 2 and F = Z). We
instead focus on the case of higher displacement ranks (r > 2).

5.5. A Recursive Test for Displacement Ranks r >2. A conventional rank
test for determining whether an arbitrary n x n matrix is invertible or not requires
O(n®) operations. This figure can be reduced to O(rn?) in the case of structured
matrices as discussed in Section 5.5.1. The following lemma states that if we are
given a structured matrix R (not necessarily strongly regular), then checking whether
R is invertible or not can be achieved by using only strongly regular Schur steps that
are applied to an appropriately defined extended generator matrix.

LEMMA 5.5. LetT be any nxn positive-definite matriz. Then an nxn Hermitian
matriz R (not necessarily strongly regular) is invertible if, and only if, the extended
2n X 2n matriz R,

- -T R
=7 5]
is strongly regular. .

Proof. The leading n x n submatrix of R is strongly regular since T is positive

definite (T > 0). The Schur complement with respect to the leading n x n block is

RT'R. The claim now follows by observing that RT 'R is positive-definite if, and
only if, R is invertible. d

In other words, if we apply the generalized Schur algorithm to a generator of R
and a singularity is (not) encountered then we conclude that the original R is (not)
singular. But we first need to check whether the extended matrix R is structured. For
this purpose, recall that R is Toeplitz-like, viz., R — FRF* = GJG*. It then follows
that

N F o0ls[F 01" FTF*-T  GJG*
(5.9) R_[o F]R[O F] —[ GJG* o |
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which shows that R has a Toeplitz-like structure if (FTF* — T') has low rank, say £.
So assume that this is the case. Then we can (nonuniquely) factor (FTF* —T) as
follows: FTF* —T = VJgV*, where V is an n x 3 generator matrix and Jg is a B x 3
signature matrix with § < n. This means that we need to choose a positive-definite
matrix 7" that has low displacement rank with respect to F'. We shall show later in
this section how such choices (of T and, consequently, of V and Jg) can be made.
Then we can factor the right-hand side of (5.9) as follows

FTF*—TGJG*_VOGJVOG*j_{)ﬁgg
GJG* O | |0 G 0o OGO’_OJO’

where J satisfies J2 = I. We thus conclude that a possible (not necessarily minimal)
2n x (2r + () generator for R is

. [V oG
H‘[o G 0]'

We can now proceed by applying Algorithm 4.1 to R with the initial conditions
Go=H,Fy, = (F®F),and J = J. The first n steps of the algorithm will clearly
yield negative diagonal entries {d;, 1 = 0,1,...,n — 1,d; < 0} since —T is negative
definite. The n?* generator, G,,, will be a generator of the Schur complement RT 'R
of R with respect to its leading n x n submatrix (—T'). If in the subsequent generator
steps (i =n,n+1,...,2n — 1) we obtain a zero d;, (i.e., a row vector g; with a zero
J —norm), then we stop and conclude that the original matrix R is singular. Other-
wise, R is nonsingular. This test requires at most O((2r + 8)n?) operations (which
is the computational effort due to applying the strongly regular Schur algorithm to
R). This should be compared with a conventional O(n3) rank test applied to R. A
computational advantage results when (2r + 3) < n.

5.5.1. Specializing to the 7;’s. We now show how to recursively use the above
procedure in order to compute the n}s. Recall that the successive Schur complements
R; of the Toeplitz-like matrix R satisfy displacement equations of the form (5.1), and
our objective is to determine the size n; of the smallest nonsingular submatrix of R;.
We already know how to check whether n; < 3 (as discussed in Section 5.1). For
higher values of 7; we can proceed as suggested by the result of Lemma 5.5.

For this purpose, assume we have already chosen a positive-definite matrix 7; that
has low displacement rank with respect to F; (as described ahead), and introduce the
factorization

We further define Ey, T}, ﬁ'k, ék, and Vj, to denote the leading k x k, k< k, kx k,k xr,
and k x 3 submatrices of R;, T;, F;, G;, and V;, respectively. It follows from (5.1) that
E}, is also a Toeplitz-like matrix since Ey — ﬁ’kEkﬁ’,: = CAr‘kJCAr‘z We can now use the
result of Lemma 5.5 to check whether E}, is nonsingular by forming the corresponding
extended matrix E‘k,

. [ -T. E
Ek_I:Ek: 0:| ’

and checking for its strong regularity. If Ej turns out to be invertible then we set
n; = k, otherwise we check for the next submatrix Fy,1, and so on. A generator for
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Ey is given by

A_|:Vk 0 é’k

and we thus apply the generator recursion of Algorithm 4.1 with the initial conditions
Go = Hy, Fy = (Fy, @ Fy), J = J. More precisely, we can rewrite recursion (4.3) for
the present case as follows: start with Hy o = Hj, and repeat for ¢ =0,1,...,2k -1,

01 x(2r+8) . I; 00 . 0;, 0 0
(510b) . = Hk:,zG)z 0 0 0|+ q)sz,zez o 1 0|,
Hyiv1 0 0 I 0 0 O

where ®; is as defined in Algorithm 4.1 with Fy = (ﬁ’k @ ﬁ’k), and ©; is a J—unitary
rotation that reduces the first row of Hy; (denoted by hy ;) to the form h;;0; =

[ 0 mi’)] 0 ] , where n,(;)J is a scalar at a convenient j¢* column position.

The test starts by applying the above recursion to H. Schematically, we form
(09, ®o) and apply the recursion in order to obtain Hy ;. We then form (0., ®,) and
apply the recursion again to obtain H k,2, and so on. Each such step corresponds to
a transformation determined by the pair (©;, ®;). After the first k transformations
(i =0,1,...,k — 1), we obtain Hk %, which is a generator for E,T, 'E,. We then
proceed by applying (at most) k more steps of the recursion. E} will then be declared
singular if, at any of the steps ¢ = k,...,2k — 1 we encounter a row hy ; with a zero
J—norm, viz., hy i JThy, ; = |n(z) |> =0, for some i > k.

If the procedure ends without encountering a singularity then 7; = k, otherwise we
have to check for the next leading submatrix Fy1. Now, the generators of E‘k+1 and
E‘k are closely related since Vj, and G , are submatrices of V1 and G k-+1, respectively.

That is,
v - G
Vk—‘rl = [ bkk :| ] Gk—‘,—l = [ a: :| I

for some row vectors aj and by. Hence, Jig k+1 and Jig i differ only at rows (k + 1) and
2(k + 1), viz.,

Vi 0 Gy )

Hyppr = b 0 ap | _ [ Vier 0 Gipr ] .
0 & 0 0 Gwu O
0 ag 0

Therefore, ﬁk and ﬁk+1 share the same first ¥ Schur reduction steps. This means
that in order to obtain a generator for Ej ;T +1Ek+1, we first apply the last (k + 2)

rows of Hyy1, viz.,

bk 0 ag
0 G, 0 |,
0 ag 0
through the first k£ transformations {(0;, ®;), i =0,. — 1} that were applied to

Hj,. This leads to H, k+1,k- We now apply one more tra,nsforma,tlon (O, Dr) to " E+1,k
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in order to get H k+1,k+1, Which is a generator for Ep 1T +11Ek+1. We then proceed
by applying at most (k + 1) steps in order to check for the positive-definiteness of
Ep 1Ty, J,illEk‘f‘l’ and so on. The size 7; is determined when, for some k, we are
able to complete the whole recursive procedure without encountering a singularity.
In this case, we get & = n; and hence Ey = E,, = D;. The n; transformations
{0;,®;, i =0,...,m; — 1} used in this last test will be relevant in Section 6 while
computing the QR factors of D;.

It can be verified that O(k%(r + 3)) operations are needed for each k. This should
be compared with the following alternative procedure: For each k, compute the leading
k x k submatrix and check whether it is singular using a conventional rank test.
This requires O(k®) operations and does not exploit the underlying (displacement)
structure. A computational advantage results when (r + §) is smaller than k.

ALGORITHM 5.6. To check whether the k x k leading submatriz of R; is nonsin-
gular we proceed as follows:

1. Form a generator pair (Hy,J) as in (5.10a).

2. Apply k steps of recursion (5.10b) starting with I-:Tk,o = Hy, Fy = (F, @ Fy),
and J = J. This leads to I:Ik,k.

3. Apply more steps of recursion (5.10b) to I;Tk’k. If hy ; is found to have zero
J—norm, for some k < j <2k — 1, then Ey, is declared singular (n; > k). Otherwise
ni = k.

4. To check for the higher order (k+1) x (k+1) submatriz we essentially repeat
the same procedure, except that we exploit the fact that Hy and I-:Tk+1 differ only in
two rows as follows: R

(4a) Apply the last (k + 2) rows of Hyy1 through the k transformations

{(0;,8;), i =0,...,k—1}

that were applied to ﬁk This leads to I-AIk_H,k.
(4b) Apply one more step to get Hyi1 g1
(4¢) Go back to step 3 and repeat.

5.5.2. Choosing T. We now show how to choose a positive-definite matrix T
that has low displacement rank with respect to an F'. This choice is rather trivial in
some special (though frequent) cases suchas F=Z or F=2&Z®...® Z. For
these cases, a simple choice is T' = I. For example, choosing T' = I in the F' = Z case

leadsto3=1, Js=-lL,andV=[1 0 ... O]T,viz.,

|t

On the other hand, for a diagonal or bidiagonal matrix F' with distinct diagonal
entries, the choice T' = I would usually lead to a full displacement rank 8 = n, i.e.,
FF*—TI would generally have rank n, which substantially increases the computational
cost of the recursive tests. However, for such cases, it is still possible to choose a
positive-definite matrix T' that leads to a low displacement rank 3. For this purpose,
we exploit connections with analytic interpolation theory.

Assume, for instance, that we have an n x n diagonal matrix F' with distinct and
stable entries f; (|fi| < 1), and choose any scalar function s(z) that is analytic and
strictly bounded by unity inside the open unit disc |2| < 1, viz., sup |« [s(2)| < 1.
We say that s(z) is a Schur-type function [1, 36]. We further introduce the matrices
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V and Js given by

K
L s(h 10
V= : : ’Jﬁz[o _1]’
1 s(fn-1)

and define T to be the solution of the following displacement equation
* ]‘ *
T—FTF:V[ —I]V'

It is then a standard result in analytic interpolation theory (see, e.g., [1, 32, 34]) that
T is a positive-definite matrix since s(z) is of Schur-type. So all we need to do is to
choose a Schur function s(z) and define V' and Jg as above. We don’t even need to
explicitly determine the corresponding 7" since the recursive algorithm described in
the previous section uses (V, Jz) and not T

For a bidiagonal matrix F' = Z + diag.{fo, ..., fo—1} with distinct stable entries
fi (|fi| < 1), we again choose a Schur function s(z) and define

-
0 ¢1 1 0
v=ls T ele A

0 ¢n71

where the ¢}s denote the first n Newton-series coefficients associated with s(z). These
coefficients can be recursively determined via the so-called divided difference recursion
as follows: start with so(z) = s(z) and then use

8i-1(2) — ¢i—1

z—fi1

’ ¢z = Sz(fz) -

si(z) =

It also follows that the associated matrix T is positive-definite [31, 34]. For a more
general matrix F' with r; x r; Jordan blocks, viz., F = (Z + fol) ® (Z + f1l) ® (Z +
foI) ® ..., with f; distinct and |f;| < 1, we define [31, 34]

1 s(fo) 1
0 5(1)(f0)
0 %5(;0—1)”0)
(ro—1)! 1 0
V=11 ls(fl) ,Jz[o _1],

0 sV (A)

where s\9)(f;) denotes the j** derivative of s(z) at f;.
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6. QR Factorization of the D;’s. Once the sizes 1; have been chosen, say as
described in the above sections for the exactly singular case or as numerically well-
conditioned blocks, we still need to show how to compute the QR factors of D;, viz.,
D; = Q;P;, where @; is an 7; x 7; unitary matrix and P; is an 7; X n; nonsingular
upper triangular matrix. This is useful if the alternative triangular factorization of
Section 4.3 is desired. The discussion that follows assumes, for brevity of argument
and notation, that the n; have been chosen as described in the above section. But it
is rather immediate to see that the result is equally applicable for other choices of the
7n;. The main point is simply the following: to compute the QR factors of D; we form
a 3n; x 3n; extended block matrix and apply 27; steps of the (strongly-regular) Schur
algorithm to it. Once this is done, the QR factors can be read out from the resulting
triangular factors.

So we first assume that F' is such that the matrix 7' = I has low displacement
rank with respect to it. We then consider the following 37n; x 3n; extended matrix

I D; 0
Di=|(Di 0 D;| ,
0 D; O

which turns out to also be Toeplitz-like with respect to (F',- o F o 13’1) and with a
generator matrix of the form

Vﬂi 0 Gz Jg 0 O
(6.1a) 0o G ol ,g=|0 0 J|[,
0 0 & 0 J o

where B, — I =V, JgVy: - The first two block rows of the above generator are the
same block rows of the generator I-:Tm of Em (refer to (5.10a)), viz.,

N V,, 0 G
Hy=| "™ o 7.
B [ 0 G 0]

Therefore, if we apply to the generator (6.1a) of DJ the same 7; transformations
{(©i,®;), i =0,1,...,m; — 1} that were applied to H,,, we then obtain a generator

matrix for the Schur complement of the leading block matrix in ﬁi, which is equal to
D; below:

A D;D; D;
o1t )

If we denote this generator of D; by S; then S; is clearly of the form
(6.1c) 3, = [ Hogmi ] ,

where S; results from the application of the above 7; transformations {©;, ®;} to the
last block row in the generator of D;, viz., [ 0 0 G ] . In summary, we already
know how to obtain a generator for (the 27; x 2n; matrix ) D; in (6.1b): just update
the block row [ 0 0 G; ] via the transformations (©;, ®;) and construct S;.
Once a generator for D; is available, we can then use it to determine the first
n; triangular factors of D;. For this purpose, we need only apply 7; steps of the
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strongly regular Algorithm 4.1 starting with Gy = S;, Fy = (Fz N2 Fz), and J = J.
These steps however, are completely specified in terms of the same transformations
{(©;,®;), i = n;,-..,2n; — 1} that were applied to ﬁm,m while checking the positive
definiteness of E,, E,,. So we just need to update the last block row S; via the same
transformations.

The point is that we can read out the desired QR factors @; and P; from these
first n; triangular factors of D;. To see this, we denote the first 7; triangular factors
by

Ld = |: ld() ldl [N ld,m—l :| ) Dd = diagona.l{ddo, feey ddﬂlifl}'

Then we can write, using the Schur reduction procedure (2.4),

. _ . Jo o
(6.1d) Di=Lde+[0 _Im] ,

where L; = LdD;I/ ?. Comparing (6.1b) and (6.1d) we can easily conclude that Lg
can be partitioned into a top lower triangular block equal to P and a lower block

k3
equal to Q;, viz.,
_ P*
Ly= N I
=13 ]

ALGORITHM 6.1. The QR factors Q; and P; can be computed in strongly regular
steps as follows:

1. Apply the transformations {(©;,®;), ¢ = 0,...,m; — 1} that were applied to
H,, to the block row [0 0 G, ], and construct S; as in (6.1c).

2. Apply the last block row S; through the next n; transformations {(©;, ®;), i =
Niy---,21; — 1} that were applied to H ;i While checking the positive definiteness of
E,. E,,. This determines the first n; triangular factors of D;.

3. Partition Ly as shown above and read out Q; and Pr.

What about the choice T3, # I? In this case we need to consider the extended
(also Toeplitz-like) matrix

7

~T,,

i

) D; 0
D; = i 0 D ,
D 0

7

which still leads, after the first 7; recursive steps, to a generator for the matrix

A DzTn_llDz D;
DZ - [ Dz 0 :| ’

and which is of the form

Q. — I:ITH,TH
s,_[ B ]

The point, however, is that the first 7; triangular factors of D; now lead to a factor-
ization of the form D; = Q;P;, where P; is still upper triangular but @); now satisfies
Q:Q; =Ty,. That is, Q; is no longer a unitary matrix. But T}, is a positive-definite
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and structured matrix. Hence, its Cholesky factorization T}, = LrL%, can be effi-
ciently evaluated in O((n?) operations by using the strongly regular Algorithm 4.1. In
this case, and following the argument in Section 4.3, we are instead led to a triangular
factorization for R of the form R = ﬁPQﬁ*, where we now define Q = Qo ®...®Q:-1,
P=PF®..0P 3, T=T®...0T, , and L = LTQ. The matrix L is still
lower triangular with block columns of the form

[ Wit
WiT, ' Qi |

The inverses T, ! are not needed explicitly because, once we have the Cholesky factor
of T, the products T, 1@Q; can be computed by solving linear triangular systems.
Also, the generator recursion has the same form as before (4.4a), viz.,

0,. _ AL
[ é’fxr ] =Gi+X;, Xi=(F — Ino,)LiD]* (I, — F;)7'G,
+1

and where X; can now be rewritten as (compare with (4.5))
X;=(Fi—I,_4,) i P*(I,, — F})1G;.
% [ n—a; Sszle i i 2 g

7. System Interpretation. The generator recursions of Algorithms 4.1 and 4.2
have an interpretation as a cascade of linear state-space systems of orders {no, 71, .. .}.
To clarify this, observe that the expressions for L; and G;41 in Theorem 3.1 can be
combined together as follows

Fr H:J
[Li Gin ] =[ BL: Gi] [ TG Jf(;‘J]

Hence, each recursive step involves an 7;—order discrete-time system that arises in
state-space form on the right-hand side of the above expression, viz.,

[ %41 v | =[x w-][ﬁi* I—:T;J]
! ! POl JGy JKT ]

where x; is a 1 x n; state-vector and w; and y; are 1 x r (row) input and output
vectors, respectively, at time j. The above system matrix can also be regarded as a
state-space realization of the inverse system

-1

F; G
H; K; ’

since it follows from the embedding relation (3.1b) that
B G170 [ Difrp7t DR
H;, K; | JG:D'  JK:J
The corresponding r X r transfer matrix ©;(2) is given by

~ ~ L1711
0i(2) = JK*J + JG? [z_llm - F] .

k3
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It also follows from the embedding relation (3.1b) that ©;(z) satisfies the normaliza-
tion condition ©;(2)JO}(z) = J on |z| = 1 and that, using (3.3), we can rewrite ©;(z)
in the form

0;(z) = {I — (1= 2m})JGI (I, — 2E7) DI - T;ﬁi)*léi} 0;.

Therefore, t recursive steps lead to a cascade @(z) = Og(2)01(2)...0;_1(z), which
also satisfies ®(2)JO®*(z) = J on |z| = 1. In fact, we can further show that the
cascade admits a state-space realization in terms of the original matrices F' and G
[24, 31].

THEOREM 7.1. The cascade ©(z) admits an n—dimensional state-space descrip-
tion of the form

F* H*J
[ %1 ¥ ] =[x wy] JG* JK*J |’

where H and K are r x n and r X r matrices that satisfy the embedding relation
F G][R O][F G1" _[R 0O
H K 0 J H K| |0 J|°

It also follows that the matrices H and K can be expressed in terms of R, F, and G
as follows

H=0'JG*[I-7F 'R '(+I-F),
K=0! {I —JG* [ —TF*] ! R*lG} ,

and that ©(z) = {I — (1 — 27*)JG*(I — 2F*)"'R™Y(I — 7 F)7'G} ©, where 7 is a
unit-modulus scalar and © is a J—unitary matriz.

8. Concluding Remarks. We derived a block Schur algorithm for the block
triangular factorization of Hermitian Toeplitz-like matrices. We also provided tests
for the determination of the sizes of the nonsingular minors in the exactly singular
case. We also presented a system interpretation of the algorithm in terms of a cascade
of elementary sections. We further remark that the results can be extended to non-
Hermitian Toeplitz-like matrices, as well as Hankel-like matrices, and may be discussed
elsewhere; though see [31].

Some issues deserve further consideration and may simplify the development of
the algorithm. We have limited ourselves in the block case, for example, to the obvious
choice ®; = I. Other choices may be considered and could lead to an array form of
the generator recursion (4.4a) in the same spirit as (4.3). Also, explicit tests for
determining the sizes of the nonsingular minors in the general case of displacement
ranks larger than two, along the lines of the special cases discussed in Section 5.2,
deserve further investigation. These issues will be addressed elsewhere.
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