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Abstract. In solving a robust version of regularized least-squares with weighting, a certain
scalar-valued optimization problem is required in order to determine the regularized robust solution
and the corresponding robustified weighting parameters. This letter establishes that the required
optimization problem does not have local, non-global minima over the interval of interest. This
property is proved by resorting to a useful Schur complementation argument. The result is reassuring
in that it demonstrates that the robust design procedure is well defined and that its optimal global
solution can be determined without concerns about local minima.
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1. INTRODUCTION. Many estimation and control techniques rely on quadratic
objective functions and employ, in one way or another, regularized least-squares costs
of the form

min
x

[
xT Qx + (Ax− b)T W (Ax− b)

]
. (1.1)

Here x denotes the unknown parameter vector, xT Qx is a regularization term with
Q = QT > 0, and W = WT ≥ 0 is a weighting matrix. The unknown x is
n−dimensional, while A is N × n and b is N × 1. Both A and b are assumed to
be known with A called the data matrix and b the measurement vector. Although
not necessary, all quantities are assumed to be real-valued. The solution of (1.1) is

x̂ = [Q + AT WA]−1AT Wb, (1.2)

where the invertibility of the coefficient matrix (Q + AT WA) is guaranteed by the
positive-definiteness of Q.

In practice, the nominal data {A, b} are often subject to uncertainties, which can
degrade the performance of the otherwise optimal estimator (1.2). For example, if
the actual data matrix were (A + δA), for some unknown perturbation δA, then the
estimator (1.2) that is designed based on A alone, and without accounting for the
existence of δA, can perform poorly.

In the works [1, 2], and motivated by earlier studies in [3]–[6] for standard least-
squares problems (Q = 0 and W = I), we have formulated a robustified version of the
regularized and weighted objective function (1.1) that can account for uncertainties
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in the data {A, b}. It turns out that nontrivial choices for {Q,W} require special care
and a technique was developed for this case in [1, 2].

Two situations that can be modeled in this way arise in the context of state reg-
ulation [1] and state estimation for state-space models with parametric uncertainties
[7]. These applications are motivated in Secs. 3.1 and 3.2. In both cases, the design
requires solving a robust version of the regularized least-squares problem (1.2). This
robust formulation is described in Sec. 2, where it is shown that a key step to its solu-
tion involves minimizing a certain scalar-valued function G(λ) over a certain interval
[λl,∞) – see Eq. (2.10). This letter establishes that the function G(λ) does not have
local, non-global minima over the interval of interest. The result is reassuring in that
it demonstrates that the optimal global solution of the robust design procedure can
be determined without concerns about local minima.

The function G(λ), which is described in Theorem 2.1, behaves like a secular
function; secular functions are rational functions with poles at eigenvalues of a certain
model-dependent matrix – see, e.g., [8]–[11] and the references therein. Connections
with secular functions in the context of robust designs were exploited earlier in [5, 12].
However, in this letter we choose to study the behavior of G(λ) by resorting instead
to a useful and simplifying Schur complementation argument. Rather than examining
the signatures of the first- and second-order derivatives of G(λ), which would be a
difficult task in this problem, we show how the second-order derivative is related to
the first-order derivative via a Schur complementation step. This fact is then used to
conclude that G(λ) has a unique global minimum over the interval of interest. Details
are provided in Sec. 4.

2. ROBUST REGULARIZED LEAST-SQUARES. Returning to the least-
squares problem (1.1), let J(x, y) denote a two-variable cost function of the form

J(x, y) = xT Qx + R(x, y)

where the residual R(x, y) is defined by

R(x, y) ∆=
(

Ax− b + Hy

)T

W

(
Ax− b + Hy

)
.

Here H is an N ×m known matrix and y is an m× 1 unknown perturbation vector.
Comparing the expression for R(x, y) with the term (Ax−b)T W (Ax−b) that appears
in (1.1), we see that we are modeling sources of uncertainties in A and b by the
additional term Hy. The choice of the matrix H provides the designer with the
freedom of restricting the uncertainty y to certain range spaces. While y itself is not
known, we shall assume that what is known is a bound on its Euclidean norm, say

‖y‖ ≤ φ(x)

for some known (linear or nonlinear) nonnegative function φ(x). Observe that the
bound on y is allowed to depend on the parameter x.

Consider now the problem of solving

x̂ = arg min
x

max
‖y‖≤φ(x)

J(x, y) (2.1)

where the notation ‖ · ‖ stands for the Euclidean norm of its vector argument (or the
maximum singular value of a matrix argument). Problem (2.1) can be interpreted as

2



a constrained two-player game problem, with the designer trying to pick an estimate
x̂ that minimizes the cost while the opponent {y} tries to maximize the cost. The
game problem is constrained since it imposes a bound (through φ(x)) on how large
(or how damaging) the opponent can be. Observe further that the strength of the
opponent can vary with the choice of x. We shall assume in the sequel that H and
φ(x) are not identically zero,

H 6= 0 and φ(·) 6= 0, (2.2)

since if either is zero, then the game problem (2.1) trivializes to the standard regu-
larized least-squares problem (1.1).

However, in this letter we focus on the following specialization of (2.1) because
this case is simpler to analyze while also arising in applications (see Secs. 3.1 and 3.2):

min
x

max
δA,δb

[
xT Qx +

(
(A + δA)x− (b + δb)

)T

W

(
(A + δA)x− (b + δb)

)]
(2.3)

Here {δA} denotes an N×n perturbation matrix to the nominal matrix A, δb denotes
an N × 1 perturbation vector to the nominal vector b, and {δA, δb} are assumed to
satisfy a model of the form

[
δA δb

]
= H∆

[
Ea Eb

]
(2.4)

where ∆ is an arbitrary contraction, ‖∆‖ ≤ 1, and {H,Ea, Eb} are known quantities
of appropriate dimensions (say, H is N×m, ∆ is m×m, Ea is m×n and Eb is m×1).
Perturbation models of the form (2.4) are common in robust filtering and control and
can arise from tolerance specifications on physical parameters (see, e.g., [16]).

In order to see how (2.3)–(2.4) is a special case of (2.1), we rewrite the cost
function in (2.3) as

xT Qx + [Ax− b + (δAx− δb)]T W [Ax− b + (δAx− δb)]

so that with Hy defined as

Hy
∆= δAx− δb = H∆(Eax− Eb)

and y as y = ∆(Eax− Eb), problem (2.3)–(2.4) reduces to

min
x

max
‖y‖≤‖Eax−Eb‖

[
xT Qx +

(
Ax− b + Hy

)T

W

(
Ax− b + Hy

)]
(2.5)

which is a special case of (2.1) for the particular choice

φ(x) = ‖Eax− Eb‖.
Conversely, we can verify that every problem of the form (2.5) reduces to one of
the form (2.3)–(2.4) so that both formulations (2.3)–(2.4) and (2.5) are equivalent.
Indeed, for any y satisfying ‖y‖ ≤ ‖Eax − Eb‖, there should exist a contraction ∆
relating the vectors y and Eax−Eb, say y = ∆(Eax−Eb). Now choose δA = H∆Ea

and δb = H∆Eb, and problem (2.5) reduces to (2.3)–(2.4).
The formulation (2.1) is more general than (2.3)–(2.4) in that it allows for other

classes of perturbations through the choice of the function φ(x) — see [2]. In this
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letter we focus on the form (2.3)–(2.4). The following result is proven in [1, 2]. In the
rest of the paper, the notation X† denotes the pseudo-inverse of X.

Theorem 2.1 ([1]). The problem (2.3)–(2.4) has a unique solution x̂ that is
given by (compare with (1.2))

x̂ =
[
Q̂ + AT ŴA

]−1 [
AT Ŵ b + λ̂ET

a Eb

]
(2.6)

where the modified weighting matrices {Q̂, Ŵ} are obtained from {Q, W} via

Q̂
∆= Q + λ̂ET

a Ea (2.7)

Ŵ
∆= W + WH(λ̂I −HT WH)†HT W (2.8)

and the nonnegative scalar parameter λ̂ is determined from the optimization

λ̂ = arg min
λ≥‖HT WH‖

G(λ) (2.9)

where the function G(λ) is defined as follows:

G(λ) ∆= xT (λ)Qx(λ) + λ‖Eax(λ)− Eb‖2 + [Ax(λ)− b]T W (λ)[Ax(λ)− b] (2.10)

Here

W (λ) ∆= W + WH
(
λI −HT WH

)†
HT W (2.11)

Q(λ) ∆= Q + λET
a Ea (2.12)

and

x(λ) ∆=
[
Q(λ) + AT W (λ)A

]−1 [
AT W (λ)b + λET

a Eb

]
(2.13)

We thus see that the solution of (2.3)–(2.4) requires that we first determine an op-
timal nonnegative scalar parameter, λ̂, which corresponds to the minimizing argument
of the function G(λ) over the semi-open interval [‖HT WH‖,∞). For convenience of
notation, we shall denote the lower bound on λ by λl, i.e.,

λl
∆= ‖HT WH‖. (2.14)

The parameter λ̂ is then used to modify the regularization matrix Q and the weighting
matrix W according to (2.7) and (2.8).

3. TWO APPLICATIONS. Before proceeding to studying the minimization
of G(λ), we illustrate the application of the robust least-squares problem (2.3)–(2.4)
to two examples. The first example is in the context of state-regulation.
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3.1. State Regulation. Consider a linear state-space model xi+1 = Fixi+Giui,
with initial state x0 and control sequence {ui, i ≥ 0}. The classical linear quadratic
regulator (LQR) problem is concerned with the determination of a control sequence,
{ûi}, that regulates the state vector to zero while keeping the control cost low. This
is achieved by minimizing the quadratic cost function

min
{u0,u1,...,uN}


xT

N+1PN+1xN+1 +
N∑

j=0

[
uT

j Qjuj + xT
j Rjxj

]



say over a horizon of duration N + 1, with Qj > 0, Rj ≥ 0, and PN+1 ≥ 0.
Using a dynamic programming argument [13], it is well-known that ûN can be

determined by solving

min
uN

(
xT

N+1PN+1xN+1 + uT
NQNuN

)
(3.1)

Substituting xN+1 by its state-equation xN+1 = FNxN + GNuN leads to a quadratic
cost function of the form (1.1) and, subsequently, to the state-feedback law:





ûN = −KNxN

KN = (QN + GT
NPN+1GN )−1GT

NPN+1FN

PN = RN + KT
NQNKN + (FN −GNKN )T PN+1(FN −GNKN )

(3.2)

The process can be repeated by determining ûN−1 via

min
uN−1

(
xT

NPNxN + uT
N−1QN−1uN−1

)

and so forth. Now, assume that the state-space model includes parametric uncertain-
ties, say

xi+1 = (Fi + δFi)xi + (Gi + δGi)ui (3.3)

with known x0, and where {δFi, δGi} denote the uncertain parameters (assumed to
satisfy a constraint similar to (2.4)). We can then consider replacing the optimization
problem (3.1) by

min
uN

max
δFN ,δGN

[
xT

N+1PN+1xN+1 + uT
NQNuN

]

If we substitute xN+1 by its state-equation xN+1 = (FN + δFN )xN +(GN + δGN )uN ,
the above min-max problem becomes a special case of the robust cost function (2.1)
— see [1] for more details.

3.2. State Estimation. The second example is in the context of state estima-
tion. Thus consider a model of the form

xi+1 = Fixi + Giui, i ≥ 0 (3.4)
yi = Hixi + vi (3.5)

where {x0, ui, vi} are uncorrelated zero-mean random variables with variances

E







x0

ui

vi







x0

uj

vj




T

 =




Π0 0 0
0 Qiδij 0
0 0 Riδij


 (3.6)
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that satisfy Π0 > 0, Ri > 0, and Qi > 0. Here, δij is the Kronecker delta function that
is equal to unity when i = j and zero otherwise. The well-known Kalman filter [14]
provides the optimal linear least-mean-squares (l.l.m.s., for short) estimate of the state
variable given prior observations. It admits the following deterministic interpretation
[15].

Fix a time instant i and assume that a so-called filtered estimate x̂i|i of xi has
already been computed with the corresponding error variance matrix Pi|i. Given
a new measurement yi+1, one can seek to improve the estimate of xi, along with
estimating ui, by solving

min
xi,ui

�
‖xi − x̂i|i‖2P−1

i|i
+ ‖ui‖2Q−1

i
+ ‖yi+1 −Hi+1xi+1‖2R−1

i+1

�
(3.7)

Substituting xi+1 by the state-equation xi+1 = Fixi + Giui, the above cost function
becomes one of the form (1.1) and its solution leads to the Kalman filter recursions.

Now assume that the state-space model includes parametric uncertainties, say

xi+1 = (Fi + δFi)xi + (Gi + δGi)ui, i ≥ 0 (3.8)
yi = Hixi + vi (3.9)

where the uncertainties {δFi, δGi} are assumed to satisfy a constraint similar to (2.4).
We can then consider replacing (3.7) by

min
{xi,ui}

max
δFi,δGi

[
‖xi − x̂i|i‖2P−1

i|i
+ ‖ui‖2Q−1

i

+ ‖yi+1 −Hi+1xi+1‖2R−1
i+1

]
(3.10)

If we substitute xi+1 by its state-equation xi+1 = (Fi + δFi)xi + (Gi + δGi)ui, the
above min-max problem becomes again a special case of the robust cost function (2.1)
— see [7] for more details.

4. THE MINIMIZATION OF G(λ). Returning to the statement of Theo-
rem 2.1, the contribution of this letter is to prove that the function G(λ) does not
have local, non-global minima over the interval [λl,∞); and that therefore the desired
λ̂ corresponds to a global minimum. Actually, the argument further shows that G(λ)
has a unique global minimum (except in the unlikely trivial case of G(λ) ≡ constant
for all λ ≥ λl). In this way, the robustified least-squares problem (2.3)–(2.4) is well
defined and the determination of the optimal parameter λ̂ can be sought without
concerns about local minima.

To begin with, we note that for any value of λ in the interval [λl,∞), the matrix
W (λ) in (2.11) is positive semi-definite,

W (λ) ≥ 0 for λ ∈ [λl,∞)

so that the function G(λ) is nonnegative for all such λ, i.e., G(λ) ≥ 0 for λ ≥ λl.
Notice however that G(λ) may become negative for λ < λl. Figures 4.1 and 4.2
illustrate typical behaviors of G(λ). The top plot in Figure 4.1 shows one particular
G(λ) that was generated with the data

A =




1 −1
0 1

−2 0
0 2


 , b =




−1
0
1

−2


 , Q =

[
1 0
0 2

]
, W = I
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Ea =




1 0
0 −2
1 1
0 0


 , Eb =




1
0
0
1


 , H =




−1 0
1 2
0 0
1 −1




for which the lower bound on λ can be seen to be

λl = ‖HT WH‖ = 5.4142.

The bottom plot in the same figure zooms on the behavior of G(λ) over the interval λ ≥
λl. Figure 4.2 shows similar plots generated with random data {A, b,Q, W,Ea, Eb,H}
over the respective intervals λ ≥ λl. In all cases, G(λ) is seen to be nonnegative (but
not necessarily convex). Moreover, in each case G(λ) is seen to have a unique global
minimum in the interval [‖HT WH‖,∞).
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Fig. 4.1. Plots of G(λ) over the intervals λ ≥ 0 (top) and λ ≥ λl = 5.4142 (bottom). Note that
G(λ) is nonnegative and has a unique minimum over the latter interval.

From now on we assume that W > 0, which is often satisfied in practice. We shall
then study the behavior of G(λ) in two cases. First, we focus on the open interval
(‖HT WH‖,∞), and later we discuss the boundary point λl = ‖HT WH‖.

For λ > ‖HT WH‖, it is easy to see that (λI −HT WH) will be positive-definite
(and, hence, also invertible), so that the pseudo-inverse operation in (2.11) can be
replaced by normal matrix inversion,

W (λ) = W + WH
(
λI −HT WH

)−1
HT W. (4.1)

Using the matrix inversion lemma [18], also known as the Sherman-Morrison-Woodbury
formula [19], we arrive at the more compact representation

W−1(λ) = W−1 − λ−1HHT . (4.2)
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Fig. 4.2. Plots of G(λ) over the intervals λ ≥ λl in four random simulations. The values of λl

are indicated at the top of each plot. The plots show typical behaviors of G(λ). In particular, it is
seen that G(λ) is nonnegative and has a unique minimum in all cases.

We shall henceforth use this simpler expression.
Moreover, it can also be verified that an equivalent representation of (2.10) is

G(λ) = λET
b Eb + bT W (λ)b−BT (λ)E−1(λ)B(λ) (4.3)

where the functions {W (λ), B(λ), E(λ)} are defined by

W (λ) =
(
W−1 − λ−1HHT

)−1
(4.4)

B(λ) = AT W (λ)b + λET
a Eb (4.5)

E(λ) = Q + λET
a Ea + AT W (λ)A (4.6)

In order to study the nature of the stationary points of G(λ) over the interval (λl,∞),
one would in principle evaluate the first- and second-order derivatives of G(λ) with
respect to λ and check their signatures. However, performing this task directly is
not easy in the problem at hand. For this reason, we choose to proceed by instead
relating the first-and second-order derivatives and by using Schur complementation
arguments to establish a certain positivity result. The details are provided below.

First, the following facts about differentiation are useful. Consider a continuous
and differentiable matrix-valued function, K(λ), of a scalar parameter λ. If K(λ) is
invertible, say,

K(λ)K−1(λ) = I

then by differentiating both sides of this equality with respect to λ we find that

dK−1(λ)
dλ

= −K−1(λ) · dK(λ)
dλ

·K−1(λ).
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Likewise, differentiating one more time we arrive at the expression

d2K−1(λ)
(dλ)2

= 2K−1(λ) · dK(λ)
dλ

·K−1(λ) · dK(λ)
dλ

·K−1(λ)−K−1(λ) · d
2K(λ)
(dλ)2

·K−1(λ).

Applying these results to the function G(λ) we arrive at the following result.

Lemma 1. Consider the function G(λ) defined by (4.3)–(4.6) with W > 0. Let

S(λ) = Eb − EaE−1(λ)B(λ), L(λ) = HT W (λ)(b−AE−1(λ)B(λ))

Then it holds that

dG(λ)
dλ

= ST (λ)S(λ)− 1
λ2

LT (λ)L(λ)

and 1
2

d2G(λ)
dλ2 is the Schur complement with respect to the (2, 2) block entry of a matrix

X of the form

X = F (λ) +
1
λ

[
−dG(λ)

dλ 0
0 0

]

where F (λ) is a positive semi-definite matrix.

Proof: Differentiating G(λ) with respect to λ, we get

dG(λ)
dλ

= ET
b Eb + bT dW (λ)

dλ
b− 2

(
dB(λ)

dλ

)T

E−1(λ)B(λ)−BT (λ)
dE−1(λ)

dλ
B(λ)

which can be rearranged into the form given in the statement of the lemma above.
Differentiating again with respect to λ, we get after some manipulations:

d2G(λ)
(dλ)2

= 2(X1 −X2X
−1
3 XT

2 )

where we defined

Z = b−AE−1(λ)B(λ)

X1 = ZT

(
W (λ)

HHT

λ2
W (λ)

HHT

λ2
W (λ) + W (λ)

HHT

λ3
W (λ)

)
Z

X2 =
[
−AT W (λ)HHT W (λ)

λ2

(
b−AE−1(λ)B(λ)

)
+ ET

a

(
Eb − EaE−1(λ)B(λ)

)]T

X3 = E(λ) = Q + λET
a Ea + AT W (λ)A

We can therefore regard 1
2

d2G(λ)
dλ2 as the Schur complement of the block matrix

X ∆=
[

X1 X2

XT
2 X3

]
.
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Now the matrix X can be expanded as a sum of several terms, namely

X =
[

0 0
0 Q

]

+


 1√

λ

(
Eb − EaE−1(λ)B(λ)

)T

√
λET

a




[
1√
λ

(
Eb − EaE−1(λ)B(λ)

) √
λEa

]

+



−

(
b−AE−1(λ)B(λ)

)T

W (λ)HHT

λ2

AT


 W (λ)

[

−
HHT W (λ)

(
b−AE−1(λ)B(λ)

)

λ2 A

]

+
1
λ




(
b−AE−1(λ)B(λ)

)T

W (λ)H

λ

0




[
HT W (λ)

(
b−AE−1(λ)B(λ)

)

λ 0

]

− 1
λ




(
Eb − EaE−1(λ)B(λ)

)T

0


 [

Eb − EaE−1(λ)B(λ) 0
]

and it can be seen that the sum of the first three terms results in a positive semi-
definite matrix (which we denote by F (λ)), while the sum of the other two terms
gives a matrix that is closely related to dG(λ)/dλ. Actually, using the expression for
dG(λ)/dλ given in Lemma 1 we find that

X = F (λ) +
1
λ

[
−dG(λ)

dλ 0
0 0

]
.

It follows from Lemma 1 that whenever

dG(λ)/dλ ≤ 0

we get X ≥ 0 and, consequently, its Schur complement is also positive semi-definite,
i.e.,

d2G(λ)/(dλ)2 ≥ 0.

In other words, it holds that for all λ ∈ (λl,∞)

dG(λ)/dλ ≤ 0 =⇒ d2G(λ)/(dλ)2 ≥ 0.

This property guarantees that G(λ) does not have any (local or global) disjoint max-
ima in the interval (λl,∞), since a maximum would require the simultaneous condi-
tions dG(λ)/dλ = 0 and d2G(λ)/dλ2 < 0. It then follows that G(λ) cannot have two
or more disjoint (local or global) minima since this would imply the existence of (local
or global) maxima.
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The above argument indicates that G(λ) can only have a unique global minimum
or a continuum of minima or maxima. The latter case occurs in either of the following
two situations:

1. G(λ) is flat (i.e., equal to a constant) over the entire interval (λl,∞). This is a
trivial case that is not of interest. It occurs, for example, when the quantities
ET

b Eb,HHT , ET
a Ea, ET

a Eb are all zero, which is not relevant in the case of
uncertain models.

2. G(λ) is constant over a subinterval of (λl,∞). This case is excluded since
it would imply that some high-order derivative of G(λ) is discontinuous. As
defined by (2.10), G(λ) is an analytic function of λ and, for any n, its nth-
order derivative is also analytic in λ.

We thus conclude that G(λ) has a unique global minimum or infimum over the
open interval (λl,∞). Now by the continuity of G(λ), and in view of the above
arguments, we conclude that G(λ) has a unique global minimum over the closed
interval [λl,∞).

5. CONCLUDING REMARKS. Theorem 2.1 shows that the robust solution
of the constrained game problem (2.3)–(2.4) involves a scalar-valued optimization step
that is defined by (2.9). This step requires the determination of a scalar parameter λ̂
by minimizing a function G(λ) over an interval [λl,∞). In this letter, we proved that
G(λ) cannot have local, non-global minima over the interval [λl,∞). More specifi-
cally, except in a trivial degenerate case of G(λ) ≡ constant, the arguments show that
G(λ) has a unique global minimum over [λl,∞). The result is reassuring in that it
demonstrates that the robust design procedure of Theorem 2.1 is well defined and that
its optimal global solution can be determined without concerns about local minima
for (2.9). Applications of the procedure described herein in the context of state-space
regulation and state-space estimation can be found in [1, 7, 17].
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