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Abstract  This paper provides an overview of a multi-modal wearable computer system, 
SNAP&TELL. The system performs real-time gesture tracking, combined with audio-based 
control commands, in order to recognize objects in an environment, including outdoor 
landmarks. The system uses a single camera to capture images, which are then processed to 
perform color segmentation, fingertip shape analysis, robust tracking, and invariant object 
recognition, in order to quickly identify the objects encircled and SNAPped by the user s 
pointing gesture. In addition, the system returns an audio narration, TELLing the user 
information concerning the object s classification, historical facts, usage, etc. This system 
provides enabling technology for the design of intelligent assistants to support Web-On-The-
World  applications, with potential uses such as travel assistance, business advertisement, the 
design of smart living and working spaces, and pervasive wireless services and internet vehicles. 
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1   Introduction 
A recently emerging computing trend is mobile wearable computing, whereby users can rely on 
intelligent assistants to provide them with location-aware information. Thus, imagine a tourist 
using a wearable assistant while on a foreign trip. The tourist could point at a hotel, a landmark, 
or a restaurant and retrieve information concerning the hotel s rating, its room rates and 
availability, the landmark s highlights and hours of operation, the restaurant s menu/prices and 
opening hours, or even multilingual translations of street signs. Example applications illustrated 
in Fig. 1. In another example, a firefighter using a wearable assistant could receive information 
concerning the temperature at various locations within his surroundings, his own body 
temperature and blood oxygen levels, and even about a recommended direction to proceed while 
inside a building with low visibility conditions. In a third example, a soldier using a wearable 
system could point at his surroundings and snap landmark images such as buildings, mountains, 
warning signs, billboards, etc. The wearable assistant would then convey recommendations 
about friendly and enemy locations. 

 

Fig. 1  Examples of applications for the SNAP&TELL wearable computer system 
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Regardless of the application, computing and sensing for wearable computers must be reliable, 
persistent (i.e., always remains on), easy to interact with, and easily configurable to support 
different needs and complexities. The success of such systems will rely, to great extent, on their 
ability to quickly process the sensory data captured from all sensors, and to automatically extract 
the relevant information for analyzing and understanding the objects and activities occurring 
within the environment. 

For scene understanding within wearable environments, we have developed a real-time gesture 
tracking system called SNAP&TELL for recognizing objects in the scene. The operation of the 
system is controlled by a small set of audio commands and through hand gestures. The use of 
pointing and hand gesturing is a natural way of interaction between a human and the machine. 
Visual tracking and recognition of the user s pointing and fingertip movements are important 
ingredients of the SNAP&TELL interface. The system uses several computer vision algorithms 
to extract color-based segmentations and shape information from the machine s camera view in 
order to identify the user s hand and fingertip position. Once the user has finished encircling an 
object of interest, a verbal command can be used to invoke the system s invariant object 
recognition module to identify the object, and to provide the user with an audio narration of all 
previously stored information concerning that particular object. 

Presently, general-purpose computer vision algorithms tend to be complex and computationally 
intensive, hence, they can slow down the response of a wearable machine to a great extent. 
Therefore, to perform real-time acquisition and tracking, we have developed a robust state-space 
estimation algorithm for use with the SNAP&TELL computer. The algorithm predicts the future 
position of the user s pointing fingertip in a robust manner, and uses this information to reduce 
the search space from the full camera view to a smaller area in a dynamic and robust fashion. 

The reason for using a robust prediction algorithm is to better control the influence of uncertain 
environmental conditions on the performance of the system. In a wearable computer 
environment, uncertainties are abound and they arise, for example, from the camera moving 
along with the user s head motion, the background and object moving independently of each 
other, the user standing still and then randomly walking, and the user s pointing finger abruptly 
changing directions at variable speeds. All these factors give rise to uncertainties that can 
influence the design of reliable trackers. For this reason, we have incorporated data uncertainty 
modeling into the SNAP&TELL system s robust tracking algorithm. 

In the following sections, we describe in some detail the operation of the different modules of the 
system, including the fingertip robust tracker. 

2   SNAP&TELL system overview 
At HRL Laboratories, a wearable computer system named SNAP&TELL has been designed, 
which is shown in Fig. 2. The system aims at providing a gesture-based interface between the 
user and the mobile computer. The system performs real-time pointing gesture tracking to allow 
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the user to encircle an object of interest in the scene, then a SNAPshot of the object is captured 
and passed on to a recognition module, which TELLs or outputs audio information concerning 
the object to the user through the use of IBM s ViaVoice speech recognition and text-to-speech 
software. The SNAP&TELL system accepts a constant video input stream from a Toshiba color 
pencil camera, which is attached to the side hinge of a Sony Glasstron see-through personal LCD 
monitor. The pencil camera is positioned pointing towards the user s field of view. The system 
employs a robust algorithm to track the position of the tip of a user s pointing finger. This finger 
tracker acts as an interface to the wearable computing system, which enables a user to specify, 
segment, and recognize objects of interest by simply pointing at and encircling them with their 
fingertip. 

 

Fig. 2  SNAP&TELL wearable computer system s hardware 

Once the user is ready to point to an object of interest, he gives the verbal command start,  
which activates the finger tracking routine. While tracking the user s fingertip, the system 
applies color segmentation to the input video stream. The color segmented image is then fed into 
a skin/non-skin discrimination algorithm to detect likely skin toned regions, then shape and 
curvature analysis is used to extract the hand and to determine the coordinate position of the 
fingertip. The sequence of successive detected fingertip positions identifies the trajectory that the 
user s fingertip is following while encircling the object of interest. At the conclusion of the hand 
motion gesture, the user gives the verbal command stop,  which terminates the tracking 
algorithm. At this point, the currently segmented object encircled by the user is displayed on the 
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see-through personal LCD glasses, and the user is given the choice to either accept this 
segmented object by using the command snap,  or to reset  the system and start  a new 
snapshot of the object. Once the object has been properly segmented, the user initiates the 
recognition phase by issuing the verbal command tell.  The recognition algorithm extracts the 
segmented object from the scene by cropping the region of interest. The segmented object is then 
compared against a database of pre-stored objects by using an invariant object recognition 
algorithm, which recognizes the object, despite small variations in pose, scale, rotation, and 
translation. Once the object is recognized, the object class is displayed and any additional 
information associated with the object is described to the user through an audio narration. The 
system block diagram for the SNAP&TELL system is shown in Fig. 3. 

 

Fig. 3  Block diagram of gesture based interface for the SNAP&TELL system 
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This problem is particularly difficult because we need to recognize the user s hands and objects 
from images taken by the head-mounted cameras in real time. When the user s head moves, so 
does the camera, thus, introducing image jitters and dramatically significant changes to the 
unrestricted background and the lighting conditions. Therefore, in order to track the user s 
fingertip position in the presence of ego-motion, we incorporate the knowledge of the dynamics 
of human motion to create uncertainty models, which are integrated into a robust estimation 
algorithm to make the tracking model less sensitive to the random motion produced by 
head/camera motion and temporary occlusions. Furthermore, we use the coordinates of the 
robustly predicted fingertip position to center a smaller image search window for locating the 
hand. From this point onwards, only the input image inside the smaller search window is 
analyzed by the vision algorithms, thus, speeding up the response time of the system and making 
the routine computationally memory efficient. If, for some reason, the search window fails to 
display the user s hand, the system resets back to the full camera view. 

2.1   Audio interface 

For a wearable system to be practical and fully functional, the user interface must be transparent 
to the users, as well as easy to interact with. Therefore, the SNAP&TELL system uses a headset 
consisting of headphones and a microphone to verbally communicate with the user in a natural 
and efficient manner. While the user wears this headset, it enables him to give verbal commands 
to the computer through the microphone, while at the same time, it allows him to hear the 
information communicated back to him through audio feedback. 

As part of our wearable user interface, we incorporated a series of verbal commands into the 
system using IBM s ViaVoice software. These commands allow the user to turn the tracking 
system on and off, as well as give him/her the choice to accept or reject a captured object before 
it is recognized. Figure 4 shows the ViaVoice dialog window used to create the dynamic 
vocabulary for the SNAP&TELL system. The current list of verbal commands include: start,  
which enables the system to begin tracking the user s pointing fingertip; stop,  which signals 
the end of the pointing gesture; clear,  which deletes the partial tracking points computed at 
any given time, thereby, allowing the user to erase defective tracking paths; snap,  which 
extracts the object of interest encircled by the fingertip track; tell,  which activates the 
recognition routines and, ultimately, sends the object s audio information to the user; and reset,

 which deletes a defective snapshot and clears all the recognition results and sets the system 
into the wait for start command  mode. We expect the set of verbal commands to increase as 
our system continues to grow. Multiple users are supported by training the speech recognition 
engine on each individual user, where each user is trained by having him/her say the commands 
in the list. Figure 5 shows the speech recognition results of a user speaking the various 
SNAP&TELL commands. 
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Fig. 4  Creating the verbal command list using the IBM s ViaVoice software 

 

Fig. 5  Voice recognition results of the verbal command list for the SNAP&TELL system 
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2.2   Video interface 

The video interface encompasses two main parts. First, the user s pointing finger must be located 
in the image using algorithms for both skin segmentation and shape analysis. Second, the user s 
fingertip must be tracked during the pointing gesture. 

2.2.1   Human perceptual color space 

In order to locate the user s hand within the field of view of the pencil camera, we need to find 
all the image areas that are colored using a skin tone. This is accomplished by using a color 
representation for each pixel, which is similar to the way that humans perceive and store colors 
on their visual cortex. The human eye contains two types of photoreceptors located in the retina, 
the rods and the cones. The rods are more numerous, about 120 million, and are more sensitive 
to low light intensity than the cones (useful for night vision); however, they are not sensitive to 
color. The cones, which are about 6–7 million in number, provide the eye s color sensitivity. 
Among the cones, there are three different types of color reception, as experimental evidence 
suggests, which correspond to the firing of the three different types of cone nerve cells. 
Therefore, it follows that visible color can be mapped in terms of three numbers, called 

tristimulus values,  and color perception can be successfully modeled in terms of these values, 
which roughly correspond to the colors red, green, and blue. Thus, any color that can be 
produced by the primary colors red, green, and blue can be written as: 

where r, g, and b can be considered to be the unit values  for the blue, green, and red cone 
nerve cells, and R, G, and B are the magnitudes, or relative firing intensities of the cones of those 
primaries, and they are called tristimulus values.  

The RGB color space creates a linear color representation, which, unfortunately, is not suitable 
for representing a particular range of colors, as opposed to representing a single color. That is, a 
human hand (even for a single computer user) has different shades of skin color due to the 
lighting, the shadows cast by objects around the user, and the three dimensionality of the hand. 
Therefore, in order to extract the user s hand from the camera view, we need to locate all the 
skin colored regions within a range of colors centered around the skin tone of the user. In order 
to accomplish this task, we need to encode the pixel s color using a nonlinear representation, 
which is more suitable for representing a range of colors. 

Therefore, we use the hue, saturation, value (HSV) nonlinear color space, which represents 
colors along human perceptual color dimensions (RGB red cones, green cones, and blue cones) 
that are familiar to us all. The hue represents the property of a color that varies in passing from 
red to green, the saturation represents the property of a color that varies in passing from red to 
pink, and the value represents the brightness or lightness, which is the property of a color that 
varies in passing from black to white. Thus, if we are interested in checking whether a color lies 
in a particular range of blues, we might wish to encode the hue of the color directly, and allow 

  (1)
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the saturation to vary within a certain range. This can be easily seen in Fig. 6, which gives a 
visual representation of the HSV color space. 

 

Fig. 6  HSV nonlinear color space representation 

The RGB color space is transformed nonlinearly to the HSV color space according to the 
following transformation: 

where the hue (H) indicates the color type, the value (V) specifies the total amount of light, and 
the saturation (S) shows how much white light is mixed with the pure color. Since the luminance 
and chromatic components of a color are separated in this space, it is possible to derive an 
effective model of color that can handle non-uniform illumination. 

From this color-space, 12 perceptual color zones have been identified, which are given the 
following well known names: white, black, red, green, blue, purple, orange, yellow, skin or tan, 
pink, cyan, and gray. This differs from the Munshell color space by one color (cyan). The color 
zones are defined by their range of HSV values; for example, the color skin  corresponds to 
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the following range (hue (in degrees): 36–112, value: 4–9, saturation: 1.5–30). Since the hue and 
saturation ranges for the skin  color are broad, they include some shades of adjacent colors 
such as yellow, tan, orange, red, and pink, in order to account for different tones of skin color, as 
well as for illumination effects. 

2.2.2   Skin/non-skin color segmentation 

We now determine the skin-like regions in the current frame by using the HSV color 
representation and performing a color segmentation based on the fast and robust mean shift 
algorithm [2]. By using the mean shift algorithm, the number of dominant colors can be 
determined automatically, unlike the k-means clustering method, where the initial number of 
classes must be chosen. Here, the intensity distribution of each color component in the current 
frame is viewed as a probability density function. The mean shift vector is the difference 
between the mean of the probability function on a local area and the center of this region. 
Mathematically, the mean shift vector associated with a region  centered on  can be written 

as: 

where p(·) is the probability density function. The mean shift algorithm states that the mean shift 
vector is proportional to the gradient of the probability density  and the reciprocal to the 

probability density  such that: 

where c is a constant. Since, the mean shift vector is along the direction of the probability density 
function maximum, we can exploit this property to find the actual location of the density 
maximum by searching for the mode of the density. One dominant color can be located by 
moving search windows in the color space using the mean shift vector iteratively. After 
removing all color inside the converged search window, one can repeat the mean shift algorithm 
again to locate the second dominant color. This process is repeated several times to identify a 
few major dominant colors which segment the image into like-color regions. The dominant 
colors of the current frame are used as the initial guess of dominant colors in the next frame, 
thus, speeding up the computational time (adjacent frames are usually similar). After segmenting 
the current frame into homogeneous regions, we determine whether each region is skin-like by 
considering the mean hue and saturation values, and the geometric properties of the region. This 
region-based skin detection procedure is more robust to varying illumination conditions than 
pixel-based approaches. 

2.2.3   Shape analysis 

  (2)

  (3)

Page 10 of 2510.1007/s00779-004-0316-5

6/7/2005http://www.springerlink.com/media/6N99D5DL960UYLAA3DF1/Contributions/W/5/3/0/...



Once the skin-like regions have been segmented, we clean up this image by applying 
morphological operations to minimize the number of artifacts being considered as having skin-
like color properties. Geometric properties (e.g., elongatedness, boundary curvature) of the skin-
like regions are used to identify the hand. Then, the user s hand orientation with respect to the x 
axis (i.e., pointing direction) is derived using central second-order moments, and the fingertip 
position is determined as the point of maximum curvature along the contour of the hand. 

2.2.4   Search window size 

The computational effort demanded by the computer vision algorithm used to locate the user s 
fingertip is a function of the window search area. Standard computer vision techniques are 
usually hindered by their excessive memory requirements and slow computational speeds. These 
deficiencies preclude real-time operation. 

However, some recent computer vision approaches for tracking applications speed up their 
computation time by reducing the image search area into a smaller window. The window is 
centered at the last known position of the moving object [1, 17]. The main drawback of these 
methods is that, when the object moves faster than the frame capture rate of the algorithm, the 
object will move out of the window s range. This possibility leads to a loss in tracking ability 
and forces the algorithm to reset the image search area to the full view of the camera in order to 
recover the position of the object. The repeated reduction and expansion of the image search area 
slows down the system s performance considerably. Some tracking solutions have attempted an 
improvement by gradually varying the search window s size according to the moving object 
speed [1]. The faster the object moves, the larger the search window becomes, while still 
centering the window at the last known position of the object. Therefore, if the object is moving 
fast, the search window is large and the computation time for the vision algorithm increases, 
thus, further slowing down the system s response time. 

More advanced systems, such as [8], use state-space estimation techniques to center the smaller 
search window at the future predicted position of the user s fingertip, rather than around its 
current position. In this way, as the moving object s speed increases, the predicted window 
position will accompany the speeding object, thereby, keeping it inside the window s view. The 
window size, thus, remains small and centered around the object of interest, regardless of its 
speed. This in turn keeps the memory allocations down to a minimum, thus, freeing memory 
space that can be used by other simultaneous processes. However, if the object abruptly changes 
its movement patterns (which introduces modeling uncertainties), the tracking of the user s hand 
is lost. A robust estimation algorithm that takes into account the uncertainties created by the user
s random ego motion is more effective in keeping the user s hand inside the small search 

window and in reducing the number of times the image search area has to be expanded to full 
view, thus, increasing the system s response time. 

2.2.5   Robust state-space fingertip tracking 

The robust finger tracker developed in [6] is based on the principles of state-space estimation 
with uncertain models from [13]. The robust tracker functions as follows. 

First, a simplified model is adopted for the fingertip movements. The fingertip coordinate 
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positions {xi+1, yi+1} in the next video frame are modeled in terms of the present frame s 
fingertip pixel coordinates {xi, yi} as follows: 

where { x,i, y,i} denote the accelerations along the x and y directions (measured in pixels per 

second2), {vx,i, vy,i} denote the speeds along these same directions during the ith frame 

(measured in pixels/second), and T denotes the frame capture rate while tracking the user s hand 
(for the SNAP&TELL wearable system, this rate is currently 1/5 s/frame). The above equations 
motivate the following state-space model with state vector si and measurement vector zi: 

  (4)

  (5)

  (6)

  (7)

  (8)

  (9)

  (10)

  (11)

(12)
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where ui and wi denote that uncorrelated zero-mean white Gaussian process and measurement 

noises, with corresponding covariance matrices Q and R, and where { Fi, Gi} represent system 
uncertainties. 

The values for {Q, R} are determined empirically as follows. We assume initially large 
uncertainties in the x and y locations, say, of the order of three pixels, and smaller uncertainties 
in the displacements, say, of the order of one pixel. Then, these initial values are checked for 
optimality by testing the whiteness of the resulting innovations process of a Kalman filter 
implementation following the method of [12], and the values are adjusted until the whiteness test 
is passed. The chosen values for Q and R used in the SNAP&TELL wearable system, and which 
meet a 95% confidence whiteness test, are: 

The wearable computer uncertainties are modeled by treating the given parameters {F, G} as 
nominal values, and by assuming that the actual values lie within a certain set around them. 
Thus, the perturbations in {F, G} in Eq. 10 are modeled as: 

  

  (13)

  (14)

(15)
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for some matrices {M, Ef, Eg} and for an arbitrary contraction i, || i|| 1. For generality, we 
could also allow the quantities M, Ef, and Eg to vary with time. This can be useful for cases when 
the model is expected to change dramatically at a particular time instant, such as when the user 
starts walking, is coughing, or is moving his/her head abruptly while being distracted [6]. The 
authors are currently investigating alternative models for modeling the uncertainties associated 
with the user s head motion, walking, and changes in lighting conditions. One such case is when 
the user starts walking while pointing at an object of interest. In this situation, the uncertainties 

Fi and Gi will have larger values than when the user is standing still. The SNAP&TELL 
system would then detect constant movement in the camera view indicating walking motion, and 
would switch the robust tracker s perturbation model to the walking  mode. 

Applying the time- and measurement-update form of the robust filter of [13] to the uncertainty 
model (Eqs. 10 and 11) yields the following equations (where 0 is a positive definite matrix 
chosen by the designer, usually a large multiple of the identity): 

Initial conditions   Set  and  

  

 Step 1. If HM=0, then set  (non robust filter). Otherwise, select  (typically, 0<

<1) and set: 

  

 Step 2. Replace {Q, R, Pi|i, G, F} by: 
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We applied this robust algorithm to a typical user s fingertip trajectory. The results are displayed 
in Fig. 7. Note that the reduced search window is centered at the previously predicted fingertip 
position, and that it very closely overlaps with the actual finger position. 

 

Fig. 7  Successfully tracked fingertip using a robust state-space Kalman filter 

2.3   Invariant object recognition 

Having located the scene object or landmark of interest, we would like to recognize it 
irrespective of pose, scale, rotation, and translation variations. Our current approach to object 
recognition involves a multi-dimensional indexing scheme based on characterizing its local 
appearance by a vector of features extracted at salient points. Local descriptors should be stable 
to slight changes in viewpoint, illumination, and partial occlusion. It is also desirable that the 
descriptors be highly discriminant so that objects may be easily distinguished. The literature in 
[4] represented physical objects by an orthogonal family of local appearance descriptors obtained 
by applying principal component analysis (PCA) to image neighborhoods. The principal 

If  then simply set  and  

 Step 3. Update  as follows: 
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components with the largest variance were used to define a space for describing local 
appearance. Recognition is achieved by projecting local neighborhoods from newly acquired 
images onto the local appearance space and associating them to descriptors stored in a database. 
A similar approach to local appearance modeling was proposed by Schneiderman and Kanade 
[14], where the pattern space was first discretized by applying clustering using vector 
quantization (VQ), and then a projection basis was learned for each cluster. The approach we 
take improves upon these methods of modeling local appearance by learning the collection of 
patterns within a mixture of factor analyzers (MFA) framework, see [10]. The advantages of this 
approach are that the clustering and dimensionality reduction steps are performed simultaneously 
within a maximum likelihood framework. In addition, the MFA model explicitly estimates the 
probability density of the class over the pattern space. Therefore, it can perform object detection 
based on Bayes  decision rule. 

In our object recognition approach, MFA modeling is used to learn a collection, or mixture, of 
local linear subspaces over the set of image patches or sub-regions extracted from the training set 
for each object class. The training sets for each particular object class contain images of the 
object captured at different orientations, thus, allowing the system to be trained to recognize the 
object from different views. Then, by allowing a collection of subspaces to be learned, each 
subspace can become specialized to the variety of structures present in the data ensemble. 
Therefore, in order to find a probabilistic representation of the cropped image containing the 
object of interest, we first decompose the image into three color bands (YCrCb), which 
correspond to the luminance (Y), red chrominance (Cr), and blue chrominance (Cb) bands. For 
each band, we find the salient points, or corners in the image, by computing the following 
gradient matrix in a local neighborhood around each point in the image: 

Taking the gradient in the x direction (Ix) detects the vertical edges, and the double gradient (Ix2) 
finds the points of maximum curvature (salient points) in vertical features of the image. After 
Cgrad is found for a pixel, we compute the eigenvalues of Cgrad and test if 1> 2 is constant. If 
this condition is met for a particular point in the image, then that point is classified as a salient 
point (see Fig. 8). 

  (16)
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Fig. 8  Detection of salient points 

Once all the salient points have been found in the three chrominance band images, for each 
individual salient point, we extract a set of 8×8 image patches centered at a particular salient 
point s position in each of the band images, and at different scale sizes for each of the bands. For 
three different scale sizes, this creates a set of nine salient patches for each individual salient 
point, as can be seen in Fig. 9. Thus, in order to detect an object at any size, we repeat the 
process of extracting image patches at salient points over a range of magnification scales of the 
original image. This process could be repeated for all the salient points previously found; 
however, in order to reduce the amount of data we must process, we extract the image patches 
only at selected points in the image. Salient points are local features where the signal changes 
two-dimensionally. We use a technique described by Tomasi and Kanade [15] for finding salient 
features. Once all the salient patches have been found, an estimate of the probability density 
function, characterizing the cropped object of interest, is found by using an MFA framework and 
the collection of salient patches. 
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Fig. 9  Creation of salient patches, at different scales, corresponding to a single salient point 

Factor analysis is a latent variable method for modeling the covariance structure of high 
dimensional data using a small number of latent variables called factors, where  is known as 
the factor loading matrix. The factors z are assumed to be independent and Gaussian distributed 
with zero-mean unit variance, z~N(0, I). The additive noise u is also normally distributed with 
zero mean and a diagonal covariance matrix , u~N(0, ). Hence, the observed variables are 
independent given the factors, and x is, therefore, distributed with zero mean and covariance 

+ . The goal of factor analysis is to find the  and  that best model the covariance structure 
of x. The factor variables z model the correlations between the elements of x, while the u 
variables account for independent noise in each element of x. Factor analysis defines a proper 
probability density model over the observed space, and different regions of the input space can 
be locally modeled by assigning a different mean j and index j (where j=1,...,M) to each 
factor analyzer. 

The expectation–maximization (EM) learning algorithm is used to learn the model parameters 
without the explicit computation of the sample covariance, which greatly reduces the algorithm s 
computational complexity. 

 E-Step. Compute the moments hij=E[ j|xi], E[z|xi, j], and E[zz | xi, j] for all data points 
i and mixture components j, given the current parameter values j, and  j.

 M-Step. This results in the following update equations for the parameters: 
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See [10] for details on the derivation of these update equations. We iterate between the two steps 
until the model likelihood is maximized. 

In the context of object recognition, we are interested in calculating the probability of object Oi 
given a local feature measurement xk represented by the local image patch or subregion. Once 
the MFA model is fitted to each class of objects, we can easily compute the posterior 
probabilities for each subregion xk. The pdf of the object class Oi is given by: 

where i is the set of MFA model parameters for the ith object class, and Pim is the mixing 
proportion for the mth model of object class Oi. The posterior probability of object class Oi given 

xk can be calculated by Bayes  rule: 

where N is the total number of object classes and Pi is the a priori probability of object class Oi, 
which is estimated from the training set of images. Without modeling the dependencies between 
the local subregions xk, lets assume that we have extracted K independent local feature 
measurements (x1,..., xk) from an image. Then, we can compute the probability of each object 
class Oi, given the image patches, by: 
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Then, the optimum object class label i* for the image having a set of local measurements (x1,..., 

xK), is determined by Bayes  decision rule as follows: 

Figure 10 illustrates the object recognition framework for the SNAP&TELL wearable system. 

 

Fig. 10  Object recognition framework 

3   Experimental results 
Figure 11 illustrates the fingertip tracking results obtained using a 1.2 GHz laptop computer over 
a sequence of frames, where the last frame shows the final output display of the SNAP&TELL 
system, after successfully tracking the user s fingertip, extracting the object of interest at the end 
of the pointing gesture, and finally recognizing the desired object. This figure also illustrates 
how the robust tracker helps to reduce the search area into a small window, thereby, speeding up 
the processing of the vision algorithms. In this particular simulation, the response time of our 
overall system was 68% faster than the response obtained by a system that uses a full camera 
view to track the user s fingertip, and 23% faster when compared with a system that uses a small 
search window centered around the previous fingertip position (rather than the predicted future 
position). 
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Fig. 11  Sample frames from a real-time fingertip tracking sequence using our robust tracker 

Furthermore, it should be noted that the size of the reduced search window was chosen to be at 
least twice the size of the maximum estimation errors of the robust tracker in the x and y 
directions  where the performance of this tracker was 

estimated using a training sequence of a typical pointing finger trajectory. Therefore, the more 
accurate the tracker is in estimating the fingertip position, the smaller the size of the search 
window needed, and, thus, the faster the overall system response time will be. Experimental and 
empirical evidence suggests that possible choices for the preliminary robust tracker s matrices 
{M, Ef, Eg} are: 

  (17)
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These choices account for possible violations of the constant speed assumption and the 
acceleration instabilities present in a wearable system. The performance of the robust fingertip 
tracker has been compared to a tracker that relies on a plain Kalman filter for tracking a typical 
fingertip trajectory of a user encircling an object of interest. The mean-square-error (MSE) 
results for both filters are shown in Fig. 12 for the estimation error of the x and y pixel 
coordinates, and the estimation error in the x and y displacements. The robust algorithm, 
using the perturbation models (Eqs. 17 and 18), shows smaller magnitudes of the MSE for all 
variables, leading to an average improvement of 10% over the performance of the Kalman filter. 
We are working on an on-line learning method to develop multiple uncertainty models with an 
intelligent switching scheme to further speed up our system performance. 

 

Fig. 12  Comparison of the fingertip estimation errors between the Kalman filter and the robust tracker 

  (18)
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using the perturbation models (Eqs. 17 and 18) with =0.5 

Finally, our object recognition approach has been found to be robust to small changes in 
illumination, viewpoint, and scale. We achieved 96% correct object recognition on a small test 
database of 5 views of 10 objects captured at different scales and perspectives, using a database 
of 10 views per object to train the classification models. Further testing is needed to determine 
how well the recognition algorithm performs as the number of objects in the database increases. 
Figure 13 illustrates the object recognition results obtained with the SNAP&TELL wearable 
system. 

 

Fig. 13  SNAP&TELL invariant object recognition 

4   Future work 
The current performance results are encouraging and merit future exploration. The authors are 
investigating learning methods to develop more sophisticated models for uncertainties associated 
with the user s head motion, walking, and changes in lighting conditions, as well as more 
elaborate state-space models to account for additional information, such as depth information, 
hand size, and skin tone. 
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