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SUMMARY

Spectral factorization is a crucial step in the solution of linear quadratic estimation and control problems. It
is no wonder that a variety of methods has been developed over the years for the computation of canonical
spectral factors. This paper provides a survey of several of these methods with special emphasis on clarifying
the connections that exist among them. While the discussion focuses primarily on scalar-valued rational spectra,
extensions to nonrational and vector-valued spectra are briefly noted. Copyright c

�
2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Ever since Wiener’s original contribution to the solution of the causal linear least-mean-squares
estimation problem (see Wiener and Hopf (1931) and Wiener (1949)), canonical spectral factorization
has played a significant role not only in estimation problems but also in linear quadratic control, in
robust estimation and control, and in several other fields.

It is no wonder that a variety of methods has been developed for processes with rational spectral
densities. Thus we may mention the methods named after Bauer, Levinson-Durbin, Schur, and methods
using Riccati recursions, CKMS recursions, and array algorithms. The aim of this survey is to collect
together these somewhat scattered results, and to point out various relations and connections among
them. In particular, the latter methods will be shown to be intimately related to now well-known results
in linear least-mean-squares estimation for processes with rational power-spectral densities. The first
three methods apply more generally, but in the rational case they can be nicely related to the methods
based on estimation theory.

We start with a scalar zero-mean stationary random process ������� with autocorrelation sequence	�
���������� ���������� � � 	 �
 ��� ���"! ��#%$��&$'#'!
(1)

(
Correspondence to: Dept. Electrical Engineering, University of California, Los Angeles, CA 90095. E-mail: sayed@ee.ucla.edu

Contract/grant sponsor: Army Research Office; contract/grant number: DAAH04-96-1-0407

Contract/grant sponsor: National Science Foundation; contract/grant number: CCR-9732376

Received 5 January 2000
Copyright c

�
2001 John Wiley & Sons, Ltd. Revised 25 April 2000
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and assume that the sequence � 	 
� ��� � is exponentially bounded, namely, that there exist
�����

and� $�� $��
such that

	 	 
 � ��� 	 $��
��� � ��
(2)

This condition guarantees that the � -spectrum of the process ��� � � , which is defined as the � -transform
of its autocorrelation sequence,

� 
� � ���� ��
��� � �

	 
� ��� � � � ! (3)

converges absolutely in the region
� $ 	 � 	 $������ .

We also assume, unless otherwise stated, that
� 
 � � � is rational and that it does not have unit-circle

zeros so that
� 
��� ��� ����� for all

� �
!#"�!#� 
(4)

Under these conditions, a unique canonical spectral factorization of
� 
 � � � is known to exist, namely a

factorization of the form
� 
� � � ��$ � � �&%(' $ � � � � � � ! (5)

where � % ' ! $ � � � � satisfy the following conditions:

1.
% '

is a positive scalar,
% ' ���

.
2. $ � � � is normalized to unity at infinity, $ � #�� � � .
3. $ � � � is a rational minimum-phase function. That is, both $ � � � and $ �*) � � � are analytic on and

outside the unit circle or, equivalently, $ � � � has all its zeros and poles strictly inside the unit
circle.

In the sequel we are interested in determining � %+' ! $ � � � � either from the � 	 
� ��� � or from
� 
 � � �

itself. In the latter case, we note that by the assumption of rationality, we can express every rational
� -spectrum

� 
 � � � as the ratio of two Laurent polynomials, say

� 
 � � � �-,
� � �. � � �

!
(6)

where , � � � and
. � � � are of the special form

, � � � � /�
� � � /

0 � � � � ! . � � � � 1�
� � � 1

2 � � � � ! 0 � � 0 � � � ! 2 � � 2 �� � ! (7)

with degrees 3 and 4 , respectively, and are both strictly positive on the unit circle,

, ��� ��� ����� and
. �5� ��� ����� for all

� �
!#"#!��6
(8)

So if we can factor , � � � and
. � � � into their own canonical forms, say

, � � � �7$98 � � �:% 8;$ �8 � � � � � ! . � � � �<$>= � � �:% =($ �= � � � � � ! (9)
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with
% 8 ��� , % = � � , and where $ 8 � � � and $ = � � � are polynomials in � � ) of orders 3 and 4 ,

respectively,

$ 8 � � � � � � /� ��� ) � 8 � � � � ! $ = � � � � � � 1�
��� )

� = � � � � ! (10)

and have all their roots strictly inside the unit circle, then the desired canonical factor $ � � � for
� 
 � � �

can be taken as

$ � � � � $ 8
� � �$ = � � �

!
(11)

with
% ' � % 8 ��% = . For this reason, we shall focus in the coming sections on the canonical factorization

of Laurent polynomials that are strictly positive on the unit circle; these factorizations are always
guaranteed to exist and, moreover, are uniquely defined as indicated by the following well-known and
easily verifiable statement.

Lemma 1 (Canonical factors of polynomial � -spectra) Consider a Laurent polynomial , � � � of
degree 3 ,

, � � ���� /�
��� � /

0 � � � � ! 0 � � 0 � � � !

and such that it is nonnegative on the unit circle, , �5� ��� ����� . Then the following facts hold:

1. If ��� is a zero of , � � � then ������ � and � � �� is also a zero. It follows that if , � � � has 3 zeros �
	 � � on
and inside the unit circle (

� $ 	 � 	 !�� ), then it also has 3 additional zeros �
� � � 	 � �� � on and outside
the unit circle (

� ! 	 � 	 $ # ).
2. The canonical factorization of , � � � is given by , � � � ��$�8 � � �:% 8;$ �8 � � � � � where

$ 8 � � � � /���� )  � � 	 � � �*)�� ! % 8 � 0
/� � � �

/�� /��� ) 	 �
!

and
% 8 ��� .

3. If , � � � is strictly positive on the unit circle then $ 8 � � � has all its zeros strictly inside the unit circle.
4. Assume the � 0 � � are real-valued. Then the coefficients of $ 8 � � � are also real-valued. Moreover, if � �

is a complex root of , � � � , then so are �+� �� ! � � )� ! � � �� � . �

The factorization is easy to perform for low-order polynomials by finding their respective zeros.
For higher-order polynomials, more systematic procedures for spectral factorization are needed. We
describe several of them here; they are all recursive in nature, meaning that they provide approximations
for � $ 8 � � �"! $ = � � � ! $ � � � � such that, as the number of iterations tends to infinity, the approximations will
tend to the desired factor(s).
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470 A. H. SAYED AND T. KAILATH

Remark 1 (Paley-Wiener condition) Although we make the (more than needed) assumption that the
autocorrelation sequence is exponentially bounded, and that

���������
is a rational

�
-spectrum, we should mention

that some of the algorithms presented here (e.g., the Levinson-Durbin and Schur algorithms) are in fact more
general and can also be used to provide approximate canonical factors even for nonrational

�
	
spectra provided

we weaken the definition of a canonical spectral factor as indicated below and provided
���������

satisfies a finite-
power and a so-called Paley-Wiener condition. [These methods can also be extended to matrix-valued

�
-spectra.]

More specifically, for general (not necessarily rational)
�
-spectra

���
�����
, the following canonical spectral

factorization result can be proven (see, e.g., Doob (1953) and Grenander and Szegö (1958)). There exists ������
and a unique function � ����� satisfying

� � ������� � �����  � � ( ���
� ( � with the following properties:

(i) � ����� and � ��������� are analytic in � � ����� , and
(ii) ����! � � " � � #%$'& (i.e., the impulse response of � ����� is square-summable),

if, and only if,
� � �����

is the
�
-spectrum of a finite power process, i.e.,( ��� � �*)� �+-, .*/� / �0��13234��65�7 $8&:9 (12)

and satisfies the so-called Paley-Wiener condition�+-, .*/� /<;>=@? �A����13234���B�5�7 � 	 &8C (13)

In this case, it turns out that there exists an elegant so-called Szegö formula for  � ,
 � � exp D �+-, .E/� / ;F= ? � � ��13234G� B 5�7IH C (14)

Moreover, because of the finite-power condition (12), the above Paley-Wiener condition is also equivalent to the
absolute integrability of ;F=�J � � ��1 2K4 �ML , viz.,�+N, . /� /POOO ;>=Q?

�A����132K4���B OOO
5�7 $R&RC (15)

Note that the finite power assumption (12) rules out the possibility of poles of � ����� on the unit circle. Still,� ����� can have an essential singularity on � � � � � so that it can only be guaranteed to be analytic in � � ����� . In the
rational case, essential singularities cannot occur and, hence, � ����� will be analytic in � � ��S�� and all its poles will
be strictly inside the unit circle. Note further that while (ii) guarantees the existence of a canonical factor � �����
with a square-summable impulse response, nothing is said about the square-summability of the impulse response
of � ��� ����� . In fact, this latter condition cannot be guaranteed in general.

Observe further that for a
�
-spectrum to satisfy the above Paley-Wiener condition, it cannot have zeros over a

set of nonzero measure on the unit circle. Thus, for example, random processes with band-limited power spectra
will not qualify. For our discussions, we of course have made the stronger assumption that

���������
is never zero on

the unit circle. T

2. SPECTRAL FACTORIZATION VIA BAUER METHOD

The first method we discuss is due to Bauer (1955,1956) — see also Youla and Kazanjian (1978).
Bauer method for computing the canonical factorization of , � � � in (9)–(10) is based on the idea of
approximating the coefficients � � 8 � � of $ 8 � � � by computing the Cholesky decompositions of successive
positive-definite Toeplitz matrices of increasing dimensions.
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A SURVEY OF SPECTRAL FACTORIZATION METHODS 471

More specifically, we form the sequence of banded Hermitian Toeplitz matrices,��� � 0 � !�� ) � � 0 � 0 � )0 ) 0 ��� !���� �	�
 0 � 0 �*) 0 � �0 ) 0 � 0 � )0 � 0 ) 0 ��� ! ( 

where each new matrix
���

is obtained by taking
��� � ) as its leading submatrix and by adding a new

column and its conjugate transpose to form
���

. The matrices
���

will become banded for � � 3 ; they
will also be positive-definite in view of the strict positivity of , � � � on the unit circle.

Let
� � �7$ ����� $ �� denote the triangular factorization of each

� �
, with $ � lower triangular with unit

diagonal entries and
� �

a diagonal matrix with positive entries. Because of the nested structure of the
successive

���
(two consecutive

������ differ only by a column and a row), it follows that the $ � ’s and the� �� � also have a nested structure. In particular, $ � �*) (
� � � ) ) is the leading submatrix of $ � (

� �
),

$ � � � $ � �*)� � � ! � � � � � � �*)�� ��� !
where

%�� ���� �	�! denotes the last row of $ � , and
� �

denotes the last entry of
� �

. The vector
%��

has� � � ��� entries and we shall write them explicitly as

% � ��#" %$�$% �  ( %$�$%
/'& ) %$�$%

/
   %��$% � %��$% ) �)( 

With the last
� 3 � � �

entries of
%��

we associate the following polynomial in � � ) of order 3 ,* � � � � � � � % �$% ) � �*) � % �$% � � � � �  ( � % �$% / � � / 
Bauer (1955,1956) argued that as �,+ #

,
*-�� � � and

� �
tend exponentially fast, and respectively, to

the canonical factor $ 8 � � � and to
% 8 .

Example 1 (Application of Bauer method) Consider an exponentially-correlated random process with
( ���/. � �021 � 1 for some real-valued 0 satisfying �P$ 0 $�� . Its

�
-spectrum is easily seen to be�A�
����� � � 	 0 #� � 	 0 � ��� � � � 	 0 ��� 9

so that the canonical factorization of
���
�����

is given by

� ����� � �� 	 0 � ��� 9  � � � 	 0 # C
Let us now determine 3�� ����� 9K �54 by using Bauer method. First we write

� � �����
as�G��������� � 	 0 #�!6 0 # 	 0 � 	 0 � ��� C

The canonical factorization of the numerator is then trivial and given by �87 �����Q� � and 97 � � 	 0 # . Let: ������� ��6 0 # 	 0 � 	 0 � ��� and let us form the corresponding sequence of banded Toeplitz matrices ;=< ,
;2> � ��6 0 # 9,; � � D ��6 0 # 	 0	 0 ��6 0 # H 9,; # �@?A ��6 0 # 	 0 �	 0 ��6 0 # 	 0� 	 0 ��6 0 #CBD C C C C
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472 A. H. SAYED AND T. KAILATH

It can be verified that, at a generic iteration
�

, the triangular factor � < of ; < will also be banded and given by

��< � ?������A
�	 0 �������� �	 0 ����� ��������	����
 �	 0 ����� � ��� 
�������	����� �

. . .
. . .

B D
C

Moreover, � < � diag

� ��6 0 # 9 ��6 0 # 6 0����6 0 # 9 ��6 0 # 6 0�� 6 0����6 0 # 6 0 � 9 C C C�� C
It is thus clear that the last entry of

� < tends to unity (since the numerator and the denominator tend to the same
geometric series). Moreover, the last row of ��< tends to <�� � � C C C � 	 0 ��� 9 as

� � &8C
Therefore, �� � � and ��� ������� � 	 0 � ��� . Using (11) we conclude that

� ������� �� 	 0 � ��� 9  � � � 	 0 # 9
as desired. T

We may add that Bauer method can also be used (see, e.g., Rissanen and Kailath (1972)) for factoring
an infinite-length (scalar or vector-valued) Laurent polynomial , � � � (i.e., one with 3 + #

in (7)–(8)).
This can be interpreted as equivalently factoring a � -spectrum

� 
� � � from its autocorrelation sequence
� 	�
 � ��� � — such an extension allows for possibly nonrational � -spectra provided the conditions on$ � � � and

� 
� � � stated in Remark 1 are satisfied. In this infinite-length case, we form the sequence of
Hermitian Toeplitz matrices,��� � 	 
 �5� �"!�� ) � � 	 
 �5� � 	 
 � � � �

	 
�&��� 	 
 �5� ��� ! �8� � �
 	 
 �5� � 	 
 ��� ��� 	 
 � ��� �
	 
 �&� � 	 
 �5� � 	 
 � � � �
	 
��� � 	 
�&� � 	 
�5� � � ! ( 

and compute the triangular factorization
� � � $ ����� $ �� for � � � . Let

* � � � � denote the polynomial
associated with the last row of $ � (it will now be in general a polynomial of order � ),* � � � � � � � % �$% ) � � ) � % �$% � � � � � (  � % �$% � � � � 
Then it can be shown (Rissanen and Kailath (1972, pp. 394–395)) that as � + #

,
* � � � � and

� �
converge to $ � � � and

% '
, respectively.

Example 2 (Factorization using 3� "! �$# � 4 ) Consider again the same exponentially correlated process
( � �/. � �021 � 1 , but let us now compute 3�-��93� ����� 4 by working directly with the autocorrelation sequence 3 ( �
�/. � 4 rather

than the
�
-spectrum

� � �����
. In this case, at a generic time instant

�
, the matrix ; < will be a Toeplitz matrix whose

first column is given by col 3 ��9 0 9 0 #N9 C C C�9 0 < 4 . It can be verified that in this case ��< will also be Toeplitz with the
same first column as ;2< , and that � < � diag 3��N9 � 	 0 # 9 C C C�9 � 	 0 # 4 C
Copyright c
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A SURVEY OF SPECTRAL FACTORIZATION METHODS 473

Hence, the last row of � < tends to � C C C 0 � 0 # 0 � � 9
so that � ������� �� �  > 0 � � � � � �� 	 0 � ��� 9
and  � � � 	 0 # , as desired. T
Remark 2 (Fast factorization algorithms) Since the required triangular factorizations in Bauer method are
those of Toeplitz matrices ; < , the factors ��< can be computed efficiently by relying on fast factorization algorithms
that exploit the Toeplitz structure, in particular, an algorithm going back to the work of Schur (1917). The Schur
method will be discussed next. It will be shown to recursively construct the columns of �!< (rather than its rows).
Still, it will be shown how the limiting behavior of these columns can be used to recover � ����� as well. Then
in Sec. 4, we shall discuss a method going back to the work of Levinson (1947) and Durbin (1960) on solving
Toeplitz systems of linear equations. In this method, one determines in a fast way the factors not of ; < but of ; ���< ;
nevertheless from these we can still construct the canonical factors. T

3. SPECTRAL FACTORIZATION VIA SCHUR ALGORITHM

In this section we describe a method that is based on an algorithm of Schur (1917), which is concerned
with the study of functions that are analytic and bounded by unity in the unit circle. In order to reduce
the spectral factorization problem to Schur’s context, we need to introduce the notions of positive-real
(or impedance) functions and Schur (or scattering) functions.

3.1. Positive-Real and Schur Functions

The impedance function associated with a covariance sequence � 0 � � is denoted by � � � � and defined by

� � � ���� 0 � � � /�
��� )
0 � � � �  (16)

The function � � � � is related to , � � � via the expression

, � � � � � � � � � " �  )��� � ( �� 
(17)

The fact that , � � � is strictly positive on the unit circle translates into a fundamental property on � � � �
itself. More specifically, it follows that the real part of � � � � should be positive on the unit circle,

Real " � �5� ��� � ( � � 
We thus say that � � � � is a strictly positive-real function. � The converse is also true. If � � � � is a strictly
positive-real function then , � � � is a � � spectrum that is strictly positive on the unit circle.

�
By definition, a function �
	��� will be said to be positive-real (PR) if Real � �
	��������� for all � ������� . The function will be

said to be strictly positive-real (SPR) if it is analytic in � ������� and satisfies Real ����	� 2K4 "!#�$� for all %'&(� ��)+*-,�� . An SPR
function is PR while the converse is not necessarily true. In fact, it can be shown that a function is SPR if, and only if, it is PR
and its real part is strictly positive on the unit circle.

Copyright c
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474 A. H. SAYED AND T. KAILATH

Now introduce a so-called scattering function � � � � via the bilinear transformation,� � � � �� � � � � � � �  � � 0 �� � � � � � �  � � 0 �  (18)

It is easy to verify that the functions � � � � �"! � � � �"! , � � � � satisfy the relation

� � � � � � � � � �� ��� � � � � , � � �� � � � � � 0 �  � � � � � � � � � 0 �   (19)

Now since , � � � is strictly positive on the unit circle, and since � � � � is analytic in
	 � 	 � � , it follows

from (18) and (19) that � � � � is analytic in
	 � 	 $�� and that it is strictly bounded by one on the unit-circle.

We thus say that � � � � is a strict Schur function. �
3.2. Schur Algorithm

Schur (1917) devised a recursive test for checking whether a scalar function � � � � (rational or not) is of
Schur type or not (according to the definition in the footnote). We state his algorithm below.

Theorem 1 (Schur algorithm) Consider the following recursive algorithm that starts with a given
function � � � � , and computes successive functions � � � � � via the recursion� � & ) � � � � �� � � � � � ��� �� ��� �� � � � � � ! � � � � � � � � � �"! and

� � � � � �5� �  (20)

Then the following facts hold:

(i) � � � � is analytic in
	 � 	 $ � and satisfies �
	��

� � �  ) 	 � � � � 	 !�� !
if, and only if,

	 � � 	 ! � for all
� 

[That is, � � � � is a Schur function.]
(ii) � � � � is an all-pass rational function of order

�
, i.e.,� � � � � � �
����
��� )

� ��� �� ��� �� � !
for some complex numbers

	 � � 	 $�� and ��� � � � ! �  , if, and only if,
	 � � 	 $�� for

� !��&$��
and

	 � � 	 � � 
(iii) Starting with a Schur function � � � � , each successive function � � � � � will also be of Schur type. �

�
A function �
	 �  is said to be a Schur function if it is analytic in � � ���'� and bounded by unity in this domain, viz.,�����1 � 1  � � �
	��� �"! �$#

The function is said to be strictly Schur if it is analytic in � ���%! � and strictly bounded by unity in this domain.
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A SURVEY OF SPECTRAL FACTORIZATION METHODS 475

The coefficients � � � � are called the reflection coefficients associated with � � � � (see, e.g., Kailath
(1987) for a discussion on the significance of these coefficients in scattering theory). In the sequel we
shall assume that all the � � � � are strictly bounded by one,

	 � � 	 $�� . This condition is in fact guaranteed
in our case since we are dealing with a strict Schur function in view of the strict positivity of , � � � on
the unit circle.

Remark 3 (Reflection coefficients and Paley-Wiener condition) For a general
� � �����

, possibly nonrational, the
condition � � � ��$�� for all

.
can be guaranteed by requiring the corresponding Schur function � ����� , defined by

� ����� � J � ��� � ( �ML ( 	 ( ��� � �J � ��� � ( �ML ( 6 ( ��� � � 9 (21)

with

� �����*)� ( ��� � � 6 + �� �! � ( �
�/. � � � � 9 (22)

to satisfy . /� / ;>=�J � 	 � � ��13234�� � # LF5�7 � 	 &8C (23)

Now since the quantities 3�� ����� 9 � ����� 9 � � ����� 4 above also satisfy

� 	 � ����� D � � �� (�� H ( � � � � �����J � ����� 6 ( ��� � �ML J � ( ��� � ( � 6 ( �
� � �ML 9 (24)

we see that (23) is equivalent to the Paley-Wiener condition (13). In fact, it can be further shown that (23) is also
equivalent to ���  > � � 	 � � � � # � $8&89
which thus guarantees � � � ��$�� for all

.
. T

3.3. Schur Algorithm in Linearized Form

The function recursion (20) is nonlinear in � � � � � . It can be rewritten in an equivalent linearized form
as follows. We first express � � � � � as the ratio of two power series in � that are analytic in

	 � 	 $ � and
have no common zeros, say � � � � � �
	 � � � �� � � � � 
Then (20) leads to � � & ) � � � �
	 � & ) � � �� � & ) � � � � 	 � � � ����� � � � � � �� � � � � � ����� �� 	 � � � �  
Now since the numerator 	 � � � � � � � � � � � � has a zero at � � � , we see that both the numerator and the
denominator share a common factor that is equal to � . For this reason, 	 � & ) � � � and � � & ) � � � are defined
by

� 	 � & ) � � � � � � � 	 � � � ����� � � � � � �  ! � � � & ) � � � � � � � � � � � � ����� �� 	 � � � �  ! (25)
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where
� � is an arbitrary nonzero complex scalar. This additional degree of freedom in choosing

� �
can be favorably exploited in order rewrite the update expressions for 	 � & ) � � � and � � & ) � � � in different
forms. But for our purposes here a most interesting choice is to set

� � �
�

� � � 	 � � 	 � !
provided all the � � � � are less than unit-magnitude, which is the case we are considering in this
appendix. A justification for the above particular choice follows by noting that we can now combine
the expressions in (25) into the form

� " � � & ) � � � 	 � & ) � � � ( � " � � � � � 	 � � � � (�� � � � �
� � � ! (26)

where
� � can be seen to be an elementary hyperbolic rotation determined by the coefficient

� � ! viz.,

� � �
�

� � � 	 � � 	 � � � � � �� � �� � �  (27)

The asymptotic behavior of � � � � � �"! 	 � � � � � has also been studied in some detail in the literature (see,
e.g., Dewilde and Dym (1981a,1981b), Georgiou and Khargonekar (1987,1989), and Constantinescu
(1996)). In particular, it can be shown that, for � � � � satisfying � ��� � � � (which is the case we are
considering), the function � � � � � converges to a limit function �

� � � such that

� % 8 $ 8 � � � �
�� � � � � � � � � � � � � � 0 �� � � � � � !�� � � � � 

(28)

Remark 4 (Schur polynomials) The limiting result (28) holds for rational strict Schur functions � ����� . A similar
conclusion can be obtained for general

�
	
spectra,

� � �����
, that are not necessarily rational, provided condition (23)

is satisfied. This is shown in Sec. 3.5 by using Schur polynomials. T
Remark 5 (Initial conditions) The initial conditions 3�� > ����� 9
	 > ����� 4 can be chosen in many different ways. For
example, if we choose ��> ����� � � ����� and 	 > ������� � , then we obtain from (28) that the limit function �

�����
will be

such that

�  7 � 7 ����� � �+ 132� � ( ��� � ( � J � ����� 6�� > L C
If, on the other hand, we choose 	2> ������� �# J � ( ���
� ( � 6�� > L and �$> ������� �# J � ( ����� ( ��	 � > L (as suggested by (18)),
then expression (28) shows that the limit function �

�����
will now be such that

�  7 � 7 �����@� �
( ��� � ( � C (29)

That is, in this case, �
( ��� � ( �

alone determines � 7 ����� . We shall comment presently on how this special case relates
to Bauer method. T
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Example 3 (Application of Schur method) Consider again the exponentially correlated process
( � �/. �P� 0 1 � 1

and let us compute the canonical factor by using Schur method in linearized form. First we determine the
impedance function (22), which is seen to be

� ������� ��6 + 0 � ���� 	 0 � ��� � ��6 0 � ���� 	 0 � ��� C
Next we determine the Schur function (21), which evaluates to the rational function � ����� � 0 � . We choose
	 > ����� � � and � > ����� � 0 � . Applying the first step of the linearized form (26) we obtain 	 � ����� � � and
� � ����� � 0 . Continuing in this fashion we further obtain that

	 � ����� � � � 	 0 # 9 � � ������� 0 9 . S + C
We thus see that 	 � ����� tends to �

����� � � � 	 0 # . Using the formula (28) we get

� �� � �����@� � � 	 0 #�� �� 	 0 � ��� C T
3.4. Comparison of Schur and Bauer Methods

Schur algorithm can be shown to compute the triangular factorization of an underlying covariance
matrix (see, e.g., Lev-Ari and Kailath (1986) and Kailath and Sayed (1995,1999)). To see this, we
reconsider the linearized recursion (26) and rewrite it in a alternative array form by invoking the power
series expansions of � � � � � and 	 � � � � , say� � � � � � � � � � � � & ) % � � � � � & � % � � � �  (	 � � � � � 	 � � � 	 � & ) % � � � 	 � & � % � � � �  (
Thus define a two-column (semi-infinite) matrix � � that is composed of the power series coefficients
of � � � � � and 	 � � � �"! viz.,

� � �
����


� � � 	 � �� � & ) % � 	 � & ) % �� � & � % � 	 � & � % �...
...

�����  (30)

Now recursion (26) can be re-interpreted in terms of operations on the entries of semi-infinite arrays
of the above form. Indeed, starting with the array � � that is constructed from the coefficients of
� � � � � � ! 	 � � � � � , the recursion first computes

� �
as the ratio 	 � ��� � � � , forms the rotation

� �
, and then

multiplies � � by
� �

to obtain an intermediate array that we denote by �� � . Because of the way
� �

was
defined, this results in a zero element in the first row of �� � , i.e.,

� � � � � ������

� � � 	 � �� ) � 	 ) �� �9� 	 �9��	� � 	 � �

...
...

�������
� � � ������


�� � � �
�� ) � �	 ) �
�� � � �	 � �
��
� � �	 � �
...

...

�������
�� �� � 

The entries in �� � are the coefficients of the functions that result from the product" � � � � � 	 � � � ��(�� � 
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Next, recursion (26) multiplies this result by � � �
� � � 

This corresponds to shifting down the first column of �� � by one element while keeping unaltered the
second column, which we indicate schematically as follows:

�� � � ������

�� � � �
�� ) � �	 ) �
�� � � �	 � �
��
� � �	 � �
...

...

� �����
��� ������ + ������


� �
�� � � �	 ) �
�� ) � �	 � �
�� � � �	 � �
...

...

� �����
��
������

� �� ) ) 	 ) )� � ) 	 � )�	� ) 	 � )
...

...

� ����� �
� � �

� ) � 
Notice that we have, for convenience, renamed the entries of the resulting array by removing the upper
bar notation. We have also denoted the resulting array by � ) ; its entries are now the coefficients of the
functions � � ) � � � ! 	 ) � � � � that are obtained after the first step of (26).

The recursive procedure now continues as follows: compute
� ) as the ratio of 	 ) ) and � ) ) , multiply

the pre-array �*) by
� ) in order to introduce a zero in the first row of �� ) , shift down the first column of

�� ) to obtain � � , and so on. Schematically, we have the following simple array picture:

� � �
����

� �� �� �
...

...

����� �	�� + ����

� � �� � � �� � � �
...

...

����� �
� ������ + ����

� �� � � � �� � � � �
...

...

����� �
� � �

� � & ) �  (31)

In words:

� Use the top row of � � to define a � � unitary matrix
� � that transforms this row to the form" � � � ( .� Multiply � � by

� � and keep the second column.� Shift down the first column of � � � � .� These two operations result in � � & ) .
Now introduce the semi-infinite positive-definite Toeplitz covariance matrix,

�
, whose first column

is col � 0 � ! 0 ) ! (  ! 0 / ! �! �!(   � , and assume we start the Schur recursion with

� � � � � � �� � � � � � � � � � 0 �  ! 	 � � � � � �� � � � � � � � ��� 0 �  
That is,

� � � ����

0 � �
0 � ) 0 �*)0 � � 0 � �

...
...

� ���  (32)
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Let
� �-$ � $ � denote the triangular factorization of

�
with $ lower triangular with unit diagonal,

and
�

diagonal with positive entries. It can be shown that the
�"�

the column of $ is given by (see, e.g.,
Lev-Ari and Kailath (1986) and Kailath and Sayed (1995, Sec. 4.2))

�
-th column of $ � �

�� � � col � �� � � ! �� � & ) % � ! �� � & � % � !  ( � 
That is, the

�"�
th column of $ is a scaled multiple of the first column of �� � . This column, in turn, when

shifted down by one entry, provides the first column of � � . Returning to the limiting result (29), we
thus see that its statement asserts that the entries of this first column of � � tend, as

� + #
, to the power

series coefficients of a function �
� � � that defines the desired spectral factor via (29), i.e.," � � � � � � & ) % � � �*) � � � & � % � � � � � (  ( + �

� � �>
In other words, this discussion shows that the Schur algorithm solves the spectral factorization problem
by computing the limiting value of the successive columns of $ . This is in contrast to Bauer method,
which computes the spectral factor by evaluating the limiting value of the successive rows of $ .

3.5. Schur Polynomials

There is an alternative way for obtaining the canonical factor $ � � � from the Schur algorithm (20). For
this purpose, we note that the recursion can be written in reversed form as� � � � � � � � � � � � & ) � � �� � � � �� � � & ) � � � !
which can be used, in an iterative manner, to express the original function � � � � in terms of � � & ) � � � as
follows: � � � � � 0 � � � � � � 2 �� � � � � � & ) � � �2 � � � � � � 0 �� � � � � � & ) � � � !
for some polynomials 0 � � � � and 2 � � � � of degree

�
in � . These are known as the Schur polynomials.

Here, the notation 2 � � � � stands for a reversed polynomial with conjugate coefficients, viz., if

2 � � � � 2 � � 2 ) � � 2 � � � �    � 2 � � �
then

2 � � � � � �
� � 2 � �

� � � � � � 2 �� � � � 2 �) � � � ) � 2 �� � ��� � �    � 2 �� 
The Schur polynomials can be shown to be related recursively as follows. Let 0 � � � � � � � � � ��� �

and 2 � � � � � � . Then, for
� �#�

,

0 � & ) � � � � 0 � � � � � � � � & ) 2 �� � � � ! 2 � & ) � � � � 2 � � � � � � � � & ) 0 �� � � �� (33)

Observe that this is not truly a self-contained recursive construction since the reflection coefficient
that is needed to compute � 0 � & ) � � � ! 2 � & ) � � � � is

� � & ) and not
� � — these coefficients can however

be found from the Schur recursion (20). Under condition (23), the following statements can be made
about the limiting behavior of the Schur polynomials � 0 � � � �"! 2 � � � � � (see, e.g., Constantinescu (1996,
pp.106–107, p. 138)).
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Theorem 2 (Limiting behavior of Schur polynomials) Let � � � � be a Schur function that satisfies
(23) so that all reflection coefficients are strictly less than unity (and � � � � is a strict Schur function).
Then:

1. The polynomials 2 � � � � have no zeros in the closed unit disc (
	 � 	 ! � ) for all

� ���
.

2. The rational function 0 � � � � � 2 � � � � approximates the function � � � � uniformly on the compact subsets of
the unit disc. Moreover, for

	 � 	 $ � ,� � � � � 0 � � � �2 � � � � �
� � & ) � � & ) � � �2 � � � � � 2 � � � � � � 0 �� � � � � � & ) � � �  

��� � � �&� � 	 � � 	 � ��
3. Let

� � � � � � � � � � � � � ��$ � � � �&% � $ �� � � � � � !
denote the canonical spectral factorization of

� � � � � � � � � � � � � , with $ � � #�� � � and $ � � � � and its
inverse analytic in

	 � 	 ��� . Then the rational function

� � � � � ��� � 	 � � 	 � � ) � �2 � � � �
approximates

� % � $ �� � � � � � uniformly on the compact subsets of the unit disc. �

The above theorem thus shows, in view of (24), that we can alternatively evaluate the desired spectral
factor

� %(' $ � � � of the � -spectrum
� 
� � � as follows:

� % ' $ � � � �
�� � � � � � � �  ��������� � � � � � � �&� � 	 � � 	 � � ) � �2 �� � � � � �


(34)

Example 4 (Application of Schur polynomials) Consider again the exponentially-correlated process
( ���/. � �021 � 1 . By successively applying Schur recursion (20) we conclude that

� > ������� 0 � 9 � � ������� 0 9 � � ������� �P9 . S + 9
and � > � ��9 � � � 0 9 � � � �P9 . S + C
Using (33), we obtain that the resulting polynomials 3 � � ����� 9�� � ����� 4 are given by

� > ������� �P9 � � ������� 0 � 9 . S���9	� 2 ������� � 9�
 S���C
Finally, using the formula (34), we conclude that

�  � � �����@� � � 	 0 # � �� 	 0 � ��� 9
which agrees with the values for -� and � ����� given at the beginning of this example. T
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4. SPECTRAL FACTORIZATION VIA LEVINSON-DURBIN ALGORITHM

The Levinson-Durbin algorithm arises in the context of solving the so-called Yule-Walker equations,	 � � � � " � (  � �
�
� ( ! (35)

where ��	 � ! � � � denote the unknowns and where
� � is an

��� � ��� � � � � � � Toeplitz matrix with first
column col � 0 � ! 0 ) !  ( ! 0 � � . The algorithm propagates successive row vectors �
	 � � , and their reversed
counterparts �
	 �� � , as follows:� 	 � & )	 �� & ) � � � � � � � & )� � �� & ) � � � � 	 �	 �� � � ! � 	 �	 �� � � � �

� � ! (36)

where 	 � and 	 �� are
��� � � ���

dimensional vectors of the form

	 � ��#" 	 � �  ( 	 � ) �)( ! 	 �� � " � 	 � ) (  	 � � ( !
and where the so-called reflection coefficient

� � & ) is evaluated as the ratio (with 0 � � � for
� � 3

since we are dealing with a Laurent polynomial of degree 3 )� � & ) � 	 � � 0 ) �    � 	 � ) 0 � � 0 � & )�
�
�

!

with �
�
� propagated recursively via

�
�
� & ) � �

�
� �&� � 	 � � & ) 	 � � ! �

�� � 0 � 
The recursions (36) were derived by Durbin (1960) and earlier (in a more general context for a

general right-hand side) by Levinson (1947). They are also closely related to certain nonrecursive
�

formulas given by Szegö (1939) and Geronimus (1961) in their studies on orthogonal polynomials.
The Levinson-Durbin recursions can be shown to yield a (fast) triangular factorization of

� � )� . To
show this, note that stacking the successive solutions of the Yule-Walker equations (35) in a lower
triangular matrix yields the equality

������

�	 ) ) �	 � � 	 � ) �
...

. . .	 � � 	 � % � � )    �

� �����
� � ������


�	 ) ) �	 � � 	 � ) �
...

. . .	 � � 	 � % � � )  ( �

� �����
�
�

������

�
�� � � � �

�
�
) � � �

�
�� � �

. . . �
�
�
�

�������
!

�
We say nonrecursive because they defined � � ��� as ��� � � ��� � � � .
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which using the Hermitian nature of
� � yields the unique triangular factorization of the inverse of

� � :� �*)� � (37)

������

� 	 �) ) 	 �� � (  	 �� �� 	 �� ) (  	 �� % � � )

. . .
...�

� �����
� �*)� ������


�	 ) ) �	 � � 	 � ) �
...

. . .	 � � 	 � % � � ) (  �

� �����
!

where
� � � diag � �

�� ! � �) !  ( ! � �� � .
We shall invoke the above triangular factorization further ahead while commenting on the connection

to Bauer method. First, however, we note that the recursions (36) can be rewritten in polynomial form
as well. For this purpose, we associate with each solution vector 	 � a polynomial, 	 � � � � , that is defined
by

	 � � � ���� � � 	 � ) � � (  � 	 � � � � ! (38)

and a conjugate reversal polynomial, 	 �� � � � , that is defined by

	 �� � � � � 	 �� � � 	 �� % � � ) � � (  � 	 �� ) � � �*) � � � 
Using these definitions of 	 � � � � and 	 �� � � � it is straightforward to verify that the recursions (36)
correspond to the following:� 	 � & ) � � �	 �� & ) � � � � �

� � � � � & )� � �� & ) � � � � �
� � � � 	 � � � �	 �� � � � � !

(39)

with 	 � � � � � 	 �� � � � � � . It is well-known (e.g., Szegö (1939)) that, for any particular
�
, all the zeros

of 	 � � � � are strictly outside the unit circle if, and only if, all the � � � � � � � have strictly less than unit
magnitude.

The asymptotic behavior of the ��	 � � � �"! � �� � , as
� + #

, has been studied in some detail in the
literature (see, e.g., Szegö (1939) and Geronimus (1961)). In particular, it can be shown that, for a
Laurent polynomial , � � � as in (7)–(8), we get

�������� �
� �
� 0 � �

	 �� � � � � � � � % 8 $ 8 � � �� (40)

Remark 6 (Comparison with Bauer method) We see that the Levinson-Durbin algorithm computes the spectral
factor � 7 ����� by evaluating the limiting value of the last row of � ���� (as can be seen from the factorization (37)).
This is in contrast to Bauer method, which focuses on the limiting value of the last row of � � itself. T
Remark 7 (Nondeterministic processes) A similar limiting result to (40) holds for general

�
	
spectra

� � �����
that are not necessarily rational and which are described by their covariance sequence 3 ( �
�/. � 4 . In this case, the
sequence 3�C C C�9K��93��9 � ��� 9 C C C�9 � ��� 9 � >�9 � � 9 C C CG9 � � 93��9K��9 C C C 4
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is replaced by 3 ( � �/. � 9 	 & $ . $ & 4 . In Geronimus (1961, Ch. 2) it is shown, for example, that if the process3 � � 4 with covariance 3 ( �
�/. � 4 is purely nondeterministic in the sense that the Paley-Wiener condition (13) is
satisfied, then

; ������ � � #� � exp D �+N, . /� / ;>= �G����13234��65�7 H C (41)

Comparing with the expression (14) for -� , we conclude that � #� � �� . [A process that satisfies (13) is said to be
purely nondeterministic to indicate that even prediction from an infinite past leaves a nonzero residual.] In fact, it
is further shown in Geronimus (1961) that � #� ��� if, and only if, the sequence of reflection coefficients 3 � � 4 is
square summable, i.e., �� �! > � � � � # $'&:C (42)

This is known as Szegö’s condition and is a celebrated result in the prediction theory of stationary processes (Doob
(1953)). Moreover, in this case it will hold that

; ������ � � �� ( ��� � � �0 (� ��� � ( � � �  � � ����� C (43)T
Example 5 (Application of Levinson-Durbin method) Consider again the exponentially correlated process � � 		�"�
 � 1 � 1
and let us determine the canonical factor � 	��� by using the Levinson-Durbin procedure. Starting with � > 	�� 
�� , � �> 	����
�� ,� #> 
�� � 	 ��
 � , we can verify that

� � 	�� �
�� � � � ) � � 	 � 
 � � ��� 	 � � �� ) for all � � �$#
Moreover, � #� 
 	"� � � #  for � � � , � � 
 � , and � � 
 � for � � * . Using the formula (40) we conclude that

� � � � 	�� �
�� � � � #�� �
� � � � ��� #

�

5. SPECTRAL FACTORIZATION VIA A RICCATI EQUATION

In this section we show how the canonical spectral factorization problem can be solved by solving an
associated discrete-time algebraic Riccati equation (DARE). This method of solution turns out to be
very effective and one of its strengths is that it extends rather directly to the more demanding vector case
(see, e.g., Kailath, Sayed, and Hassibi (2000, Ch. 8)). The method can be deduced quite easily by using
results from Kalman filtering theory (see Sec. 6). However it may be useful to give an independent
derivation.

Thus consider again a Laurent polynomial , � � � satisfying (7)–(8). As we argued before, every such
polynomial admits a unique canonical spectral factorization, , � � � � $ 8 � � �:% 8 $ �8 � � � � � , with

% 8 � �
and $98 � � � a polynomial of order 3 in � � ) that has all its roots strictly inside the unit circle, and such
that $ ��# � � � . We shall write (cf. (10)),

$98 � � � � � � /�
��� )

� 8 � � � � ! (44)
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for some coefficients � � 8 � � that we wish to determine.
In order to motivate and devise a method for determining the � � 8 � � we shall proceed via a stochastic

(constructive) argument as follows. Let � � � � denote a stationary random process with covariance
sequence

� � � � �� � � �
�� � 0 � ! � ! � ! 30 �� ! � 3 ! � !#�� !

otherwise

That is, the � -spectrum of � � � � is given by , � � � . Now the fact that $ 8 � � � exists means that we can
generate a process � � � � with such a � -spectrum by passing a white-noise sequence ��� � � , with variance% 8 , through a moving-average system with transfer function $ 8 � � � , as shown in Fig. 1. The sequence
��� � � is known as the innovations process associated with � � � � since it is related to � � � � through a
causal and causally invertible system $ 8 � � � .

$98 � � � � �� �
Figure 1. The modeling filter for a process with

�
-spectrum � ����� .

Using (44), the input-output relation for the modeling filter $�8 � � � can be written as� � � � � � � 8 )�� � �*) � � 8 � � � � � � (  � � 8
/ � � � / 

There are of course several ways for representing this relation in state-space form. One possibility
is the following realization in observer canonical form (see, e.g., Kailath (1980, p. 94)). Define the
quantities, with a stable matrix 	 ,

	 ��
������

�
� �
� �

. . .
. . .� �

� �����
!
�
��
������


� 8
/� 8 %
/ �*)...� 8 �� 8 )

� �����
!�
 �� " �    � � ( 

(45)

Then the moving-average stationary process � � � � can be regarded as the output of the following state-
space model ��

� & ) � 	

� � ��� � !� � � 
  � � � � ! �>� ��#< (46)

Indeed, observe that the transfer function from � � to � � is given by� � � � � � � 
 � ��� � 	 � �*) � � � � " � � /    � �
�
� � ) ( � !

� � � � 8 ) � �*) � � 8 � � � � �  ( � � 8
/ �
� / !� $ 8 � � �&!
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as desired, and where we used the fact that the last row of
� � � � 	 � �*) is � � � /  ( � �

�
� � )  .

Note further that since $ 8 � � � must have all its zeros strictly inside the unit circle, the transfer function$ � ) � � � must be stable. Using the matrix inversion lemma, and the equality $�8 � � � � � � 
 � � � � 	 � �*) � ,
we find that

$ � )8 � � � � � ��
 � � � � � 	 � � 
��  � ) � !
so that the matrix

� 	 � � 
�� must also have all its eigenvalues strictly inside the unit circle.
In other words, we have shown so far that starting with a Laurent polynomial , � � � that is strictly

positive on the unit circle, there must exist a state-space model of the form (46) such that

(i) 	 is a stable matrix.
(ii) 	 � � 
 is a stable matrix.

(iii) The entries of � determine $>8 � � � and the variance of � � determines
% 8 .

Using these three facts, and the above state-space model, we can now show how to determine the
unknown vector � and, hence, the canonical factor $>8 � � � and the variance

% 8 .
To begin with, the state-space model is assumed to start in the remote past and, therefore, the stability

of 	 guarantees a stationary state vector process �

� � . Let �� denote its covariance matrix, �� � �


�

�� .

It then follows from the state equation in (46) that �� satisfies the matrix equation

�� � 	 �� 	 � � � % 8 � �  (47)

It also follows from the output equation in (46) that 0 � � 
 �� 
 � � % 8 , so that
% 8 � 0 � ��
 �� 
 �  (48)

Finally, we evaluate the inner product �

� & ) � �� in two different ways. The first way uses the state-space

model to conclude that

�

� & ) � �� ��� � 	


� � ��� � ��� 
  � � � � � � � 	 �� 
 � � � % 8 ! (49)

where we used the fact that � � and


� are uncorrelated.

The second way to evaluate �

� & ) � �� is the following. Note that


� & ) is 3 � dimensional. Let us

denote its individual entries by 
� & ) � col ��� ) ! � � ! (  ! � / � !

and let us evaluate the inner product of � � with each individual entry of


� & ) .Thus using � � & ) � 
  � & ) � � � & ) , and the fact that


  � & ) extracts the last entry of


� & ) , we conclude

that � � & ) � � /
� � � & ) . This readily shows that

� � /
� �� �%� � � � & ) � � � & ) � � �� � � � � & ) � �� � 0 ) 

Consider now � / �*) , which is the last but one entry of


� & ) . From


� & � � 	


� & ) � ��� � & ) , we

conclude that the last entry of


� & � is equal to � / � )

� � 8 )�� � & ) . Then using � � & � � 
  � & � � � � & � we
obtain that � � & � � � � / � ) � � 8 ) � � & )  � � � & � !
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so that � � / � )
� �� � 0 � , and so on. By continuing this argument we easily verify that

�

� & ) � �� � ����


0
/0
/ � )...0 )

����� �� �� 
(50)

That is, the desired inner product, �

� & ) � �� , is completely determined in terms of the given coefficients

� 0 � � of , � � � . Combining this result with (49) we see that we obtain the equality

� � 
�� � 	 �� 
 � � % �*)8 !

which expresses the unknown � in terms of the matrix �� .

The above derivation therefore suggests the following procedure for finding
% 8 and the coefficients

of $ 8 � � � , viz., � , in the factorization , � � � �7$ 8 � � �&% 8 $ �8 � � � � � .
(i) Define the quantities ��	 ! 
 ! �� � as in (45) and (50).

(ii) Determine the nonnegative solution �� of the (nonlinear) Riccati equation

�� � 	 �� 	 � �  	 �� 
 � � �� � � 
 �� 
 � � 0 � � �*)  	 �� 
 � � �� � � ! (51)

that results in a matrix

	 8 �� 	 �  	 �� 
 � � �� � � 
 �� 
 � � 0 � � �*) 
 !
having all its eigenvalues strictly inside the unit circle. Such a nonnegative solution �� that
stabilizes 	 8 is guaranteed to exist by virtue of the existence of the model (46) itself. In fact,
the nonnegative stabilizing solution �� is unique.

(iii) Then set
% 8 � 0 � � 
 �� 
 � ! � � 

�� � 	 �� 
 � � % �*)8 !
where the entries of � define the coefficients � � 8 � � of $ 8 � � � as shown in (45).

For reasons to become clear soon, we shall denote the resulting vector � by � 8 and the resulting
variance

% 8 by
% '

. Then the state-space model (46) becomes� 
� & ) � 	


� � � 8 � � !� � � 
  � � � � ! �>� ��#'! (52)

where ��� � � is a white-noise stationary process with variance
% '

, and
%(' � 0 � ��
 �� 
 � ! � 8 � 

�� � 	 �� 
 � � % � )' 
(53)

Example 6 (Application of Riccati method) Consider again the exponentially-correlated process
( � �/. � � 0 1 � 1 ,

for which we already know that�A�
������� � 	 0 #��6 0 # 	 0 � 	 0 � ��� 9 � ����� � �� 	 0 � ��� 9 �� � � 	 0 # C
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The canonical factorization of the numerator of
� � �����

is trivial and given by ��7 ����� � � and 97 � � 	 0 # . Let: ������� ��6 0 # 	 0 �%	 0 � ��� and let us find its canonical factorization using the Riccati method. Here we have a
Laurent polynomial of order � � � , so that the quantities 3 � 9���9��� 4 of (45) and (50) are given by

� � ��9�� � ��9��� � 	 0 C
The Riccati equation (51) thus becomes

�	 � 0 # � ��6 0 # 	 �	 � ��� 9
which leads to the quadratic equation

�	 # 	 �	 � ��6 0 # � 6 0 # � �PC
This equation has two solutions at �	 � � and �	 � 0 # . The first one leads to the values 3 -� � 0 # 9 � 7 �	 ��
 0 9 � 7 � ��
 0 4 and is therefore nonstabilizing. The second solution, �	 � 0 # , is stabilizing since it leads to�� � ��9 � 7 � 	 0 9 � 7 � 	 0 9
so that � 7 ������� � 	 0 � ��� 9
as desired. T

6. SPECTRAL FACTORIZATION VIA THE KALMAN FILTER

The model (52) is what is called an innovations model for the process � � � � (see, e.g., Kailath, Sayed,
and Hassibi (2000, Ch. 9)). Now assume that one is given any other state-space model for � � � � with
the same ��	 ! 
 � , say a model of the form�

� � & ) � 	 � � ���� � !� � � 
 � � ��� � ! ��� ��# ! (54)

for some


, and where � � � ! � � � are zero-mean stationary white random processes with covariances

� � � �� � � " � �� � �� ( � � . �
� � 	���� � � 

Define �� �� � � � � �� . Then the covariance of the process � � � � in this model will coincide with the given
� 0 � � if, and only if, � �� !  ! � !"	 � satisfy (see Kailath, Sayed, and Hassibi (2000, Ch. 8)):

�� � 	 �� 	 � �� .  � !  � � �� � 	 �� 
 � ! 	 � 0 � � 
 �� 
 � 
If one now poses the problem of computing the innovations ��� � � of the process � � � � from the

model (54), then the solution will require that we determine a gain vector � 8 and a variance
% '

via the
equations (which correspond to the steady-state equations of the Kalman filter that is associated with
the model (54)): � 8 � � 	 , 
 � �� � � �*) % � )' ! %(' � 	 � 
 , 
 � ! (55)
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where , is the unique nonnegative-definite solution of the Riccati equation

, � 	 , 	 � �� .  � � � 8 %(' � �8 ! (56)

that stabilizes 	 8 � 	 � � 8 
 . The stability of 	 guarantees the existence of such a solution. Moreover,
the � � 8 ! %(' � so determined will coincide with the � � 8 ! % ' � we determined in the previous section from
�� !

In addition, it turns out that the � � 8 ! %(' � can also be found recursively as the limiting values of the
quantities � � 8 % � ! 	 ' % � � in the following Kalman filtering implementation:

, � & ) � 	 , � 	 � �� .  � � � 8 % � 	 ' % � � �8 % � ! (57)� 8 % � � � 	 , � 
 � �� � ��	 � )' % � ! (58)	 '5% � � 	 � 
 , � 
 �  (59)

The stability of 	 is enough to guarantee the convergence of the � , � ! � 8 % � ! 	 ' % � � above to the desired
steady-state values � , ! � 8 ! % ' � for any nonnegative-definite initial condition , � (and in fact, even for
some indefinite initial conditions).

In summary, what we have done in these last two sections is show how the canonical spectral
factorization problem for , � � � can be solved by reducing it to the equivalent problem of constructing
an innovations model for a process with � -spectrum , � � � . This construction is achieved by determining
a column vector � 8 either by solving for a stabilizing solution �� of (51) or for a stabilizing solution ,
of (56) — see also Anderson, Hitz, and Diem (1974).

Remark 8. We may add that there are several effective methods (e.g., subspace methods, sign methods, Newton
methods) for solving such Riccati equations (see, e.g., Pappas et al (1980), Bittanti et al (1991), Patel et al (1994),
and Lancaster and Rodman (1995)). T
Remark 9 (Connection to Bauer method) Consider again the covariance matrices ; � introduced while
discussing Bauer method, viz., ; � is a Toeplitz matrix whose first column is col 3 �2>�9 � � 9 C C CG9 � � 4 . It is shown in
Ch. 9 of Kailath, Sayed, and Hassibi (2000) that the last row of the lower triangular factor � � , in the factorization; � � � � � � � (� , is given by

last row of � � � � C C C � � � � 7 � � � � � � # � 7 � � � � � ��� 7 � � � # � � 7 � � ��� � � C
The last

� � 6 � � entries of the above row vector tend, as
. � & , to� � � � ��� � 7 C C C � � � 7 � � 7 � � 9 (60)

while all other entries are identically zero because
� � � � . The entries in (60) are precisely the coefficients of

the polynomial � 7 ����� above. In other words, the Riccati-based solution can also be regarded as a recursive (state-
space) method that evaluates the spectral factor � 7 ����� by computing the limiting behavior of the last row of � �
(as is the case with Bauer method).

In fact, more can be said. As also shown in the same chapter mentioned above, the nonzero part of the
. 	

th
column of the triangular factor � of ; � � � � ( , where ; is now the semi-infinite banded Toeplitz matrix with
first column 3 � >N9 � � 9 C C CG9 � � 9 ��93��9 C C C 4 , is given by

nonzero part of
. 	

th column of � �
col 3���9�� � 7 � � 9 � ��� 7 � � 9 � � # � 7 � � 9 C C C 4 C

That is, each iteration of the Kalman filtering equations (57)–(59) determines one column of � by computing the
necessary

� 7 � � . In the limit, as
. � & , and since

� � � � , we conclude that the nonzero entries of the
. 	

th
column of � will also tend to

col 3��N9�� � 7 9 � � � 7 9 C C CG9 � � � ��� � 7 4 9
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which again determine the coefficients of ��7 ����� , since

col 3���9�� � 7 9�� � � 7 9 C C C�9 � � � ��� � 7 4 � col 3 ��93" 7 � 93" 7 � � ��� 9 C C C�9 " 7 � 4 C
Thus, the Kalman filtering solution can also be regarded as a method that evaluates the spectral factor � 7 ����� by
computing the limiting behavior of the columns of � (as is the case with Schur method). T

We may mention that the desired quantities � � 8 % � !"	 ' % � � in (58)–(59) can also be determined
recursively in array form as follows (see, e.g., Ch. 12 of Kailath, Sayed, and Kailath (2000)). We
start with , � � �� ) �

�
and iterate for

� �#�
:

(i) Form the array of numbers:
� � 	 ) � � 
 , ) � �� �

 � 	 � � �
� 	 , ) � ��  . � � ��� !

where
. � � . � � 	 � ) � � . Here the notation � ) � � denotes the unique lower triangular factor

with positive diagonal entries that satisfies � ) � �  � ) � � � � � � , for a positive-definite matrix � .
(ii) Choose a unitary matrix

� � (i.e.,
� � satisfies

� � � �� � � �� � � � � ) that reduces the above array
of numbers to the form� 	 ) � � 
 , ) � �� �

 � 	 � � �
� 	 , ) � ��  . � � � � � � � ��� � �� � � � !

for some � � !	� !
� � .
(iii) Then it can be verified that � � !��&!�� � can be interpreted as� � 	 ) � �' % � !� � � � 	 � � �

�' % � !�� � , ) � �� & ) !
and the procedure can be continued.

7. SPECTRAL FACTORIZATION VIA THE CKMS FILTER

It turns out that there is a fast way for computing the gain vector � 8 in (52) or (55) without the need to
explicitly solve either of the nonlinear equations (51) or (56) for �� or , . The equations that describe
this method of solution are based on the so-called Chandrasekhar-Kailath-Morf-Sidhu (CKMS) filter
(see Ch. 11 of Kailath, Sayed, and Hassibi (2000)). Although the algorithm applies equally well to
vector processes, here we only list it for stationary scalar processes.

Thus consider again a Laurent polynomial , � � � satisfying (7)–(8). Then its canonical spectral
factors � % 8 ! $ 8 � � � � can be determined as follows.

(i) Define the quantities ��	 ! 
 ! �� � as in (45) and (50).

�
Recall that for the particular state-space model (54), the parameters � � )�� )���� are scalars while � is a column vector and � is

a row vector.
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(ii) Define the initial conditions: $ � � �� � � � and
	 ' % � � 0 � � 	 � % � . Here, $ � is a column vector

and � 	 ' % � !"	 � % � � are scalars.
(iii) Iterate the following recursions for

� ���
:

� � & ) � � � � 	 $ � 	 � )� % � $ �� 
 � !
$ � & ) � 	 $ � � � � 	 � )'5% � 
 $ � !	 '5% � & ) � 	 ' % � ��
 $ � 	 � )� % � $ �� 
 � !	 � % � & ) � 	 � % � � $ �� 
 � 	 �*)' % � 
 $ � 

(iv) Then in the limit, as
� + #

,
� � tends to a constant vector

�
and

	 ' % � tends to a positive constant% '
. Let � 8 � �6% � )' .

(v) The desired � % 8 ! $98 � � � � are given by
% 8 � % ' and $98 � � � � � � � ��� � 	 � � ) � 8 . More explicitly,

the individual entries of � 8 are the coefficients of $ 8 � � � ,� 8 � col � � 8 / ! � 8 % / � ) !  ( ! � 8 ) � 
There is an alternative array form description of the algorithm, which is derived in Ch. 13 of Kailath,

Sayed, and Hassibi (2000); it determines the required � � � !"	 '5% � � . Here we start with �$ � � �� � � 0 � ,� � � ��
,
	 ' % � � 0 � , and iterate for

� ���
:

(i) Form the array of numbers � 	 ) � �' % � 
 �$ �� � 	 � � �
�' % � 	 �$ �

� 
(ii) Choose a hyperbolic rotation

� � & ) that eliminates the entry

 �$ � , and thus reduces the above

array to the form: � 	 ) � �' % � 
 �$ �� � 	 � � �
�' % � 	 �$ �

� � � & ) � � 	 �� � � !
where 	 is a scalar, and �
� ! � � are column vectors. Then it holds that 	 � 	 ) � �'5% � & ) , � �
� � & ) 	 � � � �' % � & ) , � � �$ � & ) , and the procedure can be repeated,� 	 ) � �' % � 
 �$ �� � 	 � � �

�' % � 	 �$ �
� � � & ) �

� 	 ) � �'5% � & ) �
� � & ) 	 � � � �' % � & ) �$ � & ) �  (61)

Remark 10 (Connection to Schur method) The initial array in (61) can be seen to be

� ( ��� #� � > � �� >
� > ( � ( � #� � > � �� >�� � �� � >

?��������A
� > � �
� � �
� � ��� � �
� � � # � � ���

...
...

� # � �
� � � #

B D
9
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whose last � rows we shall conveniently rearrange as

�� � >
?������A

� > � �
� � � #� # � �
...

...
� � ��� � �
� � �

B D
C (62)

If we now return to the initial array
� > in (32) for Schur method, and if we assume that the algorithm is

initialized instead with the following (scaled) choices

	 > ������� �+ � � > J � ( ��� � ( � 6 � > L 9 ��> ������� �+ � � > J � ( ��� � ( ��	 � > L 9
then

� > for Schur algorithm becomes

� > � ��
� >
?�����������A

� > �
� ��� � ���
� � # � � #

...
...

� � � � ���� �� �
...

...

B D
C

Applying the first step of Schur algorithm, in array form, to this
� > we obtain (cf. (31))

� � � �� � >
?�����������A

� > � ���
� ��� � � #� � # � � �

...
...

� � � � � � � �
� � � �� �

...
...

B D
C

Comparing the leading
� � 6:� � nonzero rows of this array with (62) we see that their entries coincide except for

complex conjugation (since � � � � ( � � ).
If we proceed with Schur algorithm and apply it to

� � above, this second step will seek to annihilate the entry
� ��� in the top row of

� � by using a hyperbolic rotation � � . But this is exactly the purpose of the rotation in the
CKMS recursion (61), so that the entries of the resulting array� ( ��� #� �>� � �� �

� � ( � ( � #� �>� � �� � � 9
after permutation of its last � rows, will again coincide (apart from complex conjugation) with the entries of the
leading

� � 6:� � rows of
� # .

Proceeding with this argument, we conclude that Schur method and the CKMS method are identical except that
one works with the covariance data 3 � � 4 while the other works with their conjugate values 3 � (� 4 — this difference
is a consequence of the fact that in the Kalman filtering context we express transfer functions in terms of negative
powers of

�
, while the Schur method works with series expansions that involve only positive powers of

�
. For

more details on this connection, see Sayed, Lev-Ari, and Kailath (1992,1994) and Chang and Georgiou (1992). T
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8. CONCLUDING REMARKS

Although we focused in this article on spectral factorization for scalar-valued random processes, most
of the discussion extends to the more demanding (and also more useful) case of vector-valued random
processes. In this case, the � -spectrum

� 
� � � becomes a matrix-valued function and one therefore
expects difficulties in extending to this domain canonical factorization methods that are based on
extracting poles and zeros. The methods that we discussed in the earlier sections avoid working with
poles and zeros and they all share a common (fundamental) theme that carries over to the vector case.
More specifically, they all obtain the canonical spectral factors by carrying out (in their own ways)
triangular matrix factorizations of certain covariance matrix sequences. For example, Bauer and Schur
methods (and the related Riccati-based and fast filtering (CKMS) methods) compute the Cholesky
factorization of a certain sequence of covariance matrices

� �
and then determine the limiting behavior

of the last row (for Bauer method) or the first column (for Schur method) of the corresponding Cholesky
factors. The Levinson-Durbin method, on the other hand, seeks the limiting behavior of the last row
of the Cholesky factor of the inverse of

���
. Regardless of whether we are factoring

���
or its inverse,

matrix factorization methods of this kind apply equally well to matrices
� �

with scalar entries or with
block entries (which arise in the case of vector-valued processes). For this reason, all these techniques
can be extended with minor efforts to matrix-valued � -spectra. The reader can find a complementary
discussion on these issues in Chs. 7 and 8 of Kailath, Sayed, and Hassibi (2000) where it shown, in
particular, how the Riccati- and filtering-based methods extend rather easily to this domain. Further
discussion on the application of such Riccati-based spectral factorization methods in

�

� filtering and
control can be found in Hassibi, Sayed, and Kailath (1999) and in the references therein.

APPENDIX
Spectral Factorization via Wilson Method

Wilson (1969) proposed an iterative method for spectral factorization that is reported to have good
numerical behavior (see Goodman et al. (1997)). We shall present the main idea here.

We again consider a Laurent polynomial , � � � of degree 3 , as in (7)–(8). Wilson method computes
recursively a sequence of 3 � degree polynomials in � � ) , say

�
� � � � � /�

��� � � � � � � � !
such that �

���# � � �
(or �

� � � �
) and each �

� � � � has all its roots strictly inside the unit circle.
Moreover, in the limit as ��+ #

, it will hold that

�
� � � � + � % 8 $98 � � � as � + # 

Wilson recursion can be motivated as follows. Assume the approximation �
� � � � at iteration � is known.

Then �
� & ) � � � is found by imposing the requirements:

(i) �
� & ) � � � � �

� � � � � � �� � � , for some small correction term � � � � � .
(ii) �

� & ) � � � � �� & ) � � � � ��� , � � � .
Writing (ii) above as � � �� � � � � �� � �  " � �� � � � � � � � �� � � � � � ( � , � � � !
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and ignoring the second order term � �� � � � �� � � � � � , leads to a recursion relating �
� � � � , � � & ) � � � , and

, � � � ,
�
� & ) � � � � �� � � � � � � � � � � � � �� & ) � � � � � � , � � � � � � � � � � �� � � � � �� (63)

From this equation, it can be verified that the coefficients � � � & ) % � � of �
� & ) � � � are related to the

coefficients � � � � ! 0 � � of �
�� � � and , � � � via the following equation,���

�
� & ) � ���

��
� & ) � , � � �  (64)

Here �
� & ) , �� � & ) , and , are column vectors with the coefficients of �

� & ) � � � and , � � � , viz.,

�
� & ) � col � � � & ) % � ! � � & ) % ) !  ( ! � � & ) % / � !��
� & ) � col � � �� & ) % � ! � �� & ) % ) !  ( ! � �� & ) % / � !, � col � 0 � ! 0 ) !(   ! 0 / � !

and � � is given by either of the expressions � � � � � � � � � �
��
�
. The matrix

� �
is an upper triangular

Toeplitz matrix whose first row is � � �� � ! � �� ) !( ( ! � �� / � , while
���

is a reversed upper triangular Hankel
matrix whose first column is �

�
,

��� � ������

� �� � � �� ) � �� �  (

� �� /� �� � � �� ) �

� �� � �

. . .
...
� �� �

� �����
! ��� � ������


�
� �

�
� ) �

� � ( 
�
�
/�

� ) �
� �

�

�
� �

�

... �

�
�
/

� �����


When the � 0 � � are real, then all the � � � � � will be real and equation (64) collapses to� � � � � �  � � & ) � , � � � ! � � � � � � � � � �
�
� 

Wilson (1969) proved that if one starts the recursion (63) with an initial polynomial �
� � � � that has all

its roots strictly inside the unit circle, then all successive �
� � � � will also have all their roots strictly

inside the unit circle. More details on Wilson method, and comparisons with Bauer method, can be
found in Goodman et al. (1997). In this work, the authors noted in their application (with real 0 � ) that
the numerical accuracy of Wilson method could be improved, and in general become superior to that
of Bauer method, if �

� & ) were computed by the following alternative procedure:

�
� & ) � �� � � � � � !

where the correction vector � � is obtained by solving the linear system of equations
� ��� � ��� � � � � , 
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