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Structured Matrices and Unconstrained Rational Interpolation
Problems *

TiBOR BOrROS, ALI H. SAYED, AND THOMAS KAILATH

Abstract

We describe a fast recursive algorithm for the solution of an unconstrained rational
interpolation problem by exploiting the displacement structure concept. We use the
interpolation data to implicitly define a convenient non-Hermitian structured matrix,
and then apply a computationally efficient procedure for its triangular factorization.
This leads to a transmission line interpretation that makes evident the interpolation
properties. We further discuss connections with the Lagrange interpolating polynomial
as well as questions regarding the minimality and the admissible degrees of complexity
of the solutions.

1 Introduction

Interpolation problems lend themselves for interesting applications in many fields that in-
clude, but are not limited to, partial realization, model reduction, Padé approximation,
Hankel-norm approximation, H°—control, etc. What we shall define here as unconstrained
interpolation problems have a very long history, associated with many classical results of
Lagrange, Hermite, Prony, Padé, and other famous names. In recent years, several authors
have approached these problems from a system-theoretical point of view, where the main
idea is to find a two-input two-output linear system, also known as a generating system,
whose global transfer matrix can be used to obtain a linear fractional parametrization of the
family of rational interpolants. In particular, many studies of this type have been made over
the last few years by Antoulas, Ball, Gohberg, and their colleagues (see, esp. [1, 2] and the
references therein).

The basic (unconstrained) interpolation problem that we treat in this paper can be stated
as follows:

Problem 1.1 (Unconstrained Interpolation) Given the array of complex pairs
(ai,ﬁ,—), iG{O,l,...,n—l}, i;«éj:>ai7éaj, |,3,'|<OO,

find all rational interpolants y(z) = n(z)/d(z) such that
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e B =y(a;), and
e y(z) is irreducible (i.e., n(z) and d(z) are coprime).

Antoulas and Anderson solved this problem by exploiting the rank properties of a
Loewner matrix constructed from the interpolation data [3, 4]. Ball, Gohberg and Rodman
gave a linear fractional parametrization of all interpolants in terms of a rational transfer
matrix @(z) by using the so-called residual interpolation method (see [2] and [5, Chapter
16]).

In many applications the interpolants are also required to satisfy certain minimality
constraints. The complexity of a rational solution y(z) is measured in terms of its McMillan
degree, which is defined by

0{y(z)} = max{degn(z),degd(z)} .

This motivates the consideration of the following two additional questions.

Problem 1.2 (Minimal Interpolation)
e How to determine the admissible degrees of complexity of the rational interpolants?

e How to determine the minimal degree of complezity and the minimal interpolants?

Apparently, the minimal interpolation problem was first solved by Antoulas and Ander-
son in the Loewner matrix setting [3]. By using a different approach, Antoulas and Willems
[1] showed how to give a linear fractional parametrization in terms of a column reduced poly-
nomial matrix obtained via the coprime factorization of a suitable rational matrix function.
This approach was extended to the matrix case and combined with the residual interpolation
method in [6]. Further developments, at a more abstract level, were initiated by invoking
the so-called behavioral framework for linear systems [7].

In this paper, we shall pursue an approach related to the computationally-oriented so-
lution put forward for rational analytic interpolation problems in [8, 9, 10]. The key point
is an efficient recursive algorithm for the factorization of matrices possessing displacement
structure. This fast algorithm can be naturally associated with a cascade of first-order sec-
tions. Such cascades always have certain interpolation properties because of the fact that
linear systems have “transmission zeros”: certain inputs at certain frequencies yield zero
outputs. More specifically, each section of the cascade can be characterized by a rational
transfer matrix ©;(z) say, that has a left zero-direction vector g; at a frequency f;, viz.,

B @z’, (f,) 61', (fz) _
9: Oi(fi) = ( gio  9i1 ) ( @,-;(fi) @i;(fi) ) -0

which makes evident (with the proper partitioning of the row vector g; and the matrix
function ©;(z)) the following (local) interpolation property: gio ©412(fi) @;212(]2) = —gi1.
Hence, one way of solving an interpolation problem is to show how to construct an appro-
priate cascade so that the local interpolation properties of the elementary sections combine
in such a way that the cascade yields a solution to the global interpolation problem.



The matrix R that we factorize is specified by the so-called displacement equation
R—-FRA*=GJB* ,

where F' and G are directly constructed from the interpolation data, and the arrays A and
B are chosen so as to simplify the recursion and to impose further constraints on the inter-
polating functions. For example, a particular choice leads to a cascade that implements the
Lagrange solution. Another choice leads to a cascade whose transfer matrix is column re-
duced, which is useful in answering the minimality questions. More generally, each particular
choice {A, B} offers a different way of characterizing the family of all solutions.

As we shall explain in Section 6 below, our work is closely related to the earlier results of
Ball, Gohberg, and Rodman (see, esp. Theorem 5.4.1-2 in [5]). From this perspective, our
main contribution is in providing a recursive version of their global formulas. Although the
following discussion can be extended to the multiple point case as well as the vector case (to
be discussed elsewhere), we restrict ourselves here, for brevity and clarity of presentation,
to the distinct point and scalar case.

2 Triangular Factorization and the Generalized Schur Algo-
rithm
We start by reviewing some basic results concerning the triangular factorization of non-
Hermitian matrices. We then present the array form of the generalized Schur algorithm
(see, e.g., [9, 10, 11, 12] for more details on the subject).
Consider a strongly regular (i.e., all leading minors are non-zero) non-Hermitian n X n

matrix R. The assumption of strong regularity guarantees the existence of a triangular
factorization of form R = L D~! U* where

L:(io L. l"n_l), and U:(ao i ... an_l)

are n X n lower triangular matrices, i.e.,

= (%) a0,
] 2

and D = diag{dy,ds,...,dn_1}, where d; # 0. The columns of L and U as well as the
diagonal elements of D can be computed by the well-known Gauss/Schur reduction procedure.

Algorithm 2.1 (Schur Reduction Procedure) Start the recursion with Ry = R and
repeat for all i€{0,1,...,n — 1}:

(4)
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where the elements of R; are denoted by R; = [rjk] o |
Jk=

The matrix R;y; is called the Schur complement of r(()%) in R;. The Schur reduction
procedure usually requires O(n3) operations. If the matrix R is “structured” then fast
algorithms can be devised in order to reduce the computational burden.

We say that R is structured if it satisfies a displacement equation of the form
R—-FRA*=GJB* , (1)
where

e F and A are appropriate lower triangular matrices, whose diagonal entries will be
denoted by {f;} and {a;}, respectively:

fo ag
r fi r a
F = L. , A=
T T ... fan1 T T ... Qn_1

e G and B are n X r (r < n usually) so-called generator matrices.

e J is a signature matrix of the form

— — Ip 0 —
J_Ip@—I—<O _Iq>’ p-l_q_r

We further assume that the matrix equation (1) has a unique solution, i.e., that the following
conditions are satisfied

1-fial#0  Vi,je{0,1,...,n—1}.

The generators G and B are not unique; the column dimension r of the minimal generators
is called the displacement rank of R with respect to F' and A.

One of the major facts of the displacement structure theory is that the successive Schur
complements of a structured matrix inherit its displacement structure (see [10]). More
precisely, if R; is the Schur complement of the leading ¢ X ¢ block in R, then R; satisfies a
displacement equation similar to (1), viz.,

Rz—ERzA::GzJB:, iE{O,l,...,n—l},

where F; and A; are obtained by deleting the first ¢ columns and rows of F and A, re-
spectively. The generator matrices G; and B; can be obtained recursively by the so-called
non-Hermitian generalized Schur algorithm [10, 11].



Algorithm 2.2 (Generalized Schur Algorithm) The generators of the successive Schur
complements satisfy the following recursion: start with Gy = G, By = B, and repeat

0 0j 0 0 I, 0 0
<G' ) = 9,G;0; 0 1 0 + G; 06; 0 0 0 ,
i 0 0 0, 0 0 I_j,
(2)
0 0, 0 0O I, 0 0
< B. ) = U;B;T; 0 1 0 + B;T; 0 0 0 ,
ol 0 0 0, ; 0 0 I,_j 4
where ®; and V; are defined by
& =(F-f;I)I-a;F)", U= (Ai—a; I)(I— f7 A)7 ", (3)

and ©; and I'; are constant matrices chosen so as to satisfy ©; JT'; = J, and such that the
generators G; and B; are reduced to proper form. This means that ©; and T'; transform the
first row of G; (denoted by g;) and the first row of B; (denoted by b;) to the forms

g,-@z-:(O .0z 0 ... 0), b,-r,-:(o .0z 0 .. 0), (4)
with a single non-zero entry in the same column position, say the j-th position. |

The rotation matrices ©; and I'; can be implemented in a variety of ways, e.g., by using
suitable variations of elementary Householder projections, Givens rotations, or hyperbolic
transformations. Moreover, the generator recursion (2) has the following simple array inter-
pretation, as depicted in Figure 1:

1. Choose ©; and I'; that reduce G; and B; to proper form.
2. Multiply G; by ©; and B; by T'; .

3. Multiply the j-th column of G; ©; by ®; and the j-th column of B; T'; by ¥;, and keep
all other columns unaltered.

4. These steps result in G;11 and B;1.

If the generators GG; and B; are known then the triangular factors of R can be obtained
as

i = (Li—alF)1G;Jb;

wi = (Li—ffA) 'BiJg; i€{0,1,...,n —1}.

. giJb
4 = e

This method requires only O(n?) operations.

Remark: Notice that the matrix R is strongly regular if and only if r(()%) =d; = fi;ilf, #0,
1€{0,1,...,n —1}.
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Figure 1: Array form of the generalized Schur algorithm.

3 Cascade Systems:
Blocking and Interpolation Properties

As further discussed in [8, 9, 10, 11], with each step of the generalized Schur algorithm we
can associate two first-order discrete-time r-input r-output systems with transfer functions

I, 0 0
BOi(z) = ©;| 0 Be,(z) 0 ,
0 0 I_j1
I 0 0
Fi(w) = Fi 0 Br,i(w) 0 5

0 0 I,

where

zZ— fl , BF,i(w) = % .

Be,i(2) (5)

= *
1—-ajz

These transfer functions are jointly J-unitary in the following sense: ©;(z) JI'j(w) = J on
zw* = 1. Also notice that the diagonal elements of F' and A determine the zero and pole
structures of ©;(z), respectively.

After performing n steps of the generator recursion, we obtain two discrete-time cascades
with transfer functions

(6)



which inherit the generalized J-unitary property:
O(z)JT*(w)=J on zw* =1. (7)

Our purpose is to show how to choose suitable matrices F, A, G, and B, to define a dis-
placement structure as in (1), and how to recursively construct the associated cascades @(z)
and I'(w) in order to parametrize all solutions of the interpolation problem.

For the moment we note two simple but important facts about the cascades. First,
observe that the determinants of the matrix functions ®(z) and I'(w) can be expressed as

det@(z)N%, det T(w) ~ ”_jtj([w__faui) (8)

where ‘~’ denotes proportionality. This readily leads to the following result, to be used in
later sections.

Lemma 3.1 The transfer matriz ©(z) will be a polynomial matriz if A is strictly lower

triangular, i.e., a; =0, 1€{0,1,...,n — 1}. Under this condition we have
w
Bei(2) =2~ fi , Br,i(w) = T—fw’
n wn
det®(z) ~ | |(z — f) , detI'(w) ~ — .
i:l—ll ' i1 (1= ffw)

The second important fact about the cascades is that the first order sections ©;(z) and I';(w)
exhibit obvious blocking properties [8, 9, 10].

Lemma 3.2 (Blocking Property) FEach first-order section ©;(z) (resp. T'j(w)) has a
transmission zero at f; (resp. a;) along the zero direction g; (resp. b;). That is,

9:9i(fi) =0 , biTi(a;) =0.

Proof: It follows from (4) that

9:9i(fi) = 9:0:| 0 Bei(fi) 0

Similarly, b;T';(a;) = 0. |

We now verify that these local blocking properties are inherited by the feed-forward
cascades ®(z) and I'(w). For this purpose, we focus on ®(z) and consider the special case



of a diagonal matrix F', which will be of interest in this paper; the same result can be
extended to more general forms of F' and will be discussed elsewhere:

fo agp
fl T a3
F: y A:
frno1 T T ... Gp1

The next lemma states that the rows of the generator matrix G are zero directions of the
transfer matrix @(z) at the ‘frequencies’ f;. This statement can be justified by the following
reasoning. The first row of G annihilates @(z) at z = fy due to the local blocking property
of ©¢(z). When the second row of G enters the cascade, we get the first row of Gy at the
input of ©1(z) (due to the generator recursion), which then annihilates ®(z) at z = fi, and
so on. This argument is made precise in the proof of the following result.

Lemma 3.3 (Interpolation Property) The cascade ©(z) has a global interpolation prop-
erty at f;, viz.,

where e; = ( 0; 1 0,_;_1 )

Proof: The matrices ®; are clearly diagonal since F' is diagonal. It then readily follows
from the generator recursion (2) that the first row of G; is given by

g = eG;
Lt 0, 0 0 I, 0 0
= 117*1_1 e1Gi10; 1 0 1 0 +e1Gi10; 1 0 0 0
— e fi 0 0 0, 0 0 I
I, o
= e Gi—10;1| 0 Bei(fi) 0 =e1 Gi—10;-1(fi) -
0 0 I_j,
By induction we obtain,
gi =e1Gi—10;_1(fi) = e2Gi—2 ©;_2(fi) ©i_1(fi) = ... = i G O (f;) O1(fi) ... Oi_1(fi)-
But ¢;©;(fi) = 0 due to the local blocking property of the i-th section ©;(z). Hence,
ei G ©o(fi) ©1(fi) ... ©i-1(fi) ©:i(fi) = 0, and by (6), e; G O;(f;) = 0. L

4 The Unconstrained Interpolation Problem

We now apply the previous theory to the unconstrained rational interpolation problem that
was introduced in Section 1. For this purpose we consider the following special choices of F,
G, and J that are constructed directly from the interpolation data,

ap 1 —pBo
a 1 —
F: ' . ? G: . -ﬁl 9 J:<(]£' _g) (9)
Qn—-1 1 _,Bn—l



For the moment we choose B arbitrarily and A as a strictly lower triangular matrix,

0
z 0 T z
z x 0 T x
A= . , B = (10)
z z x ... 0 T T
z x z ... x 0

The strict lower triangularity condition on A assures that @(z) will be a polynomial rather
than rational matrix, which will be relevant to our later analysis. More specifically (see
Proposition 4.1 below), a polynomial ®@(z) will allow us to express all rational interpolants
as y(z) = n(z)/d(z), where n(z) and d(z) are coprime polynomials. In Section 7 (see Propo-
sition 7.1) we give a particular choice for A and B that ensures the strong regularity of the
matrix R in the non-Hermitian displacement equation R — F R A* = G J B*. Other choices
for A and B are also possible and may be useful when additional factors and constraints are
important (see e.g., [13]).

Let us now specialize the generalized Schur algorithm to the arrays given in (9) and (10).
Here we assume that A and B are chosen so that the generator recursion is strongly regular.
We denote the elements of the first rows of the generators G; and B; by

91':(91'0 gil), bi:(bio bil)-

It follows from the strong regularity assumption that g¢; Jb; # 0, i.e., either g;o # 0 and
bio #0 or gs # 0 and b;; # 0. Therefore, at each stage of the recursion there are two
possible ways of transforming g; and b; to proper form.

Case A If g;o # 0 and b;g # 0 then we can define the reflection coefficients k;, l; as
ki = gi1/gio, li = bi1 /by,

and the transformation matrices ©; and I'; can be chosen as

_ 1 =k o 1 1 —l;
9’_(—12‘ 1 ) F'_l—kg‘li(—kf 1 )

These transformations pivot with the entries g;o and b;p and introduce new zero entries
at the (0,1) positions of G; and B;:

gi@i:(x 0), biFi:(x' O).

This gives rise to the feed-forward lattice line sections that are depicted in Figure 2.

Case B If g;; # 0 and b;; # 0 then the reflection coefficients and the rotation matrices can
be chosen as

ki = gio/gi1, li = bjo/bi1,

1 = 1 1 —kr
i = : Ii=—"7— L)
© ( —k; 1 ) 1— ki l} ( =l 1 )

and



si,1(2) 54,3(2) s4,1(2)
0i(2) = Si(2)
8i,2(2) 8i,4(2) 8i,2(2)

5@3(2)

j«—O

si.4(2)

Figure 2: Feed-forward lattice sections in the r = 2 case when we pivot with the left-most

entries g;o and by.

In this case g;1 and b;; are the pivoting elements, and the transformations introduce

zero entries at the (0,0) positions of G; and B;:

gz-@,':(() :c), biF,':(O :c').

The corresponding feed-forward lattice sections are shown in Figure 3.

Z—Qp—1 7-(-(2)

Figure 3: Feed-forward lattice sections in the r = 2 case when we pivot with the right-most

entries g;1 and b;.

After n steps of the generator recursion we obtain a cascade @(z), which is composed of
first-order sections ©;(z) of either of the types considered in Cases A and B above. The

transfer matrix @(z) can be partitioned as follows:

[ Ou(2) ()
G’(z)—<®§<z> @li(z))'

Now, we can re-express the interpolation property (9) in the form

©11() — Bi O21(0;) = 0,
O12(0y) — B; O2(a;) =0

bl

(11)

which implies (along with the distinct points constraint, a; # a;) that ©2;(2) and Og9(2)
do not have common zeros. Otherwise, the determinant of ®(z) would have multiple roots

at these points, which contradicts (8).

10



We can further verify the well known fact that the rational interpolants are given by a
linear fractional transformation (see e.g., [1], [6, Chapter 16], and [6]).

Proposition 4.1 (Linear Fractional Parametrization) The family of irreducible ratio-
nal interpolants can be parametrized as

p(z) ©11(2) + ¢(2) O12(2)

_ , 12
V) = () 0m () + 4() Ol2) (12

where p(z) and q(z) are coprime polynomials such that
p(ai) @21(01,') —i—q(ai) @22(01,') # 0, iE{O,l,... , N — 1}. (13)

Proof: By substituting (9) into (11) we obtain
@11(0(1') — B @21(0,’) =0, @12(ai) — B; @22(ai) =0, iE{O, 1,...,n— 1}.

Adding p(a;) times the first equation to g(a;) times the second equation yields
p(ei) ©11(0s) + g(s) O12(cs) = B; ( p(ai) ©21 () + g(i) O22(vi) ) -

Thus condition (13) justifies that y(z) in (12) is an admissible interpolant. The coprimeness
of p(z) and ¢(z) together with condition (13) imply the irreducibility of y(z).
Conversely, if y(z) = n(z)/d(z) is an irreducible interpolant then choose p(z) and ¢(z)

as follows:
p(z)\ _ [ ©ulx) On) ) ( n(z) ) _
q(2) O21(2) ©O22(2) d(2)
_ 1 [ Ox(z) —BO1(z z
~ det®(2) ( —021(2) ©11(2) ) ( d(z) )

1 (()%() d(z) © >>
"z — ) (2) ©21(2) +d(2)©11(2) |~

By the interpolation property (9) we have

n(a;) Ozz(ai) — d(as) O12(c) = d(as) ( B Ozz(as) — Ora(cx)

) -
—n(ay) O21(a;) + d(a;) O11(s) = d(y) ( —B; ©21(0;) + O11() ) = 0,
)

which shows that p(z) and g(z) are polynomials. The coprimeness of p(z) and g(z) follows
from the irreducibility of y(z). Since f; is finite, d(e;) # 0, and condition (13) holds. [ |

Our main result is that we have an efficient O(n?) algorithm for obtaining the basic
cascade O(z).

Algorithm 4.1 (Solution of the Rational Interpolation Problem)

Step 1 Form the arrays F and G from the input data as shown in (9).

11



Step 2 Choose a strictly lower triangular n X n matriz A and a suitable n X 2 matriz B so
that the solution R of the non-Hermitian displacement equation (1) is strongly regular.

Step 3 Carry out the generalized Schur algorithm with F, A, G, B, and J. Determine the
cascade O(z).

Step 4 Use formula (12) to parametrize all solutions of the interpolation problem.

The existence of coprime polynomials p(z) and g¢(z) that satisfy (13) is guaranteed by
the coprimeness of ©2;(z) and ©22(z). Note that if ©12(z) and O22(z) do not share common
zeros at a;, 1€{0,1,...,n — 1}, then we can choose p(z) = 0 and ¢(z) = 1, which leads to

@12(2)
z) = .
y(2) O (2)
Similarly, if ©11(z) and ©91(2) do not share common zeros at a;, i1€{0,1,...,n — 1}, then
we can choose p(z) = 1 and ¢(z) = 0, which leads to
_ @11(2)
@21(2)

We should remark that the generalized Schur algorithm yields two cascades ®(z) and
I'(w). In this section we focused on the interpolation properties of ®(z) only. It can be
shown, however, that T'(w) also satisfies interpolation conditions. The implications of this
duality will be discussed elsewhere.

Furthermore, additional constraints on the interpolants, such as analyticity and norm
constraints, can be introduced by choosing A = F, B = G, and considering the appropriate
Hermitian structured matrix that satisfies a displacement equations of the form

R—-FRF*=GJG".

Under these circumstances the generator recursion leads to a J-lossless cascade, viz., @(z)
is analytic in |z| <1 and

O(z2)JO*(z)=J on |z|=1.

For more details on analytic interpolation and on the Hermite-Fejér problem along these
lines see [8, 9, 10].

5 Physical Interpretation

In this section we describe a useful interpretation of the general formula (12) by examining
more closely the signal flow properties of the elementary sections. As we mentioned before,
the generating system @(z) is obtained as the cascade connection of feed-forward lattice
sections of the types shown in Figures 2 and 3. Each section can be thought of as a first-
order linear system that communicates with its environment via four signals denoted by s; 1,
8i2, i3, and s; 4 (see Figure 4). If we consider s;; and s;2 as input signals, and s; 3 and

12



s; 4 as output signals, then the i-th section can be described in the frequency domain by the
operator ©;(z) as

() 5a)) = (w0 50 (90 §23) - o

However, if we consider s; ;1 and s; 4 as input signals, and s; 3 and s; 2 as output signals, then
the i-th section can be described by the operator ¥;(z) as

(56) 52 ) = () wa0) (o) §20 )

i,21(2)

> {+)—> Z—f2 —p~ 000 :@ >
—k» —k'//
T > oee Oz fn1f>

Figure 4: Equivalent descriptions of a first-order linear system.

The transfer functions ©;(z) and ¥;(z) are related as follows:

5:(2) ©i11(2) — ©i12(2) ©;95(2) Oip1(2) —Oina(z) O;5(2)
i\%) = -1 -1
@i,22(z) ©;,21(2) ®i,22(2)

(notice that ©; 1»(z) always exists). The two descriptions are equivalent in the sense that if
the signals satisfy (14) then they also satisfy (15), and vice-versa.

In circuit theory the matrix ¥;(z) is known as the scattering matrix relating the incident
signals s;1(z) and s;4(z) to the reflected signals s;3(2z) and s;2(2). In this framework the
©;(z) is known as the chain scattering matrix. In the composite system that is obtained by

interconnecting the elementary sections, the chain scattering matrices multiply in the usual
way:

O(z) = O¢(z2)01(2) ... Op_1(2) .
The matrix ¥(z) that corresponds to ®(z) has to be written as
¥(2) = Lo(2) *X1(2) * ... ¥ X, 1(2),

where ‘x’ denotes the so-called Redheffer star-product defined by

X1 Xio N Yii Yz | def
Xo1 Xoo Yo1 Yoo

X11(I — Yia X21)71Y11 X2 + X11 Y12(1 — X1 Y12) 1 Xoo
Ya1 + Yag Xo1 (I — Y12 Xo1) Y13 Yoo (I — Xo1 Y12) 1 Xoo

13



The two global frequency-domain descriptions are connected via the relation

5(2) ©11(2) — ©12(2) O3 (2) O21(2) —O1a(2) O3 (2)
z) = .
02 (2) ©21(2) 02 (2)
The significance of the X(z) description is that we now have the analog of a physical

transmission-line with signals flowing in both directions as shown in Figure 5 (for more
details in this direction see [14]).

3(2)
r---—-------------- - - - - =-=-=-=-T-T7T7"T"~"7"T7"7¥"~°*"7¥"7°¥"7”¥"%7¥°”"7°¥°*¥7°”" 7/~ ~7™°=°-° A
O—i—b - 9 coe —p _i_*
—y(z) l Zo(z) Z1(2) Tn-1(2) l
04—5— < [— eoe <] <—:'—|p(z)
: 6
L e e e o ]

Figure 5: Scattering representation of the interpolating function

Now, we are ready to give a physical interpretation for the linear fractional parametriza-
tion formula derived in Proposition 4.1. It is easy to check that the interpolating function
y(z) can be obtained as the negative transfer function from the top left input to the bottom
left output of the scattering cascade shown in Figure 5 when an appropriate load —p(z)/q(z)
is attached to the right-hand-side (assuming ¢(z) # 0). When a unit-amplitude impulse is
applied at ¢ = 0 to the input of the system then the z-transform of the output signal will take
on the value ; at the frequency z = a;, independently of the load at the right-hand-side, as
long as the parameters p(z) and ¢(z) satisfy (13).

In this framework the interpolating function y(z) is constructed recursively by adding
a new first-order section to the scattering cascade for each interpolation constraint. The
additional section does not influence the interpolation properties of the previous sections; at
the same time its reflection coefficients are determined so that the transfer function of the
composite system will satisfy the new interpolation constraint.

The transmission-line interpretation can be pursued further to give a physical interpreta-
tion of the generalized Schur algorithm as a natural method for solving the inverse scattering
problem for the line (see the discussions in [14] and also [15]).

6 State-Space Descriptions

In order to make a connection to the work of Ball et al. [2, 5], in this section we present an
explicit expression for the transfer matrix @(z) in terms of the arrays F, G, A, B, J, and
the solution R of the displacement equation (1). A similar formula was obtained earlier by
Kimura [16] for the analogous half-plane analytic interpolation problem.
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In [10, 11] it was shown that the discrete-time linear systems ©;(z) and I';(w) can be
represented in state-space as

-1

©i(z) = Js’{J-I—Jb;‘(z_l—af) cd,
* * 1 -1

Li(w) = JkiJ+Jgi(w_ _f'i*) hi J ,

where ¢; and h; are arbitrary r X 1 column vectors, and s; and k; are arbitrary 7 X r matrices
chosen so as to satisfy the local embedding relation

fi gi d; 0 a; b; *_ d; 0
h,’ kz 0o J C; S; - 0 J )

By combining the time-domain description of the first-order sections we can obtain state-
space realizations for the feed-forward cascades in the form

Ok = JSI+IB (2 U-A)

T(w) = JE*J+JG (w'I-F ) H'J,
where the matrices C, S, H and K satisfy the global embedding relation
(F G)(R 0)<A B>*:<R 0)
H K 0o J c S o J )
In fact, it is possible to express C, S, H and K explicitly as
¢ =16 (1-rF )_1R_*< rI-4),
S = r—l[I—JG*( I—rF" )1R_*B],
H = @*UB*( I—pAr )_lRfl( pI—F )
K = ®_I[I—JB*( I—pA* )_lRlG],

where 7 and p are constants that satisfy 7 u* = 1, and I" and © are r X r matrices that
satisfy © JI'™* = J. By substituting these expressions into (16) we obtain [10, 11]

-1
O(z) = [I— (et=r)JB(zU-4) RYI-7F) G ] o,
(17)
-1 -1
I(z) = [I—( 21— )JG*( 2 - F* ) R**( I—p*A ) B ]F.
These formulas generalize certain expressions found in [5, Theorem 4.5.2] on specifying a
rational function via left and right null-pole triples. From the above state-space realizations
it follows that {A*,—JB*} is a right pole pair of ®@(z), while {F,G} is a left pole pair

of JT*(z) J. By the global J-unitary property (7) we conclude that JIT'*(z)J = @~1(2),
therefore {F, G} is also a left null pair of O(z).
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Hence, another way to solve the unconstrained interpolation problem is to compute a
generating system ©(z) by using the explicit expression (17). Then the family of rational
interpolants can be parametrized in terms of @(z) as shown in (12). Note that the global
method requires the explicit computation of R~!, while the recursive method avoids this
step. On the other hand, the global method requires only the invertibility of R, in contrast
with the recursive method, which requires strong regularity.

7 Connection to the Lagrange Polynomial

The unconstrained interpolation problem that we studied in the previous section can also
be solved by expressing all interpolants in terms of the so-called Lagrange interpolating
polynomial as was done, for example, by Antoulas and Anderson in [1, 4, 6]. As a matter of
interest, in this section we shall show how to construct this solution recursively by using the
generalized Schur algorithm. Recall that we are essentially free to choose A and B so as to
guarantee the strong regularity of R. Each such choice would lead to a cascade ®(z) that
parametrizes all solutions of the problem as shown in Proposition 4.1. We shall give here a
particular choice for A and B that will lead us to the Lagrange solution.

We start by defining the Lagrange interpolating polynomial. Consider the n—-dimensional
linear space of polynomials of degree at most n — 1, in which a basis {L¢(z), L1(z),.--,
L, _1(z)} can be defined as follows:

Li(aj):{(l) j ;#Z i€{0,1,...,n —1}.

That is, each basis polynomial L;(z) assumes the value 1 at «; and the value zero at the
other points «j, j # 7. Now a polynomial solution to Problem 1.1 can be obtained as a
linear combination of Ly(z), L1(z), ... L,_1(z) with coefficients 5y, 51, .. Bn-1:

n—1
L(z) =) B Li(2). (18)
=0

L(z) is called the Lagrange interpolating polynomial and constitutes the unique solution of
Problem 1.1 in the space of polynomials of order at most n — 1.

We can write down an explicit expression for L;(z) as follows. L;(z) has zeros at
QQ, Qs - ey O1,Qit1,---,0n—1. Therefore,

_ [Ijzi(z—a;) 1 m(2)

Li(=) [si(ai —aj)  7'(e) (2~ i)’
where
n—1
m(z) = H(z — ;).
j=0

Thus, we obtain the celebrated formula

L(z) = z__%ﬂz@ : m(2)

z—aq;)

It is also known that all rational solutions to Problem 1.1 can be parametrized in terms
of L(z).
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Lemma 7.1 y(z) is a rational interpolant if, and only if
p(z
) = L)+ 7(:) 2 (19)

for some coprime polynomials p(z) and q(z) such that q(e;) #0, i€{0,1,...,n— 1}

Proof: The ‘if’ part of the statement is obvious since the second term in (19) vanishes at
Qj;, iG{O,l,... , N — 1}.

The ‘only if’ part can be proved as follows. Let us suppose that y(z) = n(z)/d(z) is an
irreducible rational interpolant, i.e., y(a;) = 5;. Choose

9(z) = d(2),

Now, p(z) is a polynomial since the numerator has roots at «;, i.e.,
n(a;) — L(az) d(os) = n(ei) — Bid(es) =0, i€{0,1,...,n—1}.

Moreover, y(z) is irreducible and hence, p(z) and ¢(z) are coprime. Finally g(a;) # 0 because
B; is finite. |

We now show how to construct the Lagrange interpolating polynomial by using the
generalized Schur algorithm.

Proposition 7.1 Assume that we choose F and G as in (9). If the generator B and the
lower triangular matriz A are chosen such that

000 ... 00

100 ... 00 10

010 ... 00 00
A= . ) B = )

0 0O 00 00

0 00 1 0

then the matriz R in
R—FRA*=GJB*

is strongly reqular and the generalized Schur algorithm yields
O(z) = ( ”gz) i) ) . (20)

Proof: ©(z) is clearly a polynomial matrix since A is strictly lower triangular. From (3)
we obtain that

Qi1 — QG
& = Foa1=| (07

(an—1— ;)
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and U, is a strictly lower triangular Toeplitz matrix with elements {0,1,a;,a7,..., o} "%}
in the first column, viz.,

0
1 0
oy 1
v, = Az(I—a;‘Ai)_lz az? Q; 0
: a? 1 0
a 1 0
a?ﬂfz a2 a 10

The first step of the generalized Schur algorithm gives: kg = —(Gy, lo =0,

@0(2):<(1) ‘f")(z‘oa" (1’), ro<w>=<_§€3 2)(1—38“’ (1))

o — ap Bo — B 1 0
as — Bo — B2 ag O

G]_ = . . ) Bl —
an-1—0ay Bo—Pna ap™? 0

By induction we easily verify that at each stage of the recursion we get [; = 0 and hence,

1 —k; z—a; 0 1 0 —ary U
oo-(3 1) (5 1) mes (4 9) ()

| 10
ugz) x z 0
Gi= ) B; = . ’
. z 0
,Us)—i—l z
where
(0) i—1
;Usz :H(aj—l—i_ak)’ jE{O,l,...,n—i—l}, i€{1’27"'7n_1}'

k=0

Due to the distinct point constraint we have ,ug-i) # 0 for all i,5. Hence, the generator
recursion is strongly regular. Notice that in this case we have no freedom in deciding the
positions of the pivoting elements, since at each step we get b;y = 0 and hence, the algorithm
guides us to pivot with the left-most entries b;y and g;o. According to (6), the transfer matrix

O(z) can be written as

1 —k z—ag O 1 —k z—a1 O
0k = (0 10)< 001><0 11>< 011>"'
<1 —kn1>(z—an1 0>_<7r(z) X(z))
0 1 0 1) 0 1 ’
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where X (z) is a polynomial of degree at most n — 1. By using the interpolation property
(9) we obtain

(1 —ﬁi)<”(§‘i) X(lo"')>:(0 0), i€{0,1,...,n— 1},

which implies X (a;) = 5;, Vi. We readily conclude that X(z) = L(z) since L(z) is unique.
|

Observe that substituting @(z) into the linear fractional parametrization (12) we get
(19).

Figure 6: The Lagrange lattice

The cascade system @(z) associated with the special choices in Proposition 7.1 is depicted
in Figure 6. We see that the transfer function from the top left input to the bottom right
output is

n—2
L(Z) = —k() - kl(z - ao) - k'Q(Z - Oé())(z - 011) — ... — knfl H(z - ai). (21)
=0

This relationship can be interpreted as follows. Let us define the so-called Newton basis
{PO(Z)a Pl(z)a s aPnfl(z)}’

PO(Z) = ]-a
Pi(z) = z-—ay,
Py(2) = (2—ao)(z— ), (22)

19



n—2
Po_1(z) = H (z — ).
i=0
It then follows from (21) that the Lagrange interpolating polynomial can be represented in
this basis as

n—1
L(z) = 3 ~k;i B(2).
=0

In other words, the reflection coefficients ko, k1,...,%k,_1 are the negative coordinates of
L(z) in the Newton basis. At the beginning of this section we showed that So, f1,. .., Bn-1
are the coordinates of L(z) in the Lagrange basis. We thus conclude that the generalized
Schur algorithm performs a coordinate transformation between the Lagrange basis and the
Newton basis.

We further remark that other choices of A and B are also possible, as long as A is
strictly lower triangular, the second column of B is zero, and the strong regularity condition
is satisfied. In Proposition 7.1 we showed a special convenient (sparse) form for A and B.
In the multiple point case, when F' is in a general Jordan form, a similar reasoning leads to
the Hermite interpolating polynomial, though we shall not show this here.

8 Column Reduced Transfer Matrices

We now show that, under special conditions, the generator recursion gives rise to a column
reduced transfer matrix @(z). In a series of papers [1, 3, 4, 6] Antoulas et al. pointed out
that no statements can be made about the degree of complexity of the rational interpolants

n(z) \ _ [ ©1u(z) ©12(2) p(z)
d(z) ©21(2) ©2(2) q(2)
unless the polynomial matrix @(z) is column reduced, i.e, the degree of its determinant is
equal to the sum of its column indices. If @(z) is column reduced with column indices k;
and k2 > K1, then we can apply the so-called predictable degree property [17, p. 387], [18] to
claim that the McMillan degree of the interpolants is
6{y(2)} = max{degn(z), deg d(z)} = max{r; + degp(2), k2 + degq(2)}-

The main result in [6] establishes that if ®@(z) is column reduced then the minimal
solution of the unconstrained rational interpolation problem can be obtained by either

_ O11(2)
ymin(z) - @21 (Z),

provided that ©;;(z) and ©y;(z) are coprime, or

() = p(2) ©11(2) + O12(2) degp(2) < kg — K1,
Pt T () O21(2) + Om(z)’ plas) Oar(au) + Ona(as) #0,

when ©11(z) and ©(z) share some common roots. In the first case, there is a minimal
solution with complexity k1, while in the second case there exists a family of minimal in-

terpolants whose complexities are equal to k2. In both cases, there exist infinitely many
interpolants with complexity d{y(z)} > ka.
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Notice, however, that (apart from the case when deg{L(z)} = 0) the solution ®(z) that
was obtained in the previous section,

O() = ( ) L) ) (23)

is not column reduced. In [6] it was suggested to apply Euclid’s algorithm to transform (23)
to a column reduced form.

We now show that it is possible to directly obtain a column reduced transfer matrix @(z)
via the generalized Schur algorithm, by proper choices of the matrices A and B.

Proposition 8.1 (Column Reduced Transfer Matrix) Assume that we choose F' and
G as in (9). If the diagonal and the first subdiagonal elements of A are all zero, i.e., if

0

00

z 0 0 v

z z 0 O vz
A= . , B=|=z =z |,

T T T 0 )

T x T 0 0 rr

T x T z 0 0

then the Schur algorithm yields a column reduced polynomial matriz ©(z), provided that the
solution R of the displacement equation

R-FRA*=GJB*
is strongly regular.

Proof: Notice that the first two rows of ¥; = A; (I — a} A;)~! will be identically zero.
Therefore, at the i-th stage of the Schur recursion, we introduce an additional zero element
in the first row of the generator B;;1. This means that in the next stage /;11 = 0, and
we must switch the position of the pivoting elements. Let us follow this reasoning on a
step-by-step basis.

Step 0: This is a completely general step. Without loss of generality, let us pivot with ggo

a.ndb()().
1 -k z—agp 0
Oo2) = (—13 10)( 001)’

]- 1 _lo 1_11)* 0
T — adw
o) = T, ( k1 ) ( 0o 1)

r x 0 =z

T T T T
Gl - . . ) Bl -

r T T z
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Step 1: Now /; = 0 and we must pivot with b;; and g;;. If the strong regularity condition
holds then g1; # 0 and by; # 0. In this case,

o (4 1)(35) me( ) 5)

T T z 0

T T T T
G2 — 3 B2 =

T T T T

Step 2: Now /3 = 0 and we must pivot with bay and gog. If the strong regularity holds then
bag # 0 and gog # 0. Moreover,

1 —kz zZ — Q3 0 1 0 17};*“} 0
oo=( 1) (75 2). mo=( 1) ()

T 0 z

T T
G3— ) B3_

T T

By induction we obtain that /; = 0, Vi > 1. If ¢ is odd then

1 o\[(1 0 L—k (L)
Gi(z):<_ki 1)(0 z_fi)’ Fi(w):<0 1 )(0 1—1;1-*10)‘

If 7 is even then

1 —ki Z—f,‘ 0 1 0 —_w;w 0
QM:(O 1 )( 0 1)’ F"(w):(—k; 1)(16‘ 1)'

The transfer function ®(z) can be expressed as

1 —k 2—fo 0 1 0 1 0

o(:) = (—lzs 10)( 001)(_k11>(0z_f1)__.
1 ki \(z—fi 0 1 o)/1 o

0 1 0 1 —ki+1 1 0 Z—fz'+1

By taking the product of the consecutive blocks it is straightforward to check that @(z) is
column reduced. |

Observe that at each stage of the recursion we obtain /; = 0 as we did in the case of the
Lagrange lattice, but now we cannot keep the pivoting elements at the left-hand-side of the
generator. We are guided by the algorithm to switch the positions of the pivoting elements
back and forth leading to the Schur lattice depicted in Figure 7. It can be shown that this
cascade-synthesis procedure is related to Euclid’s algorithm.
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Y

o Be,i(z)
(o, >
° Bri(w)

mi=1—k;l;

Figure 7: Feed-forward lattice with a column reduced transfer matrix.

9 Concluding Remarks

We have reexamined the much studied scalar unconstrained rational interpolation prob-
lem, and described a new, computationally efficient, recursive solution using the notion of
displacement structure and the associated generalized Schur algorithm for fast matrix fac-
torization. We showed how to recursively construct a convenient feed-forward cascade that
parametrizes all solutions. Special cascades that implement the Lagrange solution, as well
as a column reduced solution, were also presented; these allow us to obtain minimal degree
interpolants. We derived global state-space formulas for the generating system, and provided
a physical interpretation for the interpolating functions.

We may remark that here we limited ourselves to the case of structured matrices with
displacement rank r = 2. However, the generalized Schur algorithm applies also to higher
order displacement ranks and allows us to solve tangential interpolation problems, where
the interpolation solution is a matrix function. We also restricted ourselves to the distinct
point case, even though F' can have a more general Jordan form. These extensions will be
discussed elsewhere. In this paper we considered interpolation problems on the unit circle.
Similar discussions can be carried out for problems on the line (as done, e.g., in [5]).
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