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Fast Algorithms for Generalized Displacement
Structures and Lossless Systems*
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Abstract

We derive an efficient recursive procedure for the triangular factorization of strongly
regular matrices with a generalized displacement structure that includes, as special
cases, a variety of previously studied classes such as Toeplitz-like and Hankel-like ma-
trices. The derivation is based on combining a simple Gaussian elimination procedure
with displacement structure, and leads to a transmission-line interpretation in terms
of two cascades of first-order sections. We further derive state-space realizations for
each section and for the entire cascades, and show that these realizations satisfy a
generalized embedding result and a generalized notion of J-losslessness. The cascades
turn out to have intrinsic blocking properties, which can be shown to be equivalent to
interpolation constraints.
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1 Introduction

Matrices that exhibit certain structure, such as Toeplitz, Hankel, close-to-Toeplitz, or close-to-
Hankel, often arise in application problems. The structure of these and other related classes of
matrices is nicely captured by introducing the concept of displacement structure [1, 2, 3, 4]. In this
context, an n X n non-Hermitian structured matrix R is compactly described by a pair of n x r
matrices {G, B} (called a generator pair of R) with r < n, and the column dimension of G or
B is called the displacement rank of R. The triangular factorization of such strongly regular R
(i.e., a matrix with nonzero leading minors) can be computed efficiently and recursively in O(rn?)
operations (additions and multiplications) [6, 7, 9]. This is achieved by appropriately combining
Gaussian elimination with displacement structure. The resulting algorithm can be regarded as a
far reaching generalization of an algorithm of Schur [10], which was chiefly concerned with the
apparently very different problem of checking that a power series is analytic and bounded in the
unit disc; hence the name generalized Schur algorithm.

The concept of displacement structure and structured matrices can be motivated by considering

n—1
the much-studied special case of a symmetric Toeplitz matrix, T' = [c‘i,ﬂ] . Since T' depends

4,j=0

only on n parameters rather than n2, it may not be surprising that matri]x problems involving
T (such as triangular factorization, orthogonalization, inversion) have complexity O(n?) rather
than O(n?®). But what about the complexity of such problems for inverses, products, and related
combinations of Toeplitz matrices such as T~ !, Ty Ts, Tt — ToTy i1y, (T1T3) T3, ...7 Though these
are not Toeplitz, they are certainly structured and the complexity of inversion and factorization
may be expected to be not much different from that for a pure Toeplitz matrix, T. It turns out
that the appropriate common property of all these matrices is not their “Toeplitzness”, but the
fact that they all have low displacement rank. The displacement of an n x n Hermitian matrix R
was originally defined by Kailath et al. [2, 3] as

VR = R- ZRZ* , (1)

where the symbol * stands for Hermitian conjugate transpose of a matrix (complex conjugation
for scalars), and Z is the n x n lower shift matrix with ones on the first subdiagonal and zeros
elsewhere; ZRZ* corresponds to shifting R downwards along the main diagonal by one position,
explaining the name displacement for VR. If VR has low rank, say r, independent of n, then R is
said to be structured with respect to the displacement defined by (1), and r is referred to as the
displacement rank of R. In this case, we can (nonuniquely) factor VR as

VR=R- ZRZ* = GJG* , (2)

where J = J* is a signature matrix that specifies the displacement inertia of R: it has as many
+1's on the diagonal as VR has positive and negative eigenvalues, J = I, ® —I;, p+g=r, and G
is an n x r matrix. The pair {G, J} is called a generator of R, since it contains all the information
on R. In fact, we can write down an explicit and interesting representation for R in terms of the
columns of its generator matrix G. Using the fact that Z is nilpotent, viz., Z™ = 0, we can readily
conclude that the unique solution of (2) for a given {G, J} is

n—1

R=)> Z'GJIG*Z*. (3)
=0
-1
For a symmetric Toeplitz matrix T' = [c‘i_ﬂ]é, o with ¢g = 1, it is straightforward to verify that
i,j=

if we subtract ZT'Z* from T then we obtain
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which shows that T' — ZT'Z* has rank 2, or equivalently, T has displacement rank 2, independent
of n.

The structure in (1) is convenient for Toeplitz and related matrices. References [2, 3] also noted
the possibility of other definitions of displacement appropriate for Hankel-type matrices, periodic
matrices, etc. Independently, Heinig and Rost [11] studied the properties and applications of
definitions such as VR = ZR — RZ*, and more generally VR = UR — RV for suitable matrices
{U,V}. This definition is especially appropriate for Hankel (and Hankel-derived) matrices. For
example, if H = [hiﬂ]z——l is a Hankel matrix, we can see that

i=0
0 —hy —hy ... —hpy ]
ho
VH=ZH-HZ*=| n O has rank 2. (5)
L hn—2 i

Note however that H cannot be recovered from its displacement V H, because the entries h, 1,
..+, hap—o do not appear in VH; this “difficulty” can be fixed in various ways (see, e.g., [8, 11, 12]
and the brief discussion in Section 6.2 ahead).

Because of the famous Levinson algorithm [13] for solving Toeplitz (or normal) equations (or
equivalently making a triangular factorization of the inverse of the Toeplitz matrix), many later
studies of fast factorization algorithms focused on the derivation of Levinson-like recursions for
solving

Rx:[l 0 ... o]T,

for a column vector x, and for more general matrices R. The Levinson algorithm was also used
by Bareiss [14], LeRoux-Gueguen [15], Morf [16], and Rissanen [17] to find fast algorithms for the
triangular factorization of the Toeplitz matrix itself (rather than its inverse). It was noted by
Dewilde, Vieira, and Kailath [18] that an algorithm of Schur [10] was in fact the first to efficiently
solve the direct factorization problem for Toeplitz matrices. Lev-Ari and Kailath [7] later noted
that the Schur algorithm could be extended to solve the factorization problem for a larger class of
Hermitian matrices R that have displacement structure of the form

o
VR= Y di;Z'RZ"
4,j=0
if, and only, if the bivariate polynomial
0 . .
d(z,w) = Z dijz'w*!
4,j=0

admits the representation



d(z,w) = a(z)a’(w) = B(2)8"(w) ,

for certain polynomials {a(z),3(z)}. This generalization includes as special cases the Toeplitz
structure, which corresponds to d(z,w) = (1 — zw*), the Hankel structure, which corresponds to
d(z,w) = j(z — w*) (where j2 = —1), and Toeplitz-plus Hankel structure, which corresponds to
d(z,w) = j(z — w*)(1 — zw*) (see, e.g., [7, 19]).

Later Chun and Kailath [8, 9, 20] pointed out that the Schur algorithm could be used to solve
not only direct factorization problems but also inversion problems and QR factorization problems,
by studying suitably defined block matrices and using more general definitions of displacement
structure:

VR=R—-FRF* , VR=R—-FRA" |
VR=FR—-RF* , VR=FR—- RA" ,
with
{F, A} strictly lower triangular.

However, the case of lower triangular (or even diagonal) matrices F' and A is important in many
applications, such as interpolation problems [24, 25, 26]. Lev-Ari and Kailath [5, 27] studied the
lower triangular case. In [27] they described a recursive state-space procedure for the factorization
of Hermitian positive-definite matrices with a Toeplitz-like (or close-to-Toeplitz) structure of the
form

VR=R-FRF*=GJG" ,

where F is a stable (i.e., all eigenvalues are strictly inside the unit disc) lower triangular matrix,
G is an n X r matrix that is called the generator of R, and J is a signature matrix of the form
J = diagonal {Ip, —I;} (p + g = r). The recursive procedure was derived by embedding {F,G}
into a J-lossless state-space system matrix

F G
H K
that satisfies the (discrete-time) embedding or dilation relation
F cl[rRol][F ¢ [R o ©)
H K 0 J H K o J ’

and then defining a recursive cascade decomposition of this system matrix into a product of first-
order J-lossless system matrices.

In this paper we simplify this general line of argument to obtain a unified derivation for the study
of the previous classes of structured matrices and extensions thereof. In particular, we develop a
recursive matrix-based derivation of a generalized factorization algorithm, which applies equally
well to strongly regular and to non Hermitian structured matrices. For this purpose, we consider
strongly regular matrices R with a generalized displacement structure of the form



VR = QRA* — FRA* |

where {Q, A, F, A} are lower triangular matrices. R is said to be structured if VR has low rank,
independent of n. We then derive a generalized Schur algorithm that efficiently computes the
triangular factorization of R. The derivation also leads to an extension of the embedding relation
(6) to the non Hermitian case — see (22) and (33) ahead.

The factorization algorithm is derived by combining a simple Gaussian elimination (or Jacobi
reduction) procedure with the generalized (displacement) structure. To further emphasize this
point, we should mention here that the Gaussian elimination procedure factors an arbitrary ma-
trix, but with O(n®) elementary computations for an n x n matrix. The fact that R has further
(displacement) structure allows us to show that the Gaussian procedure can be reduced to a pair of
generalized (Schur) recursions. The resulting algorithm works only with the entries of the generator
matrices {G, B} and the defining matrices {2, A, F, A}. It does not use the entries of R, which
is in contrast to the Gaussian procedure. In some applications, for instance, such as interpolation
problems (see, e.g., [24, 26, 28]), we do not even know the matrix itself. All we know is that R
satisfies a special (displacement) equation and all we are given are the generator matrices as well
as the displacement form. In such cases, computing the triangular factors of R via the Gaussian
elimination procedure would require us to first solve for R. On the other hand, the recursive algo-
rithm presented here avoids this step and uses only the generator matrices and the quantities that
define the displacement of R; the matrix itself is not needed.

The paper is organized as follows. In Section 2, we introduce the class of matrices with generalized
displacement structure. In Section 3 we describe the classical Gaussian (often also called Jacobi
or Schur) reduction procedure for the triangular factorization of strongly regular matrices. In
Section 4, we exploit the underlying structure and show that the Gauss reduction collapses to an
efficient generator recursion. We also remark the appearance of a generalized embedding relation.
In Section 5, we discuss some of the implications of this general embedding result. We show that
the generator recursion leads to a cascade of first-order sections that satisfy a (non-Hermitian) J-
losslessness relation. We may mention that these cascades turn out to have intrinsic interpolation
properties, which can be advantageously used in the solution of several types of unconstrained
interpolation problems such as Padé approximation, Lagrange interpolation, and others (see, e.g.,
[28]). In Section 6, we derive the generalized Schur algorithm by further simplifying the generator
recursions of Section 4, and elaborate on some computational and uniqueness issues. In Section 7,
we derive a state-space realization for the entire cascade of first-order sections, and show that it
also satisfies a general embedding result; Section 8 has some concluding remarks.

1.1 Direct Factorization Problems

Before proceeding further, we would like to stress the fact that direct factorization is, in many
respects, more fundamental than the inverse problem. To illustrate this point we consider several
examples that motivate the need for more general structures such as R — FRF* rather than R —
ZRZ*. The arguments that follow are based on an embedding technique of Chun and Kailath
[8, 9], which shows how to exploit the freedom in choosing F' to great effect.

Consider again the case of an n x n symmetric Toeplitz matrix T for which T'— Z,T Z} has rank
2 (Z,, denotes the n x n lower shift matrix). If we form the block matrix

M:[‘IT 3], (7)



then it is straightforward to check that the displacement rank of M with respect to M — Zy, M Z5,
is equal to 4. However, we can get a lower displacement rank by using a different definition,
*
Z 0 Z 0
VM_M—lO Z]Mlo Z] ,
which corresponds to choosing F = Z @ Z in the definition R — FRF* (rather than F = Zy,, the
2n x 2n lower shift matrix).

The question is then how to exploit the structure of M in order to obtain fast factorization of
T~!. The answer is that the (generalized) Schur algorithm operates as follows: it starts with the
generator matrix G of a structured matrix (say the generator of M) and at each step it provides
us with the generator of the successive Schur complements of the matrix. So the first step of the
algorithm gives us G, which is the generator of the Schur complement of M with respect to its
(0,0) entry. The next step gives us G, which is the generator of the Schur complement of M with
respect to its 2 x 2 leading submatrix, and so on. After n such steps, we clearly obtain the generator
of the n® Schur complement, which is 7~!. The generator of 7! can then be used to efficiently
determine the triangular factorization of the inverse matrix.

Hence, by performing the direct factorization of the extended matrix M in (7) we also obtain
the factors of the inverse matrix T~!; this is an alternative to the use of the Levinson algorithm for
this problem. As a second example, we consider the product of two symmetric Toeplitz matrices
VT,

n—1

, Ip = [eﬁfﬂ]i,jzo’ with ¢ =ey =1 ,

n—1

= [C"'*ﬂ] i,j=0

and note that 71T, is the Schur complement of the (0,0) block entry in the extended matrix M
defined by

-1
w2 5]

It is now easy to verify that

[ —1 0 0 1 €1 €n—1 W
0 €1
* 0 0O
A Z 0 0 .
VM:M_[OZ]MlOZ]: 1 ¢ %4ef 0 0 ’
(] 0
. O 3 O
| Cn—1 0 J

which shows that M has displacement rank 4 with respect to the displacement operation M — (Z &
ZYM(Z & Z)*. The (generalized) Schur algorithm can then be used to determine a generator for
T1T> and consequently, it triangular factorization. Several other examples can be found in [8, 9].
Applications with more general matrices F' (i.e., not necessarily strictly lower triangular) include
interpolation problems [24, 26, 28] and adaptive filtering [21, 26].



2 Generalized Displacement Structure

We consider an arbitrary n X n strongly regular (i.e., all leading principal minors are nonzero)
matrix R that satisfies a generalized displacement equation of the form

QRA* — FRA* = GJB* , (8)

where 2, A, F, and A are n x n lower triangular matrices whose diagonal entries will be denoted
by {wi}l, {637, {fi}=y, and {a;}77), respectively, G and B are n x r so-called generator
matrices (with 7 < n), and J is an r x 7 signature matrix that satisfies J2 = I, such as J = I,

_| 1 O _
J—lo _Iq], ptqg=r,
or some other possible form. We assume that
w;0; — fja; #0 for all ¢,j. (9)

This guarantees the existence of a unique solution R of the displacement equation (8) since we can
then solve directly for the entries {ry,;} of R. For example, the entries of the first row of R satisfy

* * *
wo["‘oo Tol .- To,n—l]A —fo[Too 7oL --- To,n—l]A =goJB”

where go denotes the first row of G, and hence can be determined uniquely. Once the entries of
the first row of R are determined, we can now repeat the argument for the second row, and so on®.
Alternatively, it will be clear later that the the above conditions allow us to uniquely determine
the triangular factors of R, and consequently R itself. We further note that algorithms often need
to be developed in circumstances where the nonuniqueness condition does not hold; procedures for
such cases are briefly addressed in Section 6.2.

We shall say that R has a generalized displacement structure with respect to {Q, A, F, A}, and
{G, B} will be called a generator pair of R. The motivation for calling R a structured matrix stems
from the fact that Toeplitz and Hankel matrices satisfy special cases of (8), as remarked in the
introductory section. Another interesting example is the case of a symmetric Toeplitz plus Hankel
matrix [19], viz.,

o0 .
R=T+H= [ Cli—j| + hiyj ]i,j:O , with c¢o=1.
It is straightforward to verify that the difference
ZR(I+ Z%* — (I + Z*)RZ*

has rank 4, viz.,

ZR(I+ Z** — (I + Z)RZ* = GJG* (10)
where
10 1 0
0 0 0 -1 01 c1 %—i—ho
7|8 0 b S| ama @=|g 0 e aih
1 0 0 O 0 0 cat+ha c3+hs

!The authors would like to thank a referee for pointing out corrections to our original argument, and
Prof. G. W. Stewart for suggesting this alternative proof.



Therefore, a symmetric Toeplitz plus Hankel matrix has displacement rank 4, and (10) is a special
case of (8) with

ON=A=27, A=F=1+2% r=4, G and J as above.

The displacement operators {Z,1 + Z2, T + Z2,Z} do not satisfy the uniqueness condition (9).
However, this can be properly handled as discussed in [19] (see also the discussion in Section 6.3).

We further remark that (8) includes more general structured matrices such as Toeplitz-like (e.g.,
quasi-Toeplitz, block-Toeplitz, Toeplitz-block) and Hankel-like (e.g., quasi-Hankel, block-Hankel,
Hankel-block, Vandermonde): Toeplitz-like matrices correspond to @ = A = I, while Hankel-like
matrices correspond to A = F = 1.

3 Gaussian Elimination

The assumption of strong regularity of R = [ij]nm_jl:o guarantees the existence of a triangular
factorization of the form [29]
R=LD7U ,

where D is diagonal and L and U are lower- and upper-triangular matrices, respectively. The
columns of L and U, and the diagonal entries of D, can be computed recursively via the Gauss
(also often called Jacobi [22] and Schur [10]) reduction procedure. Let Iy, ug, and dy denote the
first column, the first row, and the (0,0) entry of R, respectively:

T00
T10 .
do = roo, lo= : ) UOZ[TOO TolT ... TOm—1 ]
Tn—1,0
Then
00 0
1 0 .
R—lodo US = . = Rl , (11)
. Rl
0
n—2
where Ry = [7'7(,3] ~is called the Schur complement of rg9 in R. Expression (11) represents
m,j=
one reduction step, and it can now be repeated in order to compute the Schur complement Ry =
n—3
[ng)] o of r((,})) in Ry, and so on2. This suggests the following recursive procedure:
m,j=

Rii =Ry —lid7a;, lo=1lo, ay=uy, Ro=R, (12)
where d; = r(()%), and l; and @; denote the it column and row of R;, respectively. Notice that the
first ¢ entries of /; and %] are all zero, and we shall denote the corresponding nonzero parts by I;
and u}, respectively, viz.,

2Because of this terminology, we had dubbed this the Schur reduction procedure in [5, 7] and in later
papers. G. W. Stewart reminded us that this was just Gaussian elimination; also that for nonsymmetric
matrices, the LU decomposition should be credited to Jacobi in 1857.



i': 0ix1 i — 0ix1
1 lz ) (2 Uu; -

That is, [; and u] are the first column and row of the ith Schur complement R;. We can also rewrite
each reduction step (12) in the following alternative form

0 &' o 0 )
R, = | ¢ ; . 13
’ [ R A ] [ 0 Ry ] [u, In_i ] (13)

It follows from (12) that R can be expressed as the sum of n rank 1 terms (since R, = 0),

Therefore, the triangular factors L, U, and D are given by

L:[io l~1 lnfl] y U:[flo Uy ... ﬂn—l]* )

D = diagonal {dy,d1,...,dp_1}.

Observe that the reduction procedure (12) is a recursive algorithm that operates directly on the
entries of the successive Schur complements R;. This clearly requires O(n?) operations (additions
and multiplications) for an arbitrary strongly-regular matrix R. However, the computational com-
plexity can be reduced to O(rn?) in the case of structured matrices as in (8) (with some additional
constraints on the displacement operators {2, A, F, A}, as discussed in Section 6.2). For such struc-
tured matrices, we can replace (12) with the so-called generator recursions that operate directly
on the elements of the generator matrices G and B, which have rn elements each as compared to
n? in R. For example, in the Toeplitz and Toeplitz-plus-Hankel cases we have r = 2 and r = 4
respectively, independent of n.

4 Generalized Generator Recursions

We now verify that the successive Schur complements R; also exhibit generalized displacement
structure. We shall assume from now on that  and A are invertible matrices (by symmetry, the
same argument holds for invertible F' and A). If instead 2 and A (or A and F') were invertible
then a continuous-time analogue of the embedding technique used ahead can be invoked to derive
the appropriate recursions - we shall for simplicity and brevity forgo the details here [23] and focus
on the discrete-time case. Also, in Section 6.2 and in [19] we briefly illustrate with examples, how
to handle cases where the nonuniqueness or invertibility conditions are violated.

We start with the first Schur complement R; defined by (11). It readily follows from the displace-
ment equation (8) that the first column [y and the first row u§ of R satisfy the following relations
(due to the lower triangularity of the displacement operators {2, A, F, A}):

Ql()(sg = Floa’(;—i-GJb(’;,
gonﬁ

dy = —————
w053—f0a3 ’

wougA*



where g9 and by denote the first rows of G and B, respectively. That is, given G, B, and the
displacement operators {2, A, F, A}, we can write down explicit expressions for the first triangular
factors /p and wuy,

lo= (63— alF)'GJb
uy = (WA — f§A) " BJg;.
Let {4, A1, F1, A1} be the submatrices obtained after deleting the first row and column of {Q2, A, F, A},

o f() 0 o ago 0
F_l? R , A= 7 A ’

. wWo 0 . 50 0
SEFANESIL DA
where 7 denotes irrelevant entries. Using (11) and (14) we can prove the following result.

Fact 1 (Structure of Ry) The first Schur complement Ry is also structured with generator ma-
trices G1 and Bi, viz.,

O RiAY — FiR AT = G1JB; |

where G1 and By are (n — 1) X r matrices that are computed from G and B as follows:

l 0 ] = Flycgd + GJIsyd

G
0 * *

lB ] = AughyJ + BJkyJ , (15)
1

where ¢y and hy are arbitrary r X 1 column vectors, and sy and ko are arbitrary r X r matrices
chosen so as to satisfy the generalized embedding relation

fo 9o dg O ag by *: wodody O (16)
h() k() 0o J Co So 0 J |

Proof: The proof can be obtained via direct manipulations of (11) and (14). Using (11) we write

QR A* — FRA* = GJ {J __bago } JB* —
(,U()do(sg

Joby . s apgo .
A* — Fi B
GT o v 0 oot TB
gOJbEk) * A%
Fl A*. 17
0 wod2ay 0 (17)

We now verify that the right-hand side can be put into the form of a perfect square by introducing
some auxiliary quantities. Consider r x r matrices kg and sg and r X 1 column vectors hy and ¢
that are defined to satisfy the following relations (in terms of the quantities that appear on the
right-hand side of the above expression)

10



b b
sgThy = J — B9 gt Jhy = — S0

wodod} wodod}
(18)
* — _ aago * — gonQ*
CO Jk() de053 9 CO Jh() de(z)aa .

Using {co, S0, ho, ko } we can rewrite the right-hand side of (17) in the form
GJsyJkoJB* + GJsyJhougA™ + FlocyJkoJB* + FlocyJhougA*,
which can be clearly factored as G1JB} where
G1 = FlochJ + GJsyJ and By = AuohyJ + BJkSJ.

Recall that the first row and column of Ry are zero. Hence, the first rows of G; and B; are zero

o-[8] . a-[2)

Finally, it follows from the definitions in (18) (and from the expression for dy) that {cy, so, ho, ko }

satisfy
Qg b() (wododa)fl 0 f() g0 _ dal 0
Cy So 0 J h() k() 0 J ’
which leads to (16).
|

We shall later give explicit expressions for {cy, so, ho, ko} that satisfy (18), in terms of the known
quantities {fo, ag, do, w0, 9o, bo}. Meanwhile, observe that the generator recursions (15) and the
expressions for the triangular factors in (14) can be combined and rewritten compactly as follows

N 0 _ ay cpJ
[50% leh ] = [0 @ ][Jb(’; JsSJ] ’
. 0 _ fo hoJ
[wOAuo B, ] - [Auo B][Jga J%J]. (19)

It is clear that the previous discussion can be repeated for the higher order Schur complements
R; (i > 2), leading to the following theorem.

Theorem 1 (Structure of the Schur Complements) The Schur complements R; satisfy the
displacement equation
QR;A; — F;R;A} = G;JB] , (20)

where G; and B; are (n —i) X r generator matrices that satisfy, along with the triangular factors I;
and u;, the following recursions

e O | 1 oo 1[a au _
l 51 Q’Ll't Gi—|—1 ‘| - [ Ell G’L ] l Jb;k JS:J ‘| 9 GO - G 9
X 0 *  RrJ
[%Am Buut ] = | A Bi][J;; J,;N] , By=B (21)

11



where ¢; and h; are arbitrary r X 1 column vectors, and s; and k; are arbitrary r X r matrices chosen
so as to satisfy the generalized embedding relation

fioogi|[di 0][a bi] _ | widid; 0 (22)
hi k; 0 J ¢ S 0 J |’
with g; and b; denoting the first rows of G; and B;, respectively,

d' — (’L) — g'l 7
FTI T by fuap

and {Q;, A;, F;, A;} are the submatrices obtained after deleting the first row and column of the
corresponding matrices {Q;_1,8;—1,F;_1,A;_1}.

5 Generalized Embedding Relations

Observe that each generator recursion involves two first-order discrete-time systems (in state-space
form) that appear on the right-hand side of (21). We now verify that these systems satisfy a
generalized losslessness relation. We remark that (22) is a generalization and an extension to the
non-Hermitian case, of the now well-known Hermitian embedding relation for J—lossless systems
(see, e.g., [27, 31] and expression (6) in the introductory section).

Consider the generalized embedding relation (22), and introduce the two first-order discrete-time
state-space models that arise in the generator recursion (21), viz.,

s (D) M-, (o[ a g7
[ 0i%jt1Y; ] B [ X0V ] Jl;;‘ J;fJ ] ’ (23)
r(2) @1_[@ o] f nJ
[ WiXjtr Y ] B [ Xo0W ] JZ;;* JIé;‘J ’ (24)
where x§-1’2) denote the so-called state variables, and w§1’2) denote 1 X r row input vectors at time

J (that is, the input vectors are from the left). Let ©;(z) and I';(z) denote the corresponding r X r
(generalized) transfer matrices, viz.,

-1
0i(z) = JsiJ+ I [T —a}| T

-1
Ti(z) = JKJ+Jgf [l = 7] hi (25)

Using the embedding relation (22) we readily conclude that the first-order sections ©;(z) and I';(z2)
satisfy the generalized J—losslessness (or normalization) relation

[i(2)J0;(w) =J on zw* =1. (26)

5.1 First-Order Sections

The above discussion clearly shows that we can associate with each embedding relation (22) two
transfer matrices [';(z) and ©;(z) that satisfy (26). We now verify that (22) completely specify
{¢i, si, hi, ki } in terms of the known quantities.

12



Lemma 1 ({h;, ks, ¢, 8i}) All choices of hi, ki, ci, and s; are given by

b diwi (67 — piaf diw; (6] — piay)

_ 1 7é—a; _ 1 Jg;b;
¢ =TI;1 2 Jgry , si=D10 — hd )
P {dm (wr —mfr) % TR @ (W — il

for arbitrary constant matrices ©; and I'; satisfying ©;JI'; = J, and arbitrary scalars 7; and p;
such that T;u; = 1.

Proof: The proof is patterned on one in [27]. Let 7; and p; be two arbitrary scalars on the curve
Tiuf = 1. We first show how to choose pairs (h;, k;) and (&, §;) such that the corresponding transfer
matrices I';(z) and ©;(z) (as in (25)) satisfy I';(u; *) = I, and ©;(7; *) = I,, or equivalently,

i+ &(ribdi—ai) by =1, and ki + hi(piws — fi) g = I
But (22) implies that &d} f* + §;Jg7 = 0 and ﬁidia;‘ + l;:in’{ = 0. Therefore,

5 1 pwi — f - 1 Jb gi
i = Jb, k=1 — g
Y diwi (8 — paal) " T dw; (87 — wial)

(3

1 7'1'51' — a; 1 Jg;"b1

&6 Wi —mfp) 0 T T @S (0 —ff)

~

G

The claim is that other values of {h;, ki, c;, s;} are related to {iL,, IAc,-, éi, 8} by
hi =07 hi, ki=0;ki, c;=T;'¢, s =T;"% ,

for arbitrary constant matrices ©; and I'; that satisfy ©;JTF = J. To check this, let ©;(z) and
T;(z) be the transfer matrices of any other possible choice (c¢;, s;) and (h;, k;), respectively. Clearly,
Li(p; *)JOF (7;*) = J, since 7uf = 1. If we define

0i(2) = ©i(2)0; 1 (;*) and  Ty(z) = Ti(2)T; H(u; *).

(2 (2 2 (2

Then éi(rf*) =1, and f‘z(,u; *) = I,.. Using the fact that these conditions are satisfied by (ﬁz, IAc,)
and (&, §;), we readily conclude that

~

hi =0, (r; hi, ki=0; (7 ki, e =T; (u;")é, si=T; (u; ")

] ] 2 (2

Using the just derived expressions for (h;, k;) and (¢, s;) we can verify that I';(z) and ©;(z) in
(25) can be rewritten in the following forms

Jg*b;
P,'(Z) = {Ir + [Brﬂ'(z) — 1] bffzgz } T,

b g;
0i(2) = {Ir + [Be,i(2) — 1] ;35; } i ,

where

13



* k0%
[ ujwp oap — 6z
0 —pija; wi— fiz

* * %

BI‘,z’ (z) and B@,i (z) =

wi — T} fi 6F —afz’
Consider for example, the special case of non-Hermitian Toeplitz-like structured matrices, viz.,
R— FRA* = GJB*.
Then the above expressions reduce to

_ fi—wi ai—
1—pia; 1—flz

Kk L
and Bgi(z) = o~ fizz

Br; = ;
ri2) 1-7fi 1—ajz

and it is easy to see that the first-order sections ©;(z) and I';(z) have an interesting interlaced
blocking property,

bil'i(a;)) =0 and g;0;(f;) =0,

which can be used as a basis for an alternative approach to the solution of (constrained and
unconstrained) interpolation problems (see, e.g., [24, 26, 28]).

6 Generalized Schur Algorithm

We can also substitute the expressions for (h;, k;) and (c¢;, ;) into the generator recursions (21).
This allows us to rewrite the recursions in the following alternative form (where {c;, s;, hi, k;} are
eliminated).

Theorem 2 (Generator Recursions) The generator recursions (21) can also be written in the
form

0 Jbig;

| Git1 | - [Gi +(® _In_i)GiginZ] i,
o |_ (B + (@~ L 0B 5% T

i Bz+1 ] - 2 1 n— Zleg;‘ (2]

where

Sl ) * " _
;= (L) (fifh — wiF) (67% — a}Fy) ™,

wi—T; fi

¥, (f,-*—uzw,-*) (@il — i Ag) (Wi i — fFA) .

di—pla;

We now further simplify the recursions of Theorem 2 by properly choosing the free parameters
(04, T, 74, p;). First recall that R is assumed to be strongly regular. This guarantees that d; # 0
for every ¢ and hence, the term g;Jb; can not vanish. Therefore, we can always choose constant
matrices ©; and I'; such that ©;JI'; = J and the rows g; and b; are reduced to the forms

6©i=[0 .0 2 0 .. 0] amd BwLi=[0 .0 y@ 0 ... 0], @D

14



where the nonzero entries :cgj ) and ygj ) are in the same column position, say the j®* position.

Observe that (G;0;, B;I';) is also a generator pair of R; since
G;©,;JT;B; = G;JB;.

Moreover, we shall say that a given generator pair is proper if the first row of each generator matrix
has a single non-zero entry in the same column position. Therefore, the above choice (27) of (©;,T';)
amounts to converting the original generator pair (G;, B;) to a proper generator pair (G;0;, B;T';):

0 ... 0429 0 ..0
r =z T T x T X
GOi=|2 z =z = =z z =z ,
r T T T T T X
x x T T x T X
(4)
0 ...0 4% 0 ... 0
r *r xr x X X
Bli=|2 z =2 z =z =z =z
r x x x X X Z
xr x x x X X Z

It is clear that we must have
x,(])y:(]) = giJb; = di(wid] — fia]).

We also remark that ©; and I'; can be implemented by using suitable variations of elementary
transformations such as Householder, Givens, hyperbolic, etc.. Substituting (27) into the generator
recursions of Theorem 2 we obtain the following generalized Schur algorithm in (proper) array form.

Algorithm 1 (Generalized Schur Algorithm: Array Form) The generator recursions can be
rewritten in the following simplified array form

o ] I; 0 0 0; 0 0
G =GO6;| 0 0 0 +®,G;0;] 0 1 0 ,
L et 0 0 I_j4 0 0 Op_j_1
(28)
" o0 ] I, 0 0 0; 0 0
B =B;I';| 0 O 0 + U, B;T; 0 1 0 ,
L i+1 i 0 0 Ir—j—l 0 O 07'_]'_1
where ®; and VU; are as before. The triangular factors are given by
; *Fp)~L @) *
li = (67 — o Fy) Gi@z’J[O .0y 0 ... 0] :
(29)
ui = (Wf A _fi*Ai)ilBiFiJ[ 0 ...0z9 0 ...0 ] :
|

The generator recursions (28) have a simple array interpretation:

15



(i) Convert (G;, B;) to a proper generator pair (G;0;, B;I';) with respect to a certain column,
say the j** column.

(i) Multiply the j** column of (G;0;) by ®;, and the j** column of (B;T';) by ¥;, while keeping
all other columns of (G;0;, B;I';) unchanged.

(iii) These steps result in a pair of non-proper generators (G;1, Bi+1) and we return to step (i).

Notice that the (0,0) entries of ®; and ¥; are zero. Hence, the effect of step (ii) is to annihilate
the non-zero entries :vz(-] ) and yz(J ) of the jt columns of (G;0;, B;T;):

T T 0 ngg) 0 0 0O
T T T T =z z
. th
Gi=|z z % |z z = <I>Z,]_>col. r z oz | — 0
) Git1
r T X x x x r T X
r r z 0 ygj) 0 0 0 O
r Ir X x x xr r Tr X
. sth
Bi=|z z z |8 |2 z = v gtheol | oo | | O |
B
r Tr T x xr xr r Tr X

The triangular factors /; and u; can be obtained via (29). Observe however, that we do not need to
explicitly form the inverses (6;€; —a}F;) ! and (w}A; — ffA;) . We may alternatively determine
l; and u; by solving the following triangular linear systems of equations

1

(019 —atF);=Gi® [0 4@ o],

(wi Ai — fif Ai)u; = BiFiJ[ 0oz o ] :

6.1 A Remark

Finally, the previous derivation was based on the assumption that Q, A, F, and A in (8) are lower
triangular matrices. If this is not so, then we can apply the generalized Schur decomposition
theorem [30], which guarantees the existence of unitary matrices @1, @2, P1, and P such that

Q=0QiI0NQs, F=QIFQy, A=PAP,, and A= P;AP, ,

where ), A, ', and A are lower triangular. If we define R = Q2RPy, G =Q:G and B = P,B,
then equation (8) reduces to

QRA* — FRA* = GJB™.
We can now compute the triangular factorization R=LDU using the derived recursions, and this
leads to the useful factorization R = Q5LDU P».

16



6.2 Remarks on Nonuniqueness and Computational Complexity

We now discuss some points relevant to the invertibility, uniqueness conditions, and computational
complexity of the generalized Schur Algorithm. We first remark that at each step we need to (at
least implicitly) compute the inverses

(WiAi— ffA)™" and (6% —aiF) "

These are (n — i) x (n — i) matrices whose inversion, in general, requires O((n — i)3) operations. If
we are interested in a fast (O(n?)) algorithm then Q, A F, and A have to satisfy the additional
constraint that solving the linear systems for /; and u; requires O(n — i) operations. For example,
in the special case

Q=A=1, F and A are strictly lower triangular,

the matrices (w}A; — f¥A;) and (87Q; — a} F;) are both equal to the identity matrix. Moreover, in
interpolation problems (see, e.g., [24, 28]) one is often faced with

Q=A=1 F=A= adiagonal matrix ,

in which case (w}§; — fFF;) is diagonal and hence easily invertible.

We also assumed throughout our discussion that R is unique and hence, (w;d; — fjaf) # 0 for all
i,j. This condition guarantees the invertibility of the matrices (wjA; — f*A;) and (67 — af F;).
Suppose for instance that this is not the case, then we are led to the following expressions for [;
and wu;:

(5:91 - afﬂ) li = Gin;-k and (w;‘A, — fz*Az) U; = BiJg;k,

which show that if either u; or I; is orthogonal to the nullspaces of (w;A; — fA;) or (6:Q; — al F;),
respectively, then we can determine either u; or /; unambiguously by using appropriate pseudo-
inverse: (wfA; — frA;)! or (62Q; — a2 F;)! . This approach was considered in [8] for the Hankel-like
case. To illustrate this point, we include a simple example extracted from [8, page 92].

6.3 A Simple Example

Consider an n X n real Hankel matrix H, which has displacement rank 2 with respect to the
displacement operation ZH — HZ* (recall (5)). We remarked earlier that H cannot be recovered
from its displacement VH, because the entries {hn_1,...,hon—2} do not appear in VH. One
solution to this difficulty [8, 12] is to embed H into an (n+ 1) x (n+ 1) extended matrix M defined

as follows
o l H 0 1 ,

0 0

where H is a leading submatrix of M. The extended matrix M also has structure with respect to
the displacement operation Z, 1M — M Z} ,,, where Z, 1 is the (n 4+ 1) x (n + 1) lower shift,

0 —hy ... —hp_o —hp_1
hO _hn
VM = : O : has rank 4.
hn—2 —hon—2
hn1 hp ...  hop_o 0
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The structure of M clearly corresponds to Q = Z, 1, A=1, F=1, A= Z,,1, and the nullspace
of (6§ — ayF') (= Zn+1) is the set of all (n + 1) x 1 column vectors of the form

T
[0 ... 0 a] , for arbitrary scalar a.

The triangular factors of M (denoted by lz(-M)) are orthogonal to the above nullspace, since the last
entries of ZZ(M) are zero for all i. We can thus determine IZ(M)
entry we obtain the factors [; of H.

An alternative procedure (see [7, 19]) is to extend H to a 2n x 2n Hankel matrix H,

uniquely, and by deleting the last

[ ho h1 ... hp—1 hnp  hpy1 ... hop—g 0
hi  hy .  hn hai1i hagr . O
h2 h3 hr,—H.]_ hn_|_2

]
I

O

hapn—o 0
0

and to use the displacement representation of H with respect to Zs, H — HZ3,. Notice that all the
entries {ho, ..., hop—1} that define the original matrix H appear in the displacement VH.

7 Generalized State-Space Realizations

We showed in Section 5 that each generator recursion gives rise to two first-order discrete-time
systems O;(z) and I';(z) as in (25) (or alternatively (23) and (24)). Therefore, after n steps we
obtain two cascades that we denote by ®(z) and I'(z), viz.,

O(z) = 0¢(2)01(2)...O05_1(2) ,
I(z) =To(2)T1(2)...Tp1(2)-
It is clear that ®(z) and I'(z) also satisfy the generalized J-losslessness relation
I'(z)JO*(w) =J on zw* =1.

We shall use the following notation to represent the transfer matrices ©;(z) and I';(z) (recall (23)
and (24))

. ffw* hiJ . afd;*  ciJ
Ti(2) ng;‘wz-_* JkrJ and  ©i(2) Tb6T* JsiJ |

We first use the last two sections of each of the cascades and compute their state-space realizations
defined by
Wp—2(2) ~ O, _2(2)0p-1(z) and T, 2(z) ~Tp_2(z)Th-1(2) ,

We then use ©,,_3(z) and I';,_3(z) to compute

Wn—3(z) ~ ®n—3(z)Wn—2(z) and Tn—3(z) ~ I‘77,—3(Z)Tn—3(z) )

18



and so on. Clearly, Ty(z) and Wy(z) represent the entire cascades I'(z) and ©@(z), respectively. In
matrix notation, the cascades I',_2(2)I'n—1(2) and ©,_2(2)O,_1(z) are given by

*

w0 hr,J 11 0 0
Th2(z) ~ 0 1 0 0 faowply hyqJ ;
Jgh_owp*y 0 Jkk_5J 0 Jgi_w,* Jki_1J

n—1

ay 90" 0 ¢ _oJ 1 0 0
Wp_a(z) ~ 0 1 0 0 af 6, ci_4J
Jb:l_25;j2 0 JS;_zJ 0 Jb:l_]_(s,;jl JS;_]_J

We are interested in evaluating the right-hand side of the last two expressions. We first remark
that (22) leads to

a; (wiég‘)_l dictJ
(dzwzé;‘)_lij JS?J ’

(i b | [ frere)Tt drhrd
¢ S | (drwis) M Igr TR |

i 0 0 ug 0 0
Li = d; I’n*’i*]. 0 and U1 = d: In,i,1 0
0 0o I 0 0o I

Using the expressions for G,,—1, Br—1, and the triangular factors l,,_o and u,_2, it can be seen that
we can write

-1 fn—2 0 gn—2
ln_s 0 ] W, o 0 0 -1 1 -1
_ _ 0 1 0 L =| Q Fp_ Q Gp— 30
[ dy,_2 1 [ 0 wnilfn—l wn_llgn—1 oz 0 ks n—2 |: n—2-n—-2 n—29n—2 ] (30)

[y

Un_2 0 5_12 0 0 n-z 0 bn-z 1 —1 —1
[ = } "7 st 51 b 0 1 0 U ty=[ A 402 AL,Bu s | (31)
n? n-19n-1 n-17n-1 cn—2 0 sp_2

If we now introduce the quantities H,_2, K,,_2,Cp_2, and S,,_2, defined by

[ w;igfan 0 wﬁizgnfz )
[ Hoo Knoo | =[0 hnot kot | o 1 0 L,
hn—2 0 kn—2

(sgizan—2 0 57:12bn—2
[Cns Sua |=]0 a1 sp ] 0o 1 0 o
L Cn—2 0 Sp—2

then (30) and (31) imply that
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Fr oQu%y  HyoJ ] AL 285 Ched
Tho ~ and Wyp_g~
JGh 5% JK; 5J | JB oA "y TSk 5T

n—2

Moreover, it follows from (13) and (22) that

Fn72 Gn72 Rn72 0 -Anf2 Bn72 *: Qn72Rn72A:;_2 0
anZ Kn72 0 J Cn—2 Sn—2 0 J |

The same argument can now be used to compute Tj,_3(z) and W,,_3(z) and so on. Each further
step would correspond to a relation of the form

F, Gil[R ol 4 B _[uRAr 0 (32)
H OKl|lo gl s |~ o J|°

[ w; tfi 0 w; ' gi

[ Hi Ki|=[0 Hyw K ]| 0 Liga 0 | L7
h; 0 k;

and

[ 67'a; 0 67'b;

[ Ci S ] = [ 0 Cit1 Sin1 ] 0 I,;1 O Ut

C 0 Si

Theorem 3 (State-Space Realizations) The cascades ©@(z) and I'(z) have the following n— dimensional
state-space realizations

A = MarwaB
(

yW o= Wergrwliss

and
Q*xﬁzl = x§-2)F* + w,(cz) JG*
v = P g e wPIKkeT

respectively, and satisfy the generalized embedding relation

[F GHR OHA B]*:lQRA*O]. (33)
H K 0o J c S 0 J
Moreover, it also follows that T'(z) and ©(z) admit the representations:
T(2) = {I - (z~' — p*)JG*(z1Q* — F*)"'R~*(A — p*A)~'B}T |
O(k)={I—-(z—m)JB*(:71A* - A*)"'R"Y Q- F)"1G} ©
where T and p satisfy Tp* = 1, and the constant matrices ® and T' satisfy @ JI™* = J (the values

of {©,T,7,u} depend on the choices {©;,T';, 7, ui}).
[
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8

Concluding Remarks

We introduced a generalized definition of displacement structure and showed how to exploit it to
derive fast triangular factorization algorithms for such matrices. We combined a simple Gaussian
elimination procedure with displacement structure and derived the corresponding generator recur-
sions in a convenient array form. It was also verified that each step of the algorithm provides
two first-order sections that satisfy a general embedding relation and a generalized notion of J-
losslessness. We also derived a state-space realization for the cascade in terms of the matrices that
describe the matrix (displacement)structure. An application of the generalized recursions derived
in this paper to unconstrained interpolation problems is discussed in [28].
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