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Abstract—Cognitive radio technology has been proposed to
improve spectrum efficiency by having the cognitive radios act
as secondary users to opportunistically access under-utilized fre-
quency bands. Spectrum sensing, as a key enabling functionality
in cognitive radio networks, needs to reliably detect signals from
licensed primary radios to avoid harmful interference. However,
due to the effects of channel fading/shadowing, individual cog-
nitive radios may not be able to reliably detect the existence of
a primary radio. In this paper, we propose an optimal linear
cooperation framework for spectrum sensing in order to accu-
rately detect the weak primary signal. Within this framework,
spectrum sensing is based on the linear combination of local
statistics from individual cognitive radios. Our objective is to
minimize the interference to the primary radio while meeting the
requirement of opportunistic spectrum utilization. We formulate
the sensing problem as a nonlinear optimization problem. By
exploiting the inherent structures in the problem formulation, we
develop efficient algorithms to solve for the optimal solutions. To
further reduce the computational complexity and obtain solutions
for more general cases, we finally propose a heuristic approach,
where we instead optimize a modified deflection coefficient that
characterizes the probability distribution function of the global
test statistics at the fusion center. Simulation results illustrate
significant cooperative gain achieved by the proposed strategies.
The insights obtained in this paper are useful for the design of
optimal spectrum sensing in cognitive radio networks.

Index Terms—Cognitive radio, cooperative communications, en-
ergy detection, nonlinear optimization, spectrum sensing.

I. INTRODUCTION

COGNITIVE radios [2] have emerged as a potential tech-
nology to revolutionize spectrum utilization. According to

the Federal Communications Commission (FCC) [3], cognitive
radios (CR) are defined as radio systems that continuously per-
form spectrum sensing, dynamically identify unused spectrum,
and then operate in those spectrum holes where the licensed (pri-
mary) radio systems are idle. This new communication para-
digm can dramatically enhance spectrum efficiency, and is also
referred to as the neXt Generation (XG) or Dynamic Spectrum
Access (DSA) network.
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Spectrum sensing, as a key enabling functionality in cogni-
tive radio networks, needs to reliably detect weak primary radio
(PR) signals of possibly-unknown types [4]. Spectrum sensing
should also monitor the activation of primary users in order for
the secondary users to vacate the occupied spectrum segments.
However, it is difficult for a cognitive radio to capture such in-
formation instantaneously due to the absence of cooperation be-
tween the primary and secondary users. Thus, recent research
efforts on spectrum sensing have focused on the detection of on-
going primary transmissions by cognitive radio devices. Gener-
ally, spectrum sensing techniques fall into three categories: en-
ergy detection [5], coherent detection [6], and cyclostationary
feature detection [7]. If the secondary user has limited infor-
mation on the primary signals (e.g., only the local noise power
is known), then the energy detector is optimal [8]. When cer-
tain primary signal features are known to the CRs (such as pi-
lots, preambles, or synchronization messages), the optimal de-
tector usually applies the matched filter structure to maximize
the probability of detection. On the other hand, cyclostationary
feature detectors differentiate the primary signal energy from
the local noise energy by exploiting certain periodicity exhib-
ited by the mean and autocorrelation of a particular modulated
signal. In this paper, we assume that the primary signaling is un-
known and we adopt energy detection as the building block for
the proposed cooperative spectrum sensing scheme.

The detection performance of spectrum sensing schemes
is usually compromised by destructive channel conditions
between the target-under-detection and the cognitive radios,
since it is hard to distinguish between a white spectrum and a
weak signal attenuated by deep fading. In order to improve the
reliability of spectrum sensing, radio cooperation exploiting
spatial diversity among secondary users has been proposed
in [4] and [9]. In such scenarios, a network of cooperative
cognitive radios, which experience different channel conditions
from the target, would have a better chance of detecting the
primary radio if they combine the sensing information jointly.
In other words, cooperative spectrum sensing can alleviate the
problem of corrupted detection by exploiting spatial diversity,
and thus reduce the probability of interfering with primary
users. Since cooperative sensing is generally coordinated over a
separate control channel, efficient cooperation schemes should
be designed to reduce bandwidth and power requirements while
maximizing the sensing reliability.

A. Prior Work

Although distributed detection has a rich literature (see, e.g.,
[10], [11] and the references therein), the results might not be
directly applicable to cognitive radios, and the study of coop-
erative spectrum sensing for cognitive radio networks is rather
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limited. The scheme based on voting rules [12] is one of the sim-
plest suboptimal solutions, which counts the number of sensor
nodes that vote for the presence of the signal and compares it
against a given threshold. In [13], a fusion rule known as the
OR logic operation was used to combine decisions from several
secondary users. In [14], two decision-combining approaches
were studied: hard decision with the AND logic operation and
soft decision using the likelihood ratio test (LRT) [11]. It was
shown that the soft decision combination of spectrum sensing
results yields gains over hard decision combining. In [15], the
authors exploited the fact that summing signals from two sec-
ondary users can increase the signal-to-noise ratio (SNR) and
detection reliability if the signals are correlated. This coopera-
tive method is different from those discussed in [12]–[14], since
it requires a wide-band control channel.

B. Contribution

In this paper, we develop an efficient linear cooperation
framework for spectrum sensing, where the global decision is
based on simple energy detection over a linear combination
of the local statistics from individual nodes. Although the
LRT-based optimal fusion rule [5] involves a quadratic form as
in (26), the use of a linear detector in this paper is motivated by
several considerations.

• First, the proposed linear detector has less computational
complexity than does a quadratic detector, and the differ-
ence becomes more significant as the number of nodes in-
creases.

• Second, the probabilities of detection and false alarm based
on the linear detector have closed-form solutions, which
could lead to intuitive system design guidelines. On the
other hand, the performance evaluation and threshold com-
putation of the quadratic detector are mathematically more
intractable, since the computation involves many integrals.
Thus, one has to turn generally to Monte Carlo simulations
in studying the LRT-based quadratic detectors. With the
linear detector, the designer can use the closed-form ex-
pressions to make quick adaptations when some network
parameters change during the operation.

• Unlike the LRT-based detector for which the simulation
complexity becomes prohibitively high at a low proba-
bility of false alarm and a high probability of detection,
the optimal linear detector has a fixed complexity for any
chosen probabilities of false alarm and detection due to its
closed-form solutions.

• The optimal linear detection provides performance compa-
rable to that achievable by the optimal LRT-based fusion
in many situations, at least for the set of parameters used
in this paper.

Note that even the LRT-based fusion structure (over analog
forwarded local statistics) is only an optimal fusion rule, but not
an optimal system-wide distributed detection rule. It has been
shown in [16] that for a distributed detection problem with non-
ideal communication channels between distributed nodes and
the fusion center, the globally optimal structure is to perform
LRT both at individual nodes and at the fusion center. However,
how to efficiently find the optimal LRT thresholds for individual

nodes and for the fusion center is still unknown. As such, in
this paper we propose a simple but efficient distributed detec-
tion scheme, which does not need to find optimal thresholds for
individual nodes. Instead, we transmit the local test statistics
to the fusion center, in which we conduct linear combination
and simple energy detection. By doing so, the optimal threshold
at the fusion center can be jointly determined with the optimal
linear combining weights.

Our objective is to maximize the probability of detection
while satisfying a requirement on the probability of false alarm

. In cognitive radio networks, a larger leads to less in-
terference to primary radios and a smaller results in higher
spectrum efficiency. This interpretation is based on the assump-
tion that if a primary signal is detected (possibly a false alarm),
cognitive radios are restrained to use the channel (such that spec-
trum is wasted in case of false alarms); if no primary signals
are detected, cognitive radios use the channel (such that inter-
ference is generated in case of miss-detection). To achieve the
above goal, we first derive bounds on the probability of detec-
tion for a given probability of false alarm. In order to find the
optimal weights that achieve the maximum probability of detec-
tion, we define three classes of spectrum sensing schemes for
cognitive radio networks based on their keenness towards op-
portunistic spectrum usage: conservative, aggressive, and hos-
tile, with respect to different target values of and . For
the conservative system with a high target, we develop an
efficient algorithm to search for the optimal combining weights
within the derived bounds, by solving the dual problems of a
sequence of quadratic constraint quadratic programs (QCQP).
For the aggressive cognitive radio system with a medium
target, finding the exact optimal weights is transformed into a
convex optimization problem, which can be solved using known
algorithms [17]. If the system is hostile (with extremely low

target), we will show that the bounds obtained in this paper
are tight enough to approximate the optimal operating point, al-
though there might not exist an efficient method to solve for the
optimal solution.

Furthermore, we propose a heuristic approach to control the
combining weights, which optimizes a modified deflection co-
efficient (MDC) that characterizes the probability distribution
function (PDF) of the global test statistic at the fusion center.
This approach slightly compromises the detection performance
with less computational complexity and provides near-optimal
solutions for general systems (i.e., the same model applies to
conservative, aggressive, and hostile systems).

These optimized cooperation schemes improve the sensing
reliability while relaxing the harsh requirements on the RF
front-end sensitivity and signal processing gain at individual
CR nodes. Simulation results illustrate that the proposed coop-
eration schemes achieve superior sensing performance.

The rest of the paper is organized as follows. In Section II,
we introduce the system model and notation. Section III de-
scribes the cooperative spectrum sensing approach in details.
In Section IV, we first derive bounds on the probability of de-
tection for different cognitive scenarios. Based on these bounds,
we develop efficient algorithms to find the optimal weights for
the conservative and aggressive systems. In addition, a heuristic
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Fig. 1. Schematic representation of weighting cooperation for spectrum
sensing in cognitive radio networks.

approach based on the MDC maximization is proposed to re-
duce the computational complexity and provide general solu-
tions. Simulation results illustrating the effectiveness of the pro-
posed approaches are given in Section V. Section VI concludes
the paper.

II. MODEL AND NOTATION

A. System Model

We consider a cognitive radio network with secondary
users. The binary hypothesis test for spectrum sensing at the th
time instant is formulated as follows:

(1)

where denotes the signal transmitted by the primary user
and is the received signal by the th secondary user.
The signal is distorted by the channel gain , which is
assumed to be constant during the detection interval, and is fur-
ther corrupted by the zero-mean additive white Gaussian noise
(AWGN) , i.e., . We call
the sensing noises and collect their variances into a vector

. Without loss of generality, and
are assumed to be independent of each other.

As illustrated in Fig. 1, each secondary user calculates a sum-
mary statistic over a detection interval of samples, i.e.,

(2)

where is determined from the time-bandwidth product. The
summary statistics are then transmitted to the fusion center
through a control channel in an orthogonal manner, and repre-
sented as

...
...

...
(3)

where the channel noises are zero-mean, spatially uncorre-
lated Gaussian variables with variances ; the variances are

collected into the vector form . The use
of the AWGN channel model in (3) is justified by assumptions

on analog-forwarding schemes and the slow-changing nature of
the channels between the secondary users and the fusion center.
We assume that the channel coherence time is much larger than
the estimation period such that once the fusion center has esti-
mated the channel gains from the secondary users, these chan-
nels could be treated as constant AWGN channels.

The fusion center computes a global test statistic, as in
(13), from the outputs of the individual secondary users
in a linear manner; and is then used by the spectrum sensor
to make a global decision. The main purpose of this paper is
to design the optimal linear fusion rules at the fusion center
in order to maximize the detection sensitivity while meeting a
given requirement on the probability of false alarm.

B. Notation

We define the following notations, which will be used in the
paper:

complementary cumulative distribution
function, which calculates the tail
probability of a zero mean unit
variance Gaussian variable, i.e.,

;

Euclidean norm of a vector;

square diagonal matrix with the elements of a
given vector on the diagonal;

eigenvalues of a matrix; specifically, we use
and to represent the maximum

and minimum eigenvalues of a given matrix,
respectively;

matrix inequality, i.e., means that
is positive semi-definite; for a vector,

it represents the component-wise inequality,
with ’ ’ denoting the strict inequality;

Moore-Penrose generalized inverse;

range space of a given matrix.

III. COOPERATIVE SPECTRUM SENSING

In this section, we develop a linear cooperation scheme for
spectrum sensing. In particular, we adopt energy detection (i.e.,
radiometry) as the local sensing rule, which will be explained
as follows.

A. Local Sensing

We first consider local spectrum sensing at individual sec-
ondary users. The test statistic of the th secondary user using
energy detection is given by (2). Since is the sum of the
squares of Gaussian random variables, it can be shown that

follows a central chi-square distribution with de-
grees of freedom if is true; otherwise, it would follow a non-
central distribution with degrees of freedom and param-
eter . That is,

(4)
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where

(5)

is the local SNR at the th secondary user and the quantity

(6)

represents the transmitted signal energy over a sequence of
samples during each detection interval. Please note that

the so-defined local SNR is times the average SNR at the
output of the local energy detector, which should be equal to

.
According to the central limit theorem [18], if the number of

samples is large enough (e.g., in practice), the test sta-
tistics are asymptotically normally distributed with mean

(7)

and variance

(8)

which can be compactly represented as
for large enough.

For a single-CR spectrum sensing scheme, the decision rule
at each secondary user is given by

(9)

where is the corresponding decision threshold. Therefore,
secondary user will have the following probabilities of false
alarm and detection:

(10)

and

(11)

As we see from the above, spectrum sensing with a single CR
is quite simple, but may suffer from destructive channel effects
such as fading or shadowing. Therefore, there is a necessity that
several CRs cooperate with each other to jointly detect the ex-
istence of the primary transmission in order to improve the in-
ference accuracy.

B. Global Decision

To allow multiple secondary users to collaborate, we transmit
the test statistics directly to the fusion center via a dedi-
cated control channel. According to (3), the received statistics

are normally distributed with means and vari-
ances

.
(12)

Once the fusion center receives , a global test statistic is
calculated linearly as follows:

(13)

where

(14)

is the weight vector used to control the global spectrum detector.
The combining weight for the signal from a particular user rep-
resents its contribution to the global decision. For example, if a
CR generates a high-SNR signal that may lead to correct detec-
tion on its own, it should be assigned a larger weighting coef-
ficient. For those secondary users experiencing deep fading or
shadowing, their weights are decreased in order to reduce their
negative contribution to the decision fusion.

Since the are normal random variables, their linear com-
bination is also normal. Consequently, has mean

(15)

where

(16)

represent the squared amplitudes of the channel gains, and vari-
ance

(17)

The variances under different hypotheses are respectively given
by

(18)

with

(19)

and

(20)

with

(21)
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Since is positive semi-definite and diagonal, its square root
can be represented as

... (22)

which will be used throughout the rest of this paper. We would
like to point out that the received variables do not have to be
conditionally independent though here we use the independent
case for illustration purpose, i.e., with and diagonal. If
the received variables are correlated with each other, then
the covariance matrices and are generally non-diag-
onal and can be chosen as the square root obtained from
the Cholesky decomposition [19] and the subsequent analysis
will continue to hold.

Considering the linear rule at the fusion center with a test
threshold , we have

(23)

As such, the performance of the proposed cooperative spectrum
detection scheme can be evaluated as

(24)

and

(25)

We see that the sensing performance of the linear detector
depends largely on the weighting coefficients and the decision
threshold. We next show how to design the optimal weight
vector and the optimal decision threshold in order to
maximize the sensing sensitivity under certain requirement on
the probability of false alarm.

On the other hand, the LRT-based fusion rule [5] has a
quadratic form given by

(26)

which is difficult to numerically evaluate since finding the prob-
ability distribution of involves many integrals. Thus, the
optimal threshold for is not mathematically tractable.

Compared with other detection approaches such as feature
and coherent detection, the energy-detection based model (23)
is more suitable for cognitive radio networks because it requires
minimum a priori knowledge about primary users. Due to the
lack of collaboration between the primary and cognitive users, it
is difficult for cognitive radios to obtain the exact channel gains

. In our system model, to evaluate the two system pa-
rameter matrices and , we only need to know a priori

the local noise variance at each cognitive radio, i.e., .
The proposed cooperation scheme uses the local SNR at each
cognitive radio, i.e., , instead of the exact channel gains

’s (i.e., amplitudes and phases) between the primary and
cognitive users. The quantities can be estimated in
practice with the assumption that the channel coherence time
is large enough. For instance, if the local noise levels
are known a priori, possibly from experimental measurements
when the primary system is turned off or from some previous
experience, then the received primary signal power
can be calculated as the total power at the RF front-end minus
the noise power. Furthermore, the exact channel power gains

can be estimated if the secondary users know the
primary transmit power. Such information is indeed obtainable
in some circumstances. For example, the main target spectrum
of current IEEE standardization activities (i.e., IEEE 802.22)
for cognitive radio technologies is in TV bands. In such a case,
it is possible for secondary users to have a priori information
about the primary signal power, since most current TV stations
transmit at fixed power levels. In addition, this mechanism is
also applicable to the downlinks in certain cellular networks,
where base stations periodically transmit pilot signals at known
power levels.

IV. PERFORMANCE OPTIMIZATION

For cognitive radio networks, the probabilities of false alarm
and detection have unique implications. Specifically,
measures the probability of interference from secondary users
on the primary users. On the other hand, determines an upper
bound on the spectrum efficiency, where a large usually
results in low spectrum utilization. This is based on a typical
assumption that if primary signals are detected, the secondary
users do not use the corresponding channel, and if no primary
signals are detected, the secondary users use the corresponding
channel. In this section, we maximize the by controlling the
weight vector while meeting a certain requirement on the .
Before we proceed, we define three classes of cognitive radio
systems in terms of their keenness to use the targeted frequency
bands.

Definition 1 (Conservative System): A conservative CR
system has an opportunistic spectrum utilization rate less than
or equal to 50% and a probability of interference less than
1/2. That is, the targeted probability of false alarm satisfies

and the probability of detection has .
Definition 2 (Aggressive System): An aggressive CR system

expects to achieve more than 50% opportunistic spectrum uti-
lization while maintaining less than 50% probability to interfere
with the primary radio. This corresponds to a targeted proba-
bility of false alarm and a probability of detection

.
Definition 3 (Hostile System): A hostile CR system targets

more than 50% opportunistic spectrum utilization and is likely
to cause interference to the primary radio with a probability
greater than or equal to 50%. This system has a targeted false
alarm probability and a probability of detection

.
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A. Universal Bounds on the Probability of Detection

Given a targeted probability of false alarm , we would like
to maximize the probability of detection (25). From (24), the
test threshold in terms of the target is given by

(27)

Substituting (27) into (25), we get

(28)

As such, to maximize with a given , the optimization of the
detection threshold is integrated into the optimization of .
However, finding the exact maximum probability of detection
is generally difficult since the function in (28) is not concave.
Nevertheless, we can first derive some bounds on for a given

as follows.
Lemma 1 (Bounds for Aggressive and Hostile Systems): For

an aggressive or hostile sensing system that has a targeted prob-
ability of false alarm , the probability of detection can
be bounded as

(29)

where

(30)

and

(31)

Proof: Refer to Appendix A.
These bounds become quite tight when the probability of

false alarm is small, i.e.,

(32)

Although the asymptotic result itself is not informative since
decreases to zero as gets close to zero for any rationally

designed detectors, it is interesting to investigate how fast the
bound gap shrinks as decreases. As such, we can at least pre-
dict how tight the bound is when is reasonably small. We will
show that the gap between the upper and lower bounds decreases
exponentially with respect to in the asymptotic sense.
This can be shown by using the large deviation theory [20]. In
particular, the -function has the following asymptotic log-sim-
ilarity property [21]:

(33)

Here, we use if , where
means . The positive con-

stant is typically called the asymptotic decay rate. This result

leads to the well known approximation (e.g., see [22] and refer-
ences therein)

(34)

for large values of . Applying this approximation to the bounds
in (29) for small values of (large values of ), we
have

(35)

where the last inequality follows from the fact that
and . It

can be seen that the gap between the upper and lower bounds
decays at least exponentially with respect to as
gets close to zero.

Remark 1: For hostile systems with the probability of false
alarm set small (close to zero) in order for the secondary
users to occupy the targeted frequency bands more frequently,
both bounds in (29) would provide good approximations to the
probability of detection , and the choice of weight vectors
has negligible influence on detection performance. As such, in
this paper, we mainly focus on optimizing conservative and ag-
gressive cognitive systems.

Lemma 2 (Bounds for Conservative Systems): For a con-
servative system with the targeted probability of false alarm

, the lower and upper bounds on the probability of
detection are given by

(36)

where

(37)

(38)

and

(39)

Proof: See Appendix B.
We would like to point out that the universal lower bounds,

and , are the worst-case probability of
detection, because any rational combining weight vector will
result in a larger probability of detection given the probability
of false alarm. Nevertheless, they provide insight on what the
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worst performance would be if the weight vector is not appro-
priately chosen. In Section IV-C, we will present a tighter lower
bound on the maximum probability of detection, which can be
achieved by an easily found weight vector.

B. Maximum Probability of Detection

In the following, we will show how to find the optimal weight
vector that maximizes (28), where the optimal detection
threshold will be defined according to (27). Define the function

(40)

Since the -function in (28) is a monotonically decreasing func-
tion, maximizing is equivalent to minimizing . There-
fore, we formulate the following optimization problem:

P1

whose optimal solution is denoted by , which is also the op-
timal solution for maximizing the probability of detection given
a fixed probability of false alarm. Note that any scaled version
of is also an optimal solution given the special structure of

with a fixed . Later we will discuss how to solve for
the optimal solutions and the one with unit norm will be taken
as the final solution.

Remark 2: Since at the fusion center we collect local statis-
tics based on energy detection and then do a joint energy detec-
tion, the combining weight coefficients should be nonnegative.
Hence, problem (P1) has an implicit constraint that . It
does not need to be explicitly included since the numerator in
the objective function, , has

and such that positive elements in are always
better than negative choices in term of minimizing the objective
function in (P1).

Directly solving (P1) for general cases is challenging. As
such, we apply a divide-and-conquer strategy to solve the
problem for the conservative and aggressive systems individ-
ually, and then combine the solutions together for the original
problem.

1) Conservative Systems: For a conservative system where
, we have

(41)

Thus, problem (P1) has the equivalent form

which can be written as follows by changing the optimization
variables to

where we denote the optimal objective value and the optimal
solution by and , respectively. Note that solving over the
new variable is equivalent to solving a scaled version of the
original design variable , where the norm of is bounded by
the constraint in (P3). As such, there will be a unique solution
for , which can map back to an infinite number of optimal
solutions in terms of (any scaled version of the optimal is
still optimal). For convenience, we can take the optimal with
unit norm as the optimal solution for the original problem.

Since it can be shown that is a concave
function if , problem (P3) requires minimizing a
concave function over an ellipsoid, which is unfortunately not
a convex problem. To solve this problem, we can iteratively ap-
proximate the optimal value by finding a tighter bound on
at each step.

Remark 3: For a conservative cognitive system where
, we have .

Thus, the optimal value of (P3) should satisfy . Note
that for any

(42)

If the following condition is satisfied:

(43)

then squaring both sides of (42) results in the quadratic in-
equality

(44)

Therefore, if the problem

is feasible, then we have . On the other hand, if (P4)
is not feasible under the condition (43), then we can conclude

.
Furthermore, the feasibility problem (P4) can be transformed

into a quadratic constraint quadratic program as follows:

where both and are symmetric
matrices. Let and denote the optimal value and the op-
timal solution of (P5), respectively. If , then (P4) is
feasible; otherwise, (P4) is not. Note that the matrix

is indefinite, and hence, (P5) is not a convex op-
timization problem in general.

Remark 4: Since we have , problem (P5) contains the
implicit constraint such that the objective function is min-
imized. Thus, the optimal solution should be nonnegative.
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To solve problem (P5), we can derive its dual problem.
Specifically, the Lagrangian of (P5) is given by

(45)

with , and its dual function is given by

(46)

In particular, if the following two conditions are satisfied:

(47)

and

(48)

then

(49)

Otherwise, .
As a result, the dual problem can be expressed as

Using Schur’s complement, we can further transform the dual
problem into a semi-definite program (SDP)

where . This problem can be solved easily like a linear
program for the optimal value and the dual solution .

If the Slater’s constraint qualification [17] is satisfied, i.e., if
there exists a feasible vector such that , then
strong duality holds between problem (P5) and its Lagrange
dual problem (P6) [23]. Moreover, if , then

(50)

is the optimal solution of (P5). Moreover, is also the solution
of (P4).

However, the condition (43) may not be satisfied by some .
If this is the case, then (42) can still hold if ,
i.e., the following problem is feasible:

This problem can also be transformed into the following linear
program

where if the optimal value , (P8) is feasible and (42)
holds.

Consequently, if any of the two problems (P4) and (P8) is
feasible, we can conclude that . Otherwise, we should
have . As such, we can find by solving problem (P4) or
(P8) for an evolving sequence of , and stop until decreasing
a little further (say, ) causes both problems to be infeasible.
When the algorithm stops, it is guaranteed that the final value
is at most -away from the real optimal value for problem
(P3).

Specifically, to find the solution of (P3), we can use the bisec-
tion search method to update and solve the feasibility problem
(P4) or (P8) at each step. We start from an interval con-
taining the optimal value, where the interval can be determined
by (36). We first solve the feasibility problem at its midpoint

, to determine whether the optimal value is in
the lower or upper half of the interval. We then update the in-
terval and the optimal solution or accordingly. We
now have a new interval containing the optimal value but with
half the width of the initial interval. This procedure is repeated
until the width of the interval is small enough, and then is a
good approximation to the optimal solution . As a result, the
optimal weight vector is given by

(51)

where

(52)

with the optimal test threshold calculated by (56). The algorithm
for calculating the optimal combining weights in a conservative
cognitive radio network is summarized with pseudo-code in Al-
gorithm 1.

Optimal Cooperation for Conservative Systems

0: Given , , and
tolerance .

1: While

2:

3: if (P8) is feasible for

4: and

5: else if (P4) is feasible then

6: and

7: else

8:
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9: end if

10: end while

11: Compute using (51) and using (27).

12: Return and .

2) Aggressive Systems: For an aggressive cognitive radio
network, the probabilities of false alarm and detection satisfy

and , respectively. According to (28), we
should have

(53)

where . Following the same procedure as in the
previous subsection, we can obtain an optimization problem
similar to (P3), which is written as follows:

We would like to emphasize that (P10) is different from (P3)
in that instead. In this case, (P10) can be trans-
formed into the following convex problem by changing the op-
timization variable to , i.e.,

Note that , such that the objective function of
(P11) consists of a convex function minus a linear function, and
hence it is a convex function. It is obvious that is limited in
an ellipsoid because and . Thus, (P11) is a
convex optimization problem that can be easily solved.

Remark 5: Recall that the establishment of (P10) for aggres-
sive systems is conditioned on (53). Hence, if the optimal value
of (P10) satisfies (or ), then the system is ag-
gressive. Otherwise, it is hostile since (i.e., )
and we could not find a weight vector such that (53) holds.
It is hard to find an optimal solution for hostile systems. For-
tunately, in cognitive radio networks, it is rarely allowed that
the CR sets a low to boost up spectrum efficiency, since this
practice will cause unbearable interference to primary radios.

Once the optimal solution of (P11) has been solved, the
optimal detector at the fusion center can be determined, i.e., the
optimal weight vector is given by

(54)

where

(55)

and the test threshold at the fusion center is

(56)

Therefore, the strategy is to first assume that the system is
aggressive if . We then solve problem (P11) and
check the optimal value . If , then the assumption is
valid and the solution corresponds to the optimal weight vector.
Otherwise, the assumption is not true and the system is consid-
ered as a hostile system. The algorithm is summarized as follows
in Algorithm 2.

Optimal Cooperation for Aggressive Systems

0: Solve (P11) for and .

1: if then

2: Calculate using (54) and using (56).

3: Return and .

4: else

5: Return “It is a hostile system”.

6: end if

Alternatively, one may formulate another optimization
problem that minimizes subject to a constraint on . Math-
ematically, the alternative problem belongs to the same category
as the original problem and can be solved using the algorithms
developed in this subsection with trivial modifications.

C. Optimization of the Modified Deflection Coefficient

From the previous discussions, we see that it is generally hard
to find the optimal solution for all possible cognitive radio sys-
tems: conservative, aggressive, and hostile. As such, we now
present a heuristic but general method to find the weight vector,
which requires less computational complexity and incurs small
performance degradation.

From (15) and (20) we observe that the weight vector plays
an important role in shaping the PDF of the global test statistic.
To measure the effect of the PDF on the detection performance,
we introduce a modified deflection coefficient (MDC)

(57)

which provides a good measure of the detection performance
since it characterizes the variance-normalized distance between
the centers of two conditional PDFs. According to (18) and
(20), the global test statistic has different variances under
hypotheses and . In particular, we have

. Moreover, if , we have

. Therefore, the PDF of under has a heavier
tail than . This justifies using the measure for spectrum
sensing in cognitive radio networks, where high detection sen-
sitivity is desirable.

For accurate inference, we would like to maximize under
the unit-norm constraint on the weight vector, i.e.,
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This problem can be solved as follows. Applying the linear
transformation

(58)

we obtain

(59)

where inequality follows the Rayleigh Ritz inequality [19]
and the equality is achieved if

(60)

which is the eigenvector of the positive semi-definite matrix
corresponding to the maximum eigenvalue

(the nonzero eigenvalue). Therefore, the optimal solution of
(P12) is

(61)

which maximizes . To enforce , we
let . In the simulation results, we will
show that the maximum leads to a large probability of de-
tection. Such an approach performs similarly to the one maxi-
mizing directly (as shown by simulation results in Section V)
but with much less complexity and provides solution for gen-
eral cognitive radio networks regardless of being conservative,
aggressive, or hostile.

V. NUMERICAL RESULTS

In this section, the proposed cooperation schemes are eval-
uated numerically and compared with some existing methods.
Consider a network of cognitive radios, each of which in-
dependently senses the targeted spectrum. For simplicity, we
assume that the transmitted primary signal is . The
proposed schemes are compared with the single CR spectrum
sensing, the selection combining method [24] (denoted by SC,
i.e., selecting the user with the maximum SNR), and the LRT-
based fusion.

In Fig. 2, we plot the minimum probability of miss-detection
against the probability of false alarm , which in-

directly measures the interference level to the primary radios
for a given . The result shows that the proposed optimal
linear cooperation schemes, denoted as OPT. LIN for the max-
imum method and OPT. MDC for the maximum modified
deflection coefficient approach, lead to much less interference
(with much higher ) to the primary radios than single CR
and SC based approaches. In particular, the performance of op-
timal linear detectors is very close to that of the LRT-based de-
tector. The lower bound of corresponding to the upper

Fig. 2. Probability of miss-detection (1 � P ) versus the probability of false
alarm (P ), with M = 6, N = 20, � = 1, and � = 1, i = 1; 2; . . . ;M .
The local SNRs at individual CRs are f9:3; 7:8; 9:6;7:6;3:5; 9:2g in
dB, which are N times the single sample SNRs at individual CRs, i.e.,
f�3:7;�5:2;�3:4;�5:4;�9:5;�3:8g in dB. The results are obtained from
simulations over 1,000,000 noise realizations for the given set of channel gains
and noise variances.

Fig. 3. Probability of miss-detection (1 � P ) versus the probability of
false alarm (P ) under various sensing noises, with fixed channel noise
� = 0:5, N = 20, and M = 1, 3, and 6. For M = 1, 3, and 6,
the average local SNRs over individual CRs are respectively 8.3, 7.5, and
5.9 in dB. Specifically, for M = 1, the sensing noise level is � = 1:9
and the local SNR is 8.3 dB; for M = 3, the sensing noise levels are
��� = f0:7;1:0;0:9g and the local SNRs are f10:4;9:3;2:6g in dB; for
M = 6, the noise levels are ��� = f0:9;1:3;1:0;2:0;1:8;1:2g and the local
SNRs are f7:2;5:1; 0:8;�1:2;3:6; 9:7g in dB. The results are obtained from
simulations over 1,000,000 noise realizations for the given set of channel gains
and noise variances.

bound of given in (29) is fairly tight. In addition, we observe
that the probability of detection given by the maximum MDC
method closely approximates the exact maximum value ob-
tained from solving (P1) over a wide range of . Therefore, the
maximum MDC scheme can be used as an efficient suboptimal
alternative for both conservative and aggressive opportunistic
spectrum sensing.

In Fig. 3, we investigate the receiver operating characteris-
tics ( versus ) for various numbers of cooperative CRs
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Fig. 4. Probability of miss-detection (1 � P ) versus the probability of
false alarm (P ) under different source and channel noises, with M = 3,
N = 100, and uniform noises for different nodes. The local SNRs at individual
CRs are f18:8; 15:2; 17:1g in dB, corresponding to the single sample SNRs
f5:8;2:2;4:1g in dB. The results are obtained by numerically solving the op-
timization problem (P1) for the given set of channel gains and noise variances.

and different channel conditions. For each scenario, we ran-
domly generate the channel gains and sensing noises that even-
tually influence the detection performance. The figure shows
that with the same channel noise level, the sensing reliability
improves as the number of cooperative nodes increases even if
the average local SNR decreases. In addition, the performance
of the optimal linear detector is very close to that of the optimal
LRT-based detector in these three scenarios.

In Fig. 4, we draw versus under different noise
conditions. As we can see, the detection performance degrades
as the noise condition becomes severe. It can also be observed
that the inference accuracy is more sensitive to the sensing noise
change than to that of the communication channel noise. This
is a good motivation for multi-CR cooperation to improve the
spectrum sensing reliability.

VI. CONCLUSION

We have developed an optimal linear framework for co-
operative spectrum sensing in cognitive radio networks. The
proposed methods optimize the detection performance by
operating over a linear combination of local test statistics from
individual secondary users, which combats the destructive
channel effects between the target primary radio and the op-
portunistic CRs. Within this framework, we have given exact
solutions for finding the optimal weight vector for aggressive
and conservative cognitive systems. Furthermore, we proposed
an MDC-based optimization method, which would approx-
imate the maximum- approach for any given probability
of false alarm and is applicable for general cognitive radio
systems. The proposed novel numerical algorithms can be
applied to similar non-convex problems in other applications.
Some interesting extensions of this work may include studying

constrained communications between the secondary users and
the fusion center over fading wireless channels.

APPENDIX A
PROOF OF LEMMA 1: BOUNDS FOR AGGRESSIVE AND HOSTILE

SYSTEMS

Proof: Equation (40) can be rewritten as

(62)

where each of the two terms containing can be bounded re-
spectively as follows:

(63)

and

(64)

Note that is a rank-one matrix. Thus, we have

(65)

and

(66)

Substituting (65) and (66) into (64) gives

(67)

Considering , we have . According to
(30) and (31), it follows that

(68)

Accordingly, Lemma 1 is established since the -function is a
monotonically decreasing function.

APPENDIX B
PROOF OF LEMMA 2: BOUNDS FOR CONSERVATIVE SYSTEMS

Proof: For a conservative system where , we
have . Similar to the proof in Appendix A, we can
obtain the following bounds on from (37) and (39):

(69)
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On the other hand, can be lower bounded as follows:

where (b) follows from the Cauchy-Schwartz inequality and (c)
is due to the Rayleigh Ritz inequality. Therefore, we have

(70)

which leads to Lemma 2.
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