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A fast-array Kalman filter solution to active noise control
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SUMMARY

A Kalman filter solution to active control and its fast-array implementation are provided. The adaptive
control problem is formulated as a state-estimation problem and no interchanging of the adaptive filter and
the secondary-path is imposed. Moreover, no estimate of the disturbance signal is needed, and we exploit
the structure in the state–space matrices to derive a fast-array implementation. A minimum variance
estimate of the controller coefficients and the secondary path state is obtained. When there is no
uncertainty in the secondary path, state equivalence with the modified filtered-RLS algorithm is proven.
Using exponential forgetting, the analysis shows that in the generation of the filtered reference signal in the
modified filtered-RLS, exponential forgetting should be incorporated too. Simulations show the superiority
in convergence of the fast-array Kalman algorithm over the fast-array modified filtered-RLS algorithm.
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1. INTRODUCTION

Active noise and vibration control (ANVC) systems usually deal with a large amount of
dominant, relatively weakly damped, resonance modes (in the order of 10–50) and need
controllers with a large impulse response to obtain good disturbance rejection (in the order of
100–1000 taps). Furthermore, sampling rates are often in the order of 1–10 kHz to have
sufficient control bandwidth. Besides, the controller should be able to adjust for variations in the
system, like temperature variations. These constraints make ANVC a challenging control
problem even in a time of fast increasing computer power.

Because of its computational efficiency and robustness properties, the filtered-X LMS
(FxLMS) algorithm is very popular in ANVC systems (see, e.g. Reference [1]). However, in
applications with broadband disturbances, and especially in the case of multiple channels, the
convergence and tracking capacity of FxLMS is poor. This problem has encouraged many
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researchers to develop alternatives to the FxLMS algorithm, see, e.g. References [2–8].
Also IIR adaptive LMS algorithms are proposed, which may allow a reduction of the number of
filter coefficients. However, it is hard to analyse its convergence rate and the adaptive algorithm
may very well convergence to a local minimum due to the non-linearity of the IIR filter
structure.

Almost all algorithms proposed for ANVC are of the so-called filtered-X or filtered-
reference type. They rely on the assumption that the adaptive filter and the controlled
system, the so-called secondary path, may be interchanged. Neglecting transients from
initial states, this is true for systems that are constant in time. However, since the adaptive
filter varies in time this is not true anymore and algorithms based on this assumption may
yield bad performance. This observation has motivated the introduction of the so-called
modified filtered-X algorithms, in which the disturbance is estimated from the residual
signal and an internal model of the secondary path, see References [2, 9]. It is interesting to
note that in Reference [10] (especially Equation (13)) for detereministic disturbances, the
modified filtered-X algorithms, though not named this way, were already derived from a self
tuning regulator point of view. Although this is still an approximation in non-stationary
applications where the optimal controller is varying in time, the modified filtered-X algorithms
yield better convergence than the filtered-X algorithms, at the expense of increased
computational load.

The problem of interchanging the adaptive filter and the secondary path was addressed
in Reference [6] by reformulating the ANVC control problem as a state estimation problem.
The state to be estimated contains the unknown filter coefficients and the unknown state
of the secondary path system. However, this approach required an estimate of the disturbance
signal.

In this paper, we reformulate the ANVC control problem also as a state-estimation problem,
but without using an estimate of the disturbance. The state-estimation problem is solved by a
Kalman filter, which has been chosen from an optimality point of view. Uncertainty in the
secondary-path state, due to initial state uncertainty and/or noise, can be taken into account
explicitly with improved convergence. We also show that in case there is no uncertainty in the
secondary-path state, then the Kalman algorithm is equivalent to a modified filtered-RLS
algorithm. The analysis of the equivalence of both algorithms also shows that the exponential
forgetting needs to be applied to filtering the reference signal as well. Furthermore, a fast-array
implementation of the Kalman filter algorithm is derived, which enables practical application of
the algorithm. The derivation of this fast algorithm is based on the observation that although
the underlying state–space model is not time-invariant, it is nevertheless a structured model in
the sense defined in References [11, 12]. This article only addresses the single-channel case to
focus on the concepts. However, the analysis and the proposed algorithms can be
straightforwardly extended to the multiple-channel case, though might ask for carefull
bookkeeping.

The paper is organized as follows. Section 2 formulates the estimation problem, provides
necessary and sufficient conditions for a solution of this problem in terms of observability and
persistency of excitation and presents the Kalman algorithm to solve this problem. Section 3
derives the new fast-array implementation of the Kalman algorithm. Section 4 compares the
Kalman algorithm and a modified filtered-RLS algorithm and presents the conditions for
equivalence of both algorithms. Section 5 illustrates the (fast-array) Kalman algorithm by
simulation and Section 6 concludes the paper.
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2. THE KALMAN FILTER SOLUTION

2.1. The state estimation problem

Consider the active feedforward control problem illustrated in Figure 1. The objective is to
counteract the disturbance signal dðkÞ by a secondary signal yðkÞ; which yields the residual signal
eðkÞ: It is assumed, that the primary path can be decomposed into a series connection of an
optimal feedforward controller Woðq�1Þ and a secondary path Sðq�1Þ; which contains the
dynamics between the actuators and the sensors. Usually this assumption is not satisfied, but the
error due to imposing this assumption can often be neglected. Assuming that the noise signals
vsðkÞ and vmðkÞ are uncorrelated with the disturbance reference signal rðkÞ; it can be verified
easily that the residual signal is minimized if the feedforward controller #Wkðq�1Þ equals
Woðq�1Þ: In this way, the feedforward control problem is reformulated in an estimation context [6].

We will assume that the unknown optimal controller is a FIR filter of length nw

Woðq�1Þ ¼ w0 þ w1q
�1 þ � � �wnw�1q

�nwþ1 ð1Þ

and that #Wkðq�1Þ has the same structure

#Wkðq�1Þ ¼ #w0ðkÞ þ #w1ðkÞq�1 þ � � � #wnw�1ðkÞq
�nwþ1 ð2Þ

Let

wo ¼ ½w0 w1 � � � wnw�1�
T ð3Þ

#wðkÞ ¼ ½ #w0ðkÞ #w1ðkÞ � � � #wnw�1ðkÞ�
T ð4Þ

rnw ¼ ½rðkÞ rðk� 1Þ � � � rðk� nw þ 1Þ�T ð5Þ

+
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+
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Figure 1. A block diagram representation of a feedforward active control configuration with a
feedforward controller #Wkðq�1Þ estimated by a Kalman filter to minimize the residual disturbance eðkÞ:
The primary path is assumed to consist of a series connection of the (unknown) optimal feedforward

controller Woðq�1Þ and the secondary path Sðq�1Þ:
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then the optimal control signal is given by

uoðkÞ ¼ rTnw ðkÞw
o ð6Þ

and the actual control signal by

uðkÞ ¼ �rTnw ðkÞ #wðkÞ ð7Þ

We will also allow for small time variations in the optimal filter coefficients, which are taken into
account by an exponential forgetting factor l:

0{l41

Then (6) is replaced by

uoðkÞ ¼ rTnwðkÞwðkÞ ð8Þ

where wðkÞ is iteratively defined by

wðkþ 1Þ ¼ l�1=2wðkÞ; wð0Þ ¼ wo ð9Þ

This model of the dynamics in the optimal filter coefficients may allow better tracking capacity,
see, e.g. Reference [11]. In Equation (9) also an innovation term can be included to model a
larger set of variations in the optimal filter coefficients, which may further improve tracking
behavior. However, in the derivation of the fast-array algorithm in Section 3 an innovation term
in (9) cannot be taken into account.

The secondary path Sðq�1Þ will be described in state–space form. Usually, the state dimension
ns is high (in the range 20–100) for acoustical or vibrational systems. For this reason, using a
FIR model of sufficient length to model the dynamics of Sðq�1Þ can help lower the
computational complexity, especially for well damped systems. Because the FIR model
structure is contained in the state–space model structure, i.e. a FIR model is a state–space model
with particular structure, it is just a matter of straightforward computation to derive the
expressions for secondary path models with FIR structure. Other (canonical) parameterizations
contained in the state–space structure can be used as well.

The noise signal vsðkÞ 2 R
nv distorts the secondary-path state and vmðkÞ distorts the measured

output eðkÞ: We assume vsðkÞ and vmðkÞ are both stationary zero-mean white-noise signals that
are independent of rðkÞ and satisfy

E
vsðkÞ

vmðkÞ

" #
vsðlÞ

vmðlÞ

" #T
0
@

1
A ¼ Q 0nv�1

01�nv R

" #
dkl ; Q50; R > 0 ð10Þ

with dkl the Kronecker delta function (if k ¼ l then dkl ¼ 1; otherwise dkl ¼ 0). Note that the
assumption that vsðkÞ is white is not restrictive, since this can always be assured by incorporating
the noise-shaping filter into the secondary path system. The disturbance reference signal rðkÞ
may be white or colored noise, a sinusoid, stationary or non-stationary. We will only impose a
persistency of excitation condition on rðkÞ; which will be stated in Theorem 1 in Section 2.1.

Let ðAs;Bs;Cs;DsÞ be the state–space matrices that model the secondary path Sðq�1Þ; then the
disturbance dðkÞ is written as

y1ðkþ 1Þ ¼ Asy
1ðkÞ þ Bsu

oðkÞ þ GsvsðkÞ; y1ð0Þ ¼ y10 ð11Þ

dðkÞ ¼ Csy
1ðkÞ þDsu

oðkÞ ð12Þ
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and the secondary signal yðkÞ as

y2ðkþ 1Þ ¼ Asy
2ðkÞ þ BsuðkÞ; y2ð0Þ ¼ y20 ð13Þ

yðkÞ ¼ Csy
2ðkÞ þDsuðkÞ ð14Þ

with y1ðkÞ; y2ðkÞ 2 Rns : Since

eðkÞ ¼ dðkÞ þ yðkÞ þ vmðkÞ ð15Þ

and the state–space matrices in (11)–(12) and(13)–(14) are the same, we can write

yðkþ 1Þ ¼ AsyðkÞ þ BsðuoðkÞ þ uðkÞÞ þ GsvsðkÞ; yð0Þ ¼ y0 ð16Þ

eðkÞ ¼ CsyðkÞ þDsðuoðkÞ þ uðkÞÞ þ vmðkÞ ð17Þ

with y0 ¼ y10 þ y20 and yðkÞ ¼ y1ðkÞ þ y2ðkÞ:
Substituting (7)–(9) into the state–space equations (16)–(17) gives the final state–space

description of the active control system considered in this paper

wðkþ 1Þ

yðkþ 1Þ

" #
¼

l�1=2Inw 0nw�ns

Bsr
T
nw
ðkÞ As

" #
wðkÞ

yðkÞ

" #
�

0nw�nw

Bsr
T
nw

" #
#wðkÞ

þ
0nw�nv

Gs

" #
vsðkÞ;

wð0Þ

yð0Þ

" #
¼

wo

y0

" #
ð18Þ

eðkÞ ¼ ½Dsr
T
nw
ðkÞ Cs�

wðkÞ

yðkÞ

" #
�Dsr

T
nw
ðkÞ #wðkÞ þ vmðkÞ ð19Þ

For ease of notation, we define

Ak ¼
l�1=2Inw 0nw�ns

Bsr
T
nw
ðkÞ As

" #
ð20Þ

Bk ¼
0nw�nw

�Bsr
T
nw
ðkÞ

" #
ð21Þ

G ¼
0nw�nw

Gs

" #
ð22Þ

Ck ¼ ½Dsr
T
nw
ðkÞ Cs� ð23Þ

Dk ¼ �Dsr
T
nw
ðkÞ ð24Þ

and the augmented state

xðkÞ ¼
wðkÞ

yðkÞ

" #
ð25Þ
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With these definitions, (18) and (19) are rewritten more compactly as

xðkþ 1Þ ¼ AkxðkÞ þ Bk #wðkÞ þ GvsðkÞ ð26Þ

eðkÞ ¼ CkxðkÞ þDk #wðkÞ þ vmðkÞ ð27Þ

2.2. The relation between observability and persistency of excitation

Before we derive algorithms to estimate the augmented state xðkÞ; we investigate the
observability of system (26)–(27).

Definition 1 (Rugh [13])
The state–space system (26)–(27) is said to be observable over the interval ½k0; k0 þN� if any
initial state xðk0Þ is uniquely determined by the corresponding zero-input response eðkÞ for
k ¼ k0; . . . ; k0 þN � 1 (i.e. the response corresponding to #wðkÞ ¼ 0; vsðkÞ ¼ 0 and vmðkÞ ¼ 0).

Since the zero-input response for k ¼ k0; . . . ; k0 þN � 1 of (26)–(27) can be written as

eðk0Þ

eðk0 þ 1Þ

eðk0 þ 2Þ

..

.

eðk0 þN � 1Þ

2
6666666664

3
7777777775
¼

Ck0

Ck0þ1Ak0

Ck0þ2Ak0þ1Ak0

..

.

Ck0þN�1Ak0þN�2 � � �Ak0

2
6666666664

3
7777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
:¼Gðk0;k0þN�1Þ

xðk0Þ ð28Þ

a necessary and sufficient condition for observability on ½k0; k0 þN� is that Gðk0; k0 þN � 1Þ
should have full column rank. Hence, Ck and Ak; k ¼ k0; . . . ; k0 þN � 1 should be such that
there exists an N such that Gðk0; k0 þN � 1Þ has full column rank. Before stating the theorem
which provides necessary and sufficient conditions for observability in terms of conditions on
ðAs;CsÞ and the reference signal rðkÞ; let us have a closer look at Gðk0; k0 þN � 1Þ:

Using definitions (20) and (23) it can be verified (e.g. by induction) that

Ck0 ¼ ½Dsr
T
nw
ðk0Þ Cs�

Ck0þ1Ak0 ¼ ½CsBsr
T
nw
ðk0Þ þ l�1=2Dsr

T
nw
ðk0 þ 1Þ CsAs�

Ck0þ2Ak0þ1Ak0 ¼ ½CsAsBsr
T
nw
ðk0Þþl

�1=2CsBsr
T
nwþ1ðk0 þ 1Þ þ l�1Dsr

T
nwþ2ðk0 þ 2Þ CsA

2
s �

..

. ..
.

Ck0þN�1Ak0þN�2 � � �Ak0 ¼ ½CsA
N�2
s Bsr

T
nw
ðk0Þ þ l�1=2CsA

N�3
s Bsr

T
nwþ1ðk0 þ 1Þ

þ � � � þ l�ðN�2Þ=2CsBsr
T
nw
ðk0 þN � 2Þ

þl�ðN�1Þ=2Dsr
T
nw
ðk0 þN � 1Þ CsA

N�1
s �

Hence, Gðk0; k0 þN � 1Þ can be written as

Gðk0; k0 þN � 1Þ ¼ ½HNRNðk0Þ GN � ð29Þ
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where RNðk0Þ is the Toeplitz matrix defined by

RNðk0Þ :¼

rTnw ðk0Þ

rTnw ðk0 þ 1Þ

..

.

rTnw ðk0 þN � 1Þ

2
66666664

3
77777775
¼

rðk0Þ rðk0 � 1Þ � � � rðk0 � nw þ 1Þ

rðk0 þ 1Þ rðk0Þ � � � rðk0 � nw þ 2Þ

..

. ..
. ..

.

rðk0 þN � 1Þ rðk0 þN � 2Þ � � � rðk0 þN � nwÞ

2
6666664

3
7777775 ð30Þ

HN is the lower triangular matrix with impulse response coefficients weighted by powers of the
inverse square-root of the forgetting factor l

HN :¼

Ds

CsBs l�1=2Ds

CsAsBs l�1=2CsBs l�1Ds

..

. ..
. . .

. . .
.

ðCsA
N�2
s BsÞ ðl

�1=2CsA
N�3
s BsÞ � � � ðl�ðN�2Þ=2CsBsÞ ðl

�ðN�1Þ=2DsÞ

2
66666666664

3
77777777775
ð31Þ

and GN is the extended observability matrix

GN :¼

Cs

CsAs

..

.

CsA
N�1
s

2
6666664

3
7777775 ð32Þ

Suppose that the secondary path has t samples delay. Then, the first t terms of the impulse
response

Sðq�1Þ ¼ Ds þ CsBsq
�1 þ CsAsBsq

�2 þ CsA
2
sBsq

�3 þ � � �

are zero and thus the first t rows and the last t columns of HN are filled by zeros. In this case, the
product HNRðk0Þ can be simplified to

%HN %RNðk0Þ ¼ HNRðk0Þ ð33Þ

where %RNðk0Þ ð %HNÞ is defined as the matrix which consists of the first N � t rows (columns) of
RNðk0Þ ðHNÞ: Since we do not consider the case Sðq�1Þ ¼ 0 and since ðAs;CsÞ will be assumed to
be observable we have that t4ns; i.e. the number of pure delays is smaller than or equal to the
order of Sðq�1Þ: Now we establish the following result.

Theorem 1
Let k50 and N5nw þ ns: Then, the state–space system (26)–(27) is observable on ½k; kþN� if
and only if the following conditions are satisfied:

* the pair ðAs;CsÞ is observable;
* the Toeplitz matrix %RNðkÞ has full rank nw and is such that the columns of %HN %RNðkÞ are

not in the range space of GN :
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Proof
if: First, note that %HN 2 R

N�N�t is guaranteed to have full rank N � t; which can be directly
verified from its structure. Then, using Sylvester’s rank condition we have

rankð %HNÞ þ rankð %RNðkÞÞ � ðN � tÞ 4 rankð %HN %RNðkÞÞ 4 minðrankð %HNÞ; rankð %RNðkÞÞÞ

,

nw 4 rankð %HN %RNðkÞÞ 4 nw

and thus %HN %RNðkÞ has full (column) rank nw: Since, the pair ðAs;CsÞ is observable and N ¼
nw þ ns5ns the extended observability matrix GN has full (column) rank ns: Finally, using the
assumption that %RNðkÞ is such that the columns of %HN %RNðkÞ are not in the range of GN ; we can
conclude that

Gðk; kþN � 1Þ ¼ ½ %HN %RNðkÞ GN � ð34Þ

has full column rank nw þ ns: Hence, the state–space system (26)–(27) is observable on
½k; kþN�:

only if: This can be proven by contradiction. First, assume that ðAs;CsÞ is not observable.
Then, GN does not have full rank and thus Gðk; kþN � 1Þ does not have full rank. Second,
assume that %RNðkÞ does not have full rank. Then by using Sylvester’s rank condition we have
rankð %HN %RNðkÞÞ5nw and thus Gðk; kþN � 1Þ does not have full rank. Third, assume that
%RNðkÞ has full rank and ðAs;CsÞ is observable, but %RNðkÞ is such that at least one column of
%HN %RNðkÞ is in the range of GN : Then, Gðk; kþN � 1Þ has columns which are linearly dependent
and thus does not have full rank. Concluding, all conditions stated in the theorem are necessary
to guarantee that Gðk; kþN � 1Þ has full column rank, and thus necessary to guarantee
observability of the state–space model (26)–(27) on ½k; kþN�: &

The condition that %RNðkÞ has full rank nw can be seen as a persistency of excitation condition
on the reference signal rðkÞ; which is natural in system identification and adaptive filtering
algorithms, see, e.g. [14]. For example, when rðkÞ is a single sinusoid nw should be nw42; which
is in agreement with the fact that a single sinusoid can be perfectly cancelled using an FIR filter
with two taps. Furthermore, it may be possible that, even in case nw is chosen properly,
%RNðkÞ 2 R

N�t�nw will not be full rank for N ¼ nw þ ns; e.g. due to the t4ns samples pure delay.
But in general for each signal rðkÞ there exists N > nw þ ns such that %RNðkÞ is guaranteed to be
full rank (for all k).

Note that %HN is a convolution matrix. Hence, each column of %HN %RNðkÞ can be interpreted as
a filtering operation of the corresponding column of %RNðkÞ by the secondary path system
weighted by exponential forgetting (determined by l). In addition, the column space of GN is
equivalent to the space spanned by the initial state responses up to N: From these facts, it
follows that it is quite accidental that there should exists a column of %HN %RNðkÞ which is
contained in the range of GN : Or, stated otherwise, that there exists a reference signal rðkÞ such
that filtering it by the secondary path and weighted by the exponential forgetting factor is the
same as an initial state response. In the following we assume that the conditions stated in
Theorem 1 are satisfied.

Note, that from Theorem 1 it is inferred that at least nw þ ns samples are necessary to estimate
the state. In practice more samples are necessary due to the presence of state and measurement
noise.
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2.3. The Kalman filter

Since the Kalman filter provides a minimum variance estimate of the state at every sampling
instant given the model of the system and the covariances of the white-noise signals vsðkÞ and
vmðkÞ; we will use this filter to estimate wðkÞ as well as yðkÞ:

To apply the Kalman filter, we assume that the initial state is uncorrelated with vsðkÞ and
vmðkÞ; i.e.

E

xð0Þ

vsðkÞ

vmðkÞ

2
664

3
775

xð0Þ

vsðlÞ

vmðlÞ

2
664

3
775
T0

BB@
1
CCA ¼

P0 0nwþns�nv 0nwþns�1

0nv�nwþns Qdkl 0nv�1

01�nwþns 01�nv Rdkl

2
664

3
775

where

P0 ¼
Pww

0 Pwy
0

Pyw
0 Pyy

0

" #
> 0

Eðwð0ÞwTð0ÞÞ ¼ Pww
0 ; Eðwð0ÞyTð0ÞÞ ¼ Pwy

0 ¼ PywT

0 ; Eðyð0ÞyTð0ÞÞ ¼ Pyy
0

The Kalman filter can be described in at least two forms: the time/measurement update form
and the prediction form [15]. The output of the time/measurement update form is an estimate of
xðkÞ given the measurements feð0Þ; eð1Þ; . . . ; eðkÞg; denoted as #xðkjkÞ; together with its error
covariance matrix Pkjk: The output of the prediction form is an estimate of xðkþ 1Þ given the
same measurements feð0Þ; eð1Þ; . . . ; eðkÞg; denoted as #xðkþ 1jkÞ or just #xðkþ 1Þ; together with its
error covariance matrix Pkþ1jk or just Pkþ1: Because, we need an estimate of wðkþ 1Þ to
calculate the control signal at the (next) iteration kþ 1; we will use the prediction form in the
sequel.

The Kalman filter in prediction form is given by the following equations for k50:

#xð0Þ ¼ 0nwþns�1 ð35Þ

P0 ¼ P0 ð36Þ

eðkÞ ¼ eðkÞ � Ck #xðkÞ �Dk #wðkÞ ð37Þ

Re;k ¼ Rþ CkPkC
T
k ð38Þ

Kk ¼ AkPkCk
T ð39Þ

#xðkþ 1Þ ¼ Ak #xðkÞ þ Bk #wðkÞ þ KkR
�1
e;keðkÞ ð40Þ

Pkþ1 ¼ AkPkA
T
k � KkR

�1
e;kK

T
k þ GQGT ð41Þ

For further reference, we partition Pk similarly to P0 as

Pk ¼
Pww
w Pwy

k

Pyw
k Pyy

k

" #
ð42Þ

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2005; 19:125–152

FAST-ARRAY KALMAN FILTER 133



Note that using definitions (20)–(25) and partitioning

Kk ¼
Kw

k

Ky
k

" #
; Kw

k 2 R
nw�1; Ky

k 2 R
ns�1 ð43Þ

then expression (37) for innovation eðkÞ; and expression (40) for the state-estimate update
equation #xðkþ 1Þ can be simplified to

eðkÞ ¼ eðkÞ � Cs
#yðkÞ ð44Þ

#wðkþ 1Þ

#yðkþ 1Þ

" #
¼

l�1=2 #wðkÞ

As
#yðkÞ

2
4

3
5þ Kw

k

Ky
k

" #
R�1e;keðkÞ ð45Þ

The resulting Kalman filter algorithm, to solve the active control problem, is listed in the first
column of Table I.

Table I. Kalman algorithm in covariance and fast-array forms.

Kalman covariance form Fast-array form

Assumptions:

0{l41 idem

R > 0
Q50

� idem

Q > 0 such that the pair ðAs;GsQ
1=2Þ

is unit-circle controllable;

8<
:
the pair ðAs;CsÞ is observable

P0 ¼
Pww

0 Pwy
0

Pyw
0 Pyy

0

" #
> 0

P�1 ¼
Pww
�1 0nw�ns

0ns�nw Pyy
�1

� �
> 0

with

Pww
�1 ¼

ffiffiffi
d

p
� diagfl; l2; . . . ; lnwg; d > 0

and Pyy
�1 > 0 satisfies the DARE

Pyy
�1 ¼ AsPyy

�1A
T
s þ GsQGT

s þ
�AsPyy

1 CT
s ðRþ CsPyy

�1C
T
s Þ
�1CsPyy

�1A
T
s

8>>>>>>>>>><
>>>>>>>>>>:

rðkÞ ¼ 0 for �nw � 14k4� 1 (i.e. prewindowed data)

Initialization:

#wð0Þ ¼ 0nw�1
#yð0Þ ¼ 0ns�1

(
idem

rnw ð�1Þ ¼ ½rð�1Þ rð�2Þ � � � rð�nwÞ�T rnwþ1ð�1Þ ¼ 0nwþ1�1
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Now, the implementation of the Kalman filter using expressions (38), (39) and (41) is
computationally complex for most practical applications. For instance, recursion (41) has at
least Oððnw þ nsÞ

2Þ complexity, assuming that As is just a shift matrix, which is the case when an
FIR model is used for the secondary path (if As has no structure at all, the complexity will be at
least Oðn3s þ ðnw þ nsÞ

2ÞÞ:
In Section 4 we will show that by setting

Pwy
0 ¼ PywT

0 ¼ 0nw�ns ; Pyy
0 ¼ 0ns�ns ; and Q ¼ 0nv�nv

which assumes perfect knowledge of the secondary path initial state and vsðkÞ ¼ 0 for all k50;
the Kalman algorithm simplifies to a modified filtered-RLS algorithm. However, this
assumption is rather strong, and may degrade the performance of the algorithm severely in
case it is not satisfied, as will be illustrated by simulation in Section 5.

For now we proceed to derive a fast-array implementation of the Kalman filter algorithm by
exploiting structure in the state–space matrices, thus reducing the computational complexity
down to Oðnw þ nsÞ per iteration.

Table I. Continued.

Kalman covariance form Fast-array form

P0 ¼ P0

*L�1 ¼
ffiffiffi
d

p 1 0
0nw�1�1 0nw�1�1

0 lnw=2

0n2�1 0ns�1

2
664

3
775

R
1=2
e;�1 ¼ ðRþ CsPyy

�1C
T
s Þ

1=2

%Kw
�1 ¼ 0nw�1

%Ky
�1 ¼ AsPyy

�1C
T
s R
�1=2
e;�1

8>>>>>>>>>><
>>>>>>>>>>:

Iterate for k50:

rnw ðkÞ ¼ ½rðkÞ r
T
nw�1ðk� 1Þ�T rnwþ1ðkÞ ¼ ½rðkÞ r

T
nw
ðk� 1Þ�T

Ak ¼
l�1=2Inw 0nw�ns
Bsr

T
nw
ðkÞ As

� �
Ck ¼ ½Dsr

T
nw
ðkÞ Cs�

8<
: *Ak ¼

l�1=2Inwþ1 0nwþ1�ns
Bsr

T
nwþ1ðkÞ As

� �
*Ck ¼ ½Dsr

T
nwþ1ðkÞ Cs�

8><
>:

eðkÞ ¼ eðkÞ � Cs
#yðkÞ idem

Kw
k

Ky
k

� �
¼ Kk ¼ AkPkC

T
k

Re;k ¼ Rþ CkPkC
T
k

Pkþ1 ¼ AkPkA
T
k � KkR

�1
e;kK

T
k þ GQGT

8>><
>>:

Perform J-unitary rotation to make the 122 block in the

post-array equal to zero; J ¼ ðI2��1Þ;Yk�1JY
T
k�1 ¼ J

R
1=2
e;k�1

*Ck
*Lk�1

0
%Kw
k�1

%Ky
k�1

2
4

3
5 *Ak

*Lk�1

2
6664

3
7775Yk�1 ¼

R
1=2
e;k 01�2
%Kw
k

0
%Ky
k

2
4

3
5 *Lk

2
6664

3
7775

8>>>>>>><
>>>>>>>:

#wðkþ 1Þ
#yðkþ 1Þ

" #
¼

l�1=2 #wðkÞ
As

#yðkÞ

" #
þ

Kw
k

Ky
k

� �
R�1e;keðkÞ

#wðkþ 1Þ
#yðkþ 1Þ

" #
¼

l�1=2 #wðkÞ
As

#yðkÞ

" #
þ

%Kw
k

%Ky
k

� �
R
�1=2
e;k eðkÞ
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3. THE FAST-ARRAY KALMAN FILTER

3.1. The structure in the state–space model

We will base our derivation on Reference [12], where a fast implementation of the Kalman filter
for certain time-varying systems with structure was derived. Consider the definition of rnw ðkÞ in
(5). It is clear that rnw ðkÞ and rnw ðkþ 1Þ have nw � 1 entries in common but at shifted positions of
each other. Let us define the shift-matrix Znw 2 R

nw�nw as the matrix with ones on its first
subdiagonal and zeros elsewhere. Then, we can write

rTnw ðkÞ ¼ rTnw ðkþ 1ÞZnw þ ½01�nw�1 rðk� nw þ 1Þ�

Using this result, we are able to relate Ak and Akþ1 to each other as well as Ck and Ckþ1:
In our case, G does not depend on k; but should satisfy a particular condition given
below. Though the state–space matrices Bk and Dk are also related to Bkþ1 and Dkþ1 we
do not need this relation in the derivation of the fast-array Kalman filter, since they
determine the deterministic part of the state update which does not influence the Kalman filter
expressions (38)–(41). Note, that we already exploited the structure in Bk and Dk in Equations
(44) and (45).

To relate Ak and Akþ1; and Ck and Ckþ1; we will first introduce the augmented state–space
system, which is equivalent to (26)–(27):

*xðkþ 1Þ ¼ *Ak *xðkÞ þ *Bk #wðkÞ þ *GvsðkÞ ð46Þ

eðkÞ ¼ *Ck *xðkÞ þDk #wðkÞ þ vmðkÞ ð47Þ

where

*Ak ¼
l�1=2Inwþ1 0nwþ1�ns

Bsr
T
nwþ1ðkÞ As

" #
ð48Þ

*Bk ¼
0nwþ1�nw

�Bsr
T
nw
ðkÞ

" #
ð49Þ

*G ¼
0nwþ1�nv

Gs

" #
ð50Þ

*Ck ¼ ½Dsr
T
nwþ1ðkÞ Cs� ð51Þ

and the augmented initial state is given by

*xð0Þ ¼

wo

0

yð0Þ

2
664

3
775 2 Rnwþ1þns ð52Þ

Because the ðnw þ 1Þth entry of *xðkÞ is uncontrollable from the deterministic input #wðkÞ as well
as from the stochastic input vsðkÞ; it will keep its initial zero value. It can be verified easily using
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(46) that *xðkÞ has a similar form, namely

*xðkÞ ¼

wðkÞ

0

yðkÞ

2
664

3
775; 8k50

and thus the output given by (47) is exactly the same as the output given by (27). Because there is
no uncertainty in the ðnw þ 1Þth entry of *xð0Þ we define

Eð *xð0Þ *xTð0ÞÞ ¼ *P0 ¼

Pww
0 0nw�1 Pwy

0

01�nw 0 01�ns

Pyw
0 0ns�1 Pyy

0

2
664

3
775

and it is clear that Eð *xð0Þ½vTmðkÞ vsðkÞ�Þ ¼ 0nwþ1þns�nvþ1:
Now, let us define

C ¼
Znwþ1 0nwþ1�ns

0ns�nwþ1 Ins

" #
ð53Þ

then it is straightforward to verify that

*Akþ1Cþ Da
k ¼ C *Ak ð54Þ

*G ¼ C *G ð55Þ

*Ck ¼ *Ckþ1Cþ Dc
k ð56Þ

Da
k ¼

0nwþ1�nwþ1 0nwþ1�ns

½0ns�nw Bsrðk� nwÞ� 0ns�ns

" #
ð57Þ

Dc
k ¼ ½01�nw Dsrðk� nwÞ 01�ns � ð58Þ

where (54)–(56) are, up to the D-terms, equal to (a special case of) the relations in Reference [12].

3.2. The fast-array iterations

The Kalman filter equations of the augmented system (46)–(47) are given by

#*xð0Þ ¼ 0nwþ1þns�1 ð59Þ

*P0 ¼ *P0 ð60Þ

*eðkÞ ¼ eðkÞ � *Ck
#*xðkÞ �Dk #wðkÞ ð61Þ

*Re;k ¼ Rþ *Ck
*Pk

*CT
k ð62Þ

*Kk ¼ *Ak
*Pk

*CT
k ð63Þ

#*xðkþ 1Þ ¼ *Ak
#*xðkÞ þ *Bk #wðkÞ þ *Kk

*R�1e;keðkÞ ð64Þ

*Pkþ1 ¼ *Ak
*Pk

*AT
k � *Kk

*R�1e;k
*KT
k þ *GQ *GT ð65Þ
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Because the augmented system (46)–(47) is equivalent to the original system (26)–(27), the
Kalman filter of the augmented system should provide the same state-estimate, state-error
covariance, and innovations. By straightforward computation, it can be verified (e.g. by
induction) that for all k50:

*Pk ¼

Pww
k 0nw�1 Pwy

k

01�nw 0 01�ns

Pyw
k 0ns�1 Pyy

k

2
664

3
775

*Re;k ¼ Re;k

*Kk ¼

Kw
k

0

Ky
k

2
664

3
775

Hence, we also have for all k50:

#*xðkÞ ¼

#wðkÞ

0

#yðkÞ

2
664

3
775

*eðkÞ ¼ eðkÞ

The idea behind fast-array algorithms is to update the difference

d *Pk ¼ *Pk �C *Pk�1CT

rather than *Pk itself. In many cases, depending on the choice ofP0; it can be shown that d *Pk has
a low rank a with a{ðnw þ 1þ nsÞ (in the next subsection, we will exhibit a choice for P0 such
that a ¼ 2). Hence, d *Pk; or a factorization for it, can be updated very efficiently [11, 12].

Let us define also the difference quantities

d *Re;k ¼ *Re;k � *Re;k�1

d *Kk ¼ *Kk �C *Kk�1

Then, using (62), (63) and (65) together with relations (54)–(56) we get

d *Re;k ¼ *Ck d *Pk
*CT
k ð66Þ

d *Kk ¼ *Ak d *Pk
*CT
k ð67Þ

d *Pkþ1 ¼ *Ak d *Pk
*AT
k þC *Kk�1 *R

�1
e;k�1

*KT
k�1C

T � *Kk
*R�1e;k

*KT
k ð68Þ

Suppose d *Pk can be factored as

d *Pk ¼ *Lk�1Mk�1 *L
T
k�1

where *Lk�1 2 R
nwþ1þns�a and Mk�1 2 R

a�a for some a{nw þ ns þ 1: Then it turns out that
*Re;k�1; *Kk�1 and *Lk�1 can be updated to *Re;k; *Kk and *Lk as follows. Multiply the pre-array on
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the left-hand side below by a transformation Yk�1

*R
1=2
e;k�1

*Ck
*Lk�1

C *Kk�1 *R
�T=2
e;k�1

*Ak
*Lk�1

2
4

3
5Yk�1 ¼

*R
1=2
e;k 01�a

*Kk
*R
�T=2
e;k

*Lk

2
4

3
5 ð69Þ

so as to result in the 1� a zero block in the post-array on the right hand side. The matrixYk�1 is
required to be Jk�1-unitary, i.e. it should satisfy

Yk�1Jk�1Y
T
k�1 ¼ Jk�1

where

Jk�1 ¼
1 01�a

0a�1 Mk�1

" #

This fact can be verified by ‘squaring’ the left and the right hand sides of (69) and using relations
(66)–(68). By ‘squaring’ the left hand side of (69) we obtain

*R
1=2
e;k�1

*Ck
*Lk�1

C *Kk�1 *R
�T=2
e;k�1

*Ak
*Lk�1

2
4

3
5Yk�1Jk�1Y

T
k�1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

¼Jk�1

*R
1=2
e;k�1

*Ck
*Lk�1

C *Kk�1 *R
�T=2
e;k�1

*Ak
*Lk�1

2
4

3
5T

¼
*Re;k�1 þ *Ck

*Lk�1Mk�1 *L
T
k�1

*CT
k

*KT
k�1C

T þ *Ck
*Lk�1Mk�1 *L

T
k�1

*AT
k

C *Kk�1 þ *Ak
*Lk�1Mk�1 *L

T
k�1

*CT
k C *Kk�1 *R

�1
e;k�1

*KT
k�1C

T þ *Ak
*Lk�1Mk�1 *L

T
k�1

*AT
k

" #

¼
*Re;k *KT

k

*Kk
*Akd *Pk

*AT
k þC *Kk�1 *R

�1
e;k�1

*KT
k�1C

T

" #

And, on the other hand, by ‘squaring’ the right hand side of (69) we obtain

*R
1=2
e;k 01�a

*Kk
*R
�T=2
e;k

*Lk

2
4

3
5Jk�1 *R

1=2
e;k 01�a

*Kk
*R
�T=2
e;k

*Lk

2
4

3
5T

¼
*Re;k

*KT
k

*Kk
*Kk

*R�1e;k
*KT
k þ *LkMk�1 *L

T
k

" #

¼
*Re;k

*KT
k

*Kk
*Kk

*R�1e;k
*KT
k þ d *Pkþ1

" #

Equality (69) then holds once we make the identification

d *Pkþ1 ¼ *LkMk
*LT
k with Mk ¼Mk�1 ð70Þ

We thus conclude that if d *Pk has (low) rank a; then d *Pkþ1 also has (low) rank a: Furthermore,
the matrix Mk in the factorization of d *Pkþ1 is equal to Mk�1 and thus we may set

M ¼Mk and J ¼
1 01�a

0a�1 M

" #
¼ Jk

for all k50:
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Now, the problem is to determine an initial factorization

d *P0 ¼ *L�1M *LT
�1

with M 2 Ra�a and a as small as possible. This problem will be solved in the next subsection.
Note that the update equation (69) is independent of R; G and Q: These parameters enter into

the initialization of the algorithm.

3.3. Initialization

We now seek a matrix P�1 such that the difference

*P0 �C *P�1CT ¼ *L�1M *L�1

has low rank a{ðnw þ 1þ nsÞ: Note that since we iterate beginning from k ¼ 0; we only need to
know *L�1 and M: In the following, we will assume the prewindowed-data case, i.e.

rðkÞ ¼ 0; �nw � 14k4� 1 ð71Þ

and thus

*A�1 ¼
l�1=2Inwþ1 0nwþ1�ns

0ns�nwþ1 As

" #
and *C�1 ¼ ½01�nwþ1 Cs�

Then, according to (62), (63), (65) and

*Pk ¼

Pww
k 0nw�1 Pwy

k

01�nw 0 01�ns

Pyw
k 0ns�1 Pyy

k

2
664

3
775

we get

*P0 ¼ *A�1 *P�1 *A
T
�1 � *K�1 *R

�1
e;�1

*KT
�1 þ *GQ *GT

¼

l�1Pww
�1 0nw�1 l�1=2Pwy

�1A
T
s

01�nw 0 01�ns

l�1=2AsP
yw
�1 0ns�1 AsP

yy
�1A

T
s

2
664

3
775�

l�1=2Pwy
�1C

T
s

0

AsP
yy
�1C

T
s

2
664

3
775ðRþ CsP

yy
�1C

T
s Þ
�1

l�1=2Pwy
�1C

T
s

0

AsP
yy
�1C

T
s

2
664

3
775
T

þ

0nw�nw 0nw�1 0nw�ns

01�nw 0 01�ns

0ns�nw 0ns�1 GsQGT
s

2
664

3
775

For simplicity, we set the 1-2 and 2-1 blocks in P�1 to zero, i.e.

P�1 ¼
Pww
�1 0nw�ns

0ns�nw Pyy
�1

" #
¼

Pww
�1 0nw�ns

0ns�nw Pyy
�1

" #
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with Pww
�1 > 0 and Pyy

�1 > 0 to be determined. Then, we get

*P0 �C *P�1CT ¼

l�1
Pww
�1 0nw�1

01�nw 0

" #
� Znwþ1

Pww
�1 0nw�1

01�nw 0

" #
ZT

nwþ1

0ns�nwþ1

2
66664

0nwþ1�ns

AsPyy
�1A

T
s � AsPyy

�1C
T
s ðRþ CsPyy

�1C
T
s Þ
�1CsPyy

�1A
T
s þ GsQGT

s �Pyy
�1

3
77775

Let us choose

Pww
�1 ¼ d diagfl; l2; . . . ; lnwg ð72Þ

which yields

l�1
Pww
�1 0nw�1

01�nw 0

" #
� Znwþ1

Pww
�1 0nw�1

01�nw 0

" #
ZT

nwþ1 ¼ d �

1 01�nw�1 0

0nw�1�1 0nw�1�nw�1 0nw�1�1

0 01�nw�1 �lnw

2
664

3
775

Furthermore, if, in addition to observability of the pair ðAs;CsÞ; the pair ðAs;GsQ
1=2Þ is

stabilizable, then there exists a unique Pyy
�1 > 0; such that the discrete algebraic Riccati equation

(DARE)

AsPyy
�1A

T
s � AsPyy

�1C
T
s ðRþ CsPyy

�1C
T
s Þ
�1CsPyy

�1A
T
s þ GsQGT

s �Pyy
�1 ¼ 0ns�ns ð73Þ

holds [15, Theorem E.6.2, p. 786]. Hence, Pyy
�1 can be found by solving the DARE (73), and the

loss of freedom in choosing Pyy
�1 is the price to be paid for the fast-array algorithm. Note that to

ensure the pair ðAs;GsQ
1=2Þ is unit-circle controllable Q should be positive definite, Q > 0: Let

Pww
�1 and Pyy

�1 satisfy (72) and (73), respectively, then we have

*P0 �C *P�1CT ¼ d

1

0nw�1�nw�1

�lnw

0ns�ns

2
666664

3
777775

¼ *L�1M *LT
�1 ð74Þ

where

*L�1 ¼
ffiffiffi
d

p
1 0

0nw�1�1 0nw�1�1

0 lnw=2

0ns�1 0ns�1

2
666664

3
777775; M ¼

1 0

0 �1

" #
ð75Þ
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Hence, we have obtained a factorization for d *P0 with rank a ¼ 2: Note that now we have

J ¼ ð1�MÞ ¼

1 0 0

0 1 0

0 0 �1

2
664

3
775

Due to the �1 in the 3–3 element of J; the transformations Yk�1 in (69) are hyperbolic. For
comments on the implementation and numerical accuracy of these rotations, we refer to
Reference [14, Chapter 14], see, also Reference [11, Section 2]. The resulting fast-array
implementation of the Kalman algorithm, is listed in the second column of Table I.

4. COMPARISON WITH MODIFIED FILTERED-RLS

Figures 2 and 3 show the block diagrams of the filtered-RLS and the modified filtered-RLS
algorithm respectively. Because the adaptive filter #Wkðq�1Þ significantly varies in time, the
adaptive filter and the secondary path system may not be interchanged as assumed in the
filtered-RLS algorithm. For this reason, the modified filtered-RLS algorithm has been proposed
[2], which shows better convergence. In the filtered-RLS algorithm the reference signal rðkÞ is

+

+
 

RLS

r(k) u(k) y(k)

d(k)

e(k)

r ′ (k)
 S (q-1)
^ 

^ 
-Wk(q

-1) S(q-1)

Figure 2. Block diagram of the filtered-RLS algorithm.

+

+

+

+

+

- 

  

 

RLS

r′ (k)

r(k) S(q-1)
u(k) y(k)

d(k)

e(k)

 y(k)

y(k)˜
 d(k)

r(k)

 S(q-1)

 S(q-1)

-Wk(q
-1)

−Wk(q
-1)

^

^

^

^

^

∋

∧

Figure 3. Block diagram of the modified filtered-RLS algorithm.
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replaced by a filtered reference signal r0ðkÞ that is generated byz

y0rðkþ 1Þ ¼ l1=2Asy
0
rðkÞ þ l1=2BsrðkÞ; y0rð0Þ ¼ 0ns�1 ð76Þ

r0ðkÞ ¼ Csy
0
rðkÞ þDsrðkÞ ð77Þ

Note that in the expression for y0rðkþ 1Þ we are using the exponential forgetting factor l; this
choice for generating r0ðkÞ is motivated by the proof of Theorem 2. The adaptive filter #Wkðq�1Þ
is tuned by the RLS algorithm such that the error

erðkÞ ¼ #dðkÞ þ *yðkÞ ð78Þ

is minimized, where #dðkÞ is the estimated disturbance determined by

#yrðkþ 1Þ ¼ As
#yrðkÞ þ BsuðkÞ; #yrð0Þ ¼ 0ns�1 ð79Þ

#yðkÞ ¼ Cs
#yrðkÞ þDsuðkÞ ð80Þ

#dðkÞ ¼ eðkÞ � #yðkÞ ð81Þ

and *yðkÞ is the output of the adaptive filter given by

*yðkÞ ¼ �r0Tnw ðkÞ #wrðkÞ ð82Þ

where

#wr ¼ ½ #w0ðkÞ #w1ðkÞ � � � #wnw�1ðkÞ�
T ð83Þ

r0nw ðkÞ ¼ ½r
0ðkÞ r0ðk� 1Þ � � � r0ðk� nw þ 1Þ�T ð84Þ

Table II lists the modified Filtered-RLS algorithm in its standard covariance and fast-array
forms, which are derived according to Reference [11]. The computational complexity of the
modified Filtered-RLS algorithm can be reduced further by using the Fast Transversal Filter
(FTF), see Reference [14, Chapter 14], but often at the expense of numerical accuracy. The
derivation of the modified RLS algorithm is quite ad hoc, and no systematic derivation of the
modification and conditions for its optimality have been given yet.

In this section, we will compare the Kalman algorithm with the modified RLS algorithm. Our
main result in this section is that the modified RLS algorithm is a special case of the Kalman
algorithm of the previous section when there is no uncertainty on the secondary-path state (due
to initial-state uncertainty and/or noise). By showing the equivalence, we have thus provided a
systematic derivation of the modified filtered-RLS algorithm and conditions for its optimality.

Theorem 2
The Kalman algorithm listed in Table I and the modified filtered-RLS algorithm listed in
Table II are equivalent, under the condition that

Pyy
0 ¼ 0ns�ns ; Pwy

0 ¼ PywT

0 ¼ 0nw�ns ; Q ¼ 0nv�nv

in the Kalman algorithm and rðkÞ ¼ 0 for �nw4k40:

zVariables with subscript r or superscript r refer the variables from the modified filtered-RLS algorithm (in order to
prevent confusion with variables from the Kalman filter algorithm of Table I).
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Proof
First, let us define

%Skþ1 ¼ l1=2As %Sk þ l1=2Bsr
T
nw
ðkÞ; %S0 ¼ 0ns�nw ð85Þ

Table II. Modified filtered-RLS algorithm in Kalman covariance and fast-array forms.

Kalman covariance form Fast-array form

Assumptions:

0{l41 idem

Pww
0 > 0 Pww

�1 ¼
ffiffiffi
d

p
� diagfl; l2; . . . ; lnwg; d > 0

r0ðkÞ ¼ 0; for �nw � 14k4� 1 (i.e. prewindowed data)

Initialization:

#yrð0Þ ¼ y0rð0Þ ¼ 0ns�1
#wrð0Þ ¼ 0nw�1

�
idem

rnw ð�1Þ ¼ ½rð�1Þ rð�2Þ � � � rð�nwÞ�T

r0nw ð�1Þ ¼ 0nw�1

�
idem
r0nwþ1ð�1Þ ¼ 0nwþ1�1

�

Pr
0 ¼ Pww

0

*Lr
�1 ¼

ffiffiffi
d

p 1 0
0nw�1�1 0nw�1�1

0 lnw=2

2
4

3
5

%Kr
�1 ¼ 0

Rr
e;�11=2 ¼ R1=2

8>>>>><
>>>>>:

Iterate for k50:

y0rðkþ 1Þ ¼
Asy0rðkÞ þ BsrðkÞ ðstandardÞ
l1=2Asy

0
rðkÞ þ l1=2BsrðkÞ ðnewÞ

(
r0ðkÞ ¼ Csy0rðkÞ þDsrðkÞ

8><
>: idem

rnw ðkÞ ¼ ½rðkÞ r
T
nw�1ðk� 1Þ�T

r0nw ðkÞ ¼ ½r
0ðkÞ r0Tnw�1ðk� 1Þ�T

(
idem

r0nwþ1ðkÞ ¼ ½r
0ðkÞ r0Tnw ðk� 1Þ�T

�

#yrðkþ 1Þ ¼ As
#yrðkÞ � Bsr

T
nw
ðkÞ #wrðkÞ

#yðkÞ ¼ Cs
#yrðkÞ �Dsr

T
nw
ðkÞ #wrðkÞ

(
idem

*yðkÞ ¼ �r0Tnw ðkÞ #wrðkÞ
erðkÞ ¼ eðkÞ � #yðkÞ þ *yðkÞ

�
idem

Kr
k ¼ l�1=2Pr

kr
0
nw
ðkÞ

Rr
e;k ¼ Rr þ r0Tnw ðkÞP

r
kr
0
nw
ðkÞ

Pr
kþ1 ¼ l�1Pr

k � Kr
kR

r
e;k�1K

rT
k

8><
>:

Perform J-unitary rotation to make the 122 block in the

post-array equal to zero; J ¼ ðI2��1Þ;Yk�1JYT
k�1 ¼ J

R
r1=2
e;k�1 r0Tnwþ1ðkÞ

*Lr
k�1

0
%Kr
k�1

� �
l�1=2 *Lr

k�1

2
64

3
75Yk�1 ¼

R
r1=2
e;k 01�2
%Kr
k

0

� �
*Lr
k

2
64

3
75

8>>>>><
>>>>>:

#wrðkþ 1Þ ¼ l�1=2 #wrðkÞ þKr
kR

r
e;k�1erðkÞ #wrðkþ 1Þ ¼ l�1=2 #wrðkÞ þ %Kr

kR
r�1=2
e;k erðkÞ
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Using expression (76) and the expression for rnw ðkÞ from Table II it can be verified that

%Sk ¼ ½y
0
rðkÞ y

0
rðk� 1Þ � � � y0rðk� nw þ 1Þ� ð86Þ

Substituting this result into expressions (77), (82) and (84) yields

r0Tnw ðkÞ ¼ Cs %Sk þDsr
T
nw
ðkÞ ð87Þ

*yðkÞ ¼ �Cs %Sk #wrðkÞ �Dsr
T
nw
ðkÞ #wrðkÞ ð88Þ

and thus

#yðkÞ � *yðkÞ ¼ Cs
#yrðkÞ þ Cs %Sk #wrðkÞ ð89Þ

The relations just derived will be used in the sequel in the proof.
By induction the following relations can be verified:

KALMAN : RLS :

#wðkÞ ¼ #wrðkÞ ð90Þ

#yðkÞ ¼ #yrðkÞ þ %Sk #wrðkÞ ð91Þ

Re;k ¼ Rr
e;k ð92Þ

Kw
k ¼ Kr

k ð93Þ

Ky
k ¼ %Skþ1K

r
k ð94Þ

Pk ¼
Pww
k Pwy

k

Pyw
k Pyy

k

" #
¼

Inw

%Sk

" #
Pr
k Inw %ST

k

� �
ð95Þ

The first step is to show that (90)–(95) hold for k ¼ 0; which can be verified readily from the
initialization of the algorithm from Tables I and II and the assumptions in the theorem. Note
that if (91) holds, then also eðkÞ ¼ erðkÞ holds. Further, since %S0 ¼ 0ns�nw equivalence (95) yields

P0 ¼
Pww

0 Pwy
0

Pyw
0 Pyy

0

" #
¼

Pww
0 0nw�ns

0ns�nw 0ns�ns

" #

which is the reason to assume Pyy
0 ; Pwy

0 and Pyw
0 to be zero in the theorem.

The second step is to show that if (90)–(95) hold for k; then (90)–(95) also hold for kþ 1:
Assume (90)–(95) hold for k: That (90) holds for kþ 1 directly follows from (91) (i.e. eðkÞ ¼ er�
ðkÞÞ; (92) and (93) and the update rules of wðkÞ and wrðkÞ:

To show that (91) holds for kþ 1; we write

#yðkþ 1Þ ¼As
#yðkÞ þ %Skþ1K

r
kR

r�1
e;k erðkÞ

¼Asð#yrðkÞ þ %Sk #wrðkÞÞ þ %Skþ1K
r
kR

r�1
e;k erðkÞ

¼Asð#yrðkÞ þ %Sk #wrðkÞÞ þ %Skþ1ð #wrðkþ 1Þ � l�1=2 #wrðkÞÞ
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On the other hand, we have

#yrðkþ 1Þ þ %Skþ1 #wrðkþ 1Þ

¼ As
#yrðkÞ � Bsr

T
nw
ðkÞ #wrðkÞ þ l1=2As %Sk #wrðkþ 1Þ þ l1=2Bsr

T
nw
ðkÞ #wrðkþ 1Þ

¼ Asð#yrðkÞ þ %Sk #wrðkÞÞ þ ðl
1=2As %Sk þ l1=2rTnw ðkÞÞð #wrðkþ 1Þ � l�1=2 #wrðkÞÞ

¼ Asð#yrðkÞ þ %Sk #wrðkÞÞ þ %Skþ1ð #wrðkþ 1Þ � l�1=2 #wrðkÞÞ

and thus #yðkþ 1Þ ¼ #yrðkþ 1Þ þ %Skþ1 #wrðkþ 1Þ:
Before showing that (92)–(94) hold for kþ 1; we show that (95) holds. Using the fact that

(92)–(95) hold for k and the assumption that Q ¼ 0; we can write

Pkþ1 ¼
l�1=2Inw 0nw�ns

Bsr
T
nw
ðkÞ As

" #
Inw

%Sk

" #
Pr
k Inw %ST

k

� � l�1=2Inw rnw ðkÞB
T
s

0ns�nw AT
s

" #

�
Inw

%Skþ1

" #
l�1=2Pr

kr
0T
nw
ðkÞðRþ r0Tnw ðkÞP

r
kr
0
nw
ðkÞÞ�1r0nw ðkÞP

r
kl
�1=2 Inw %ST

kþ1

� �

¼
Inw

%Skþ1

" #
l�1Pr

k

Inw

%Skþ1

" #T

�
Inw

%Skþ1

" #
Kr

kR
�1
c;kK

rT
k

Inw

%Skþ1

" #T

¼
Inw

%Skþ1

" #
Pr
kþ1

Inw

%Skþ1

" #T

Thus (95) holds for kþ 1:
Using this result, we can write

Re;kþ1 ¼Rþ ðDsr
T
nw
ðkþ 1Þ þ Cs %Skþ1ÞPr

kþ1ðDsr
T
nw
ðkþ 1Þ þ Cs %Skþ1Þ

T

¼Rþ r0Tnw ðkþ 1ÞPr
kþ1r

0
nw
ðkþ 1Þ

¼Rr
e;kþ1

Kkþ1 ¼
Kw

kþ1

Ky
kþ1

" #
¼

Inw

l1=2ðBsr
T
nw
ðkþ 1Þ þ As %Skþ1Þ

" #
l�1=2Pr

kþ1

Inw

%Skþ1

" #T

½Dsr
T
nw
ðkþ 1Þ Cs�T

¼
Inw

%Skþ2

" #
l�1=2Pr

kþ1ðDsr
T
nw
ðkþ 1Þ þ Cs %Skþ1Þ

T

¼
Inw

%Skþ2

" #
Kr

kþ1

Thus (92)–(94) hold for kþ 1:
Hence, (90)–(95) hold for all k50 and we conclude that the Kalman algorithm of Table I and

the RLS algorithm of Table II (with y0rðkþ 1Þ given by (76)) are equivalent under the conditions
given in the theorem. &

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2005; 19:125–152

R. FRAANJE ET AL.146



The effect of l in the expression for y0ðkþ 1Þ in (76) (see also Table II) yields

r0ðkÞ ¼ DsrðkÞ þ l1=2CsBsrðk� 1Þ þ lCsAsBsrðk� 2Þ þ l3=2CaA
2
sBsrðk� 3Þ þ � � �

and thus l has the effect of exponential forgetting in the generation of the filtered reference signal
r0ðkÞ:

Finally, Table III compares the computational complexity of the fast-array implementations
of the modified filtered-RLS and the Kalman algorithm proposed in this paper. From this table,
we infer that the number of floating point operations are linearly increasing with nw: The main
computational step is the evaluation of the rotations. Each elementary rotation is of the form

xnew  aðxþ ryÞ

ynew  rxnew � by

which takes six floating point operations. The rotations need to be evaluated for all rows in the
pre-array and by operating on the elements in the column pair 1–2 and the column pair 1–3.
Alternative implementations are also possible, see, e.g. Reference [14, Chapter 14].

5. SIMULATION RESULTS

To illustrate the method, simulations are performed on an ns ¼ 19th order discrete acoustic duct
system, which has been obtained by physical modelling and discretized using a sampling rate of
1 KHz: Figures 4 and 5 show the impulse response coefficients of the disturbance path and the
secondary path, respectively. The signal-to-noise ratio is chosen to be 30 dB and rðkÞ is a zero-
mean white-noise signal with unit variance. The number of filter coefficients was chosen to be
nw ¼ 150: Only the fast-array implementations contained in Tables 1 and 2 are used, with l ¼ 1
(no exponential forgetting). The measurement noise variance was R ¼ 2:1� 10�5: The value of
d; which determines the magnitude of the initial state covariance P�1; was set to d ¼ 10�3: In the
(fast-array) Kalman filter algorithm Q has chosen to be Q ¼ 2� 10�3: For comparison, also the
FxLMS and the preconditioned FxLMS as proposed in Reference [5] (where the secondary path
system is preconditioned by its inverse outer factor) have been used with the normalized stepsize
chosen to be 0.05, optimized by trial and error. All algorithms are turned on after 1000 samples.

Table III. Computational load of the fast-array RLS (Table II) and fast-array Kalman (Table I)
algorithms, with the secondary-path in full state–space and FIR parameterization in number floating point

additions or multiplications (neglecting terms not depending on dimensions nw and ns).

RLS Kalman

Action: State–space FIR State–space FIR

Filtered-reference 2n2s þ 3ns 2ns } }
Disturbance estimate 2n2s þ 3ns 2ns } }
Calculation innovation 2nw 2nw 2ns 0
Construction pre-array 6nw 6nw 6nw þ 4n2s 6nw þ 2ns
Performing rotations 12nw 12nw 12nw þ 12ns 12nw þ 12ns
Updating coefficients/state 3nw 3nw 3nw þ n2s þ ns 3nw þ 2ns
Calculating control 2nw 2nw 2nw 2nw
Total 25nw þ 4n2s þ 6ns 25nw þ 4ns 23nw þ 5n2s þ 15ns 23nw þ 16ns
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Figure 4. Impulse response of the disturbance path.
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Figure 5. Impulse response of the secondary path.
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Figure 6 shows the learning curves obtained by the algorithms, averaged over 50 experiments.
From this figure, it can be concluded that both the RLS and the Kalman filter algorithm
converge to (approximately) the same performance level. However, the RLS algorithm shows a
significant overshoot directly after turning on the algorithm. This overshoot can be explained by
the fact that the uncertainty in the secondary path state is not taken into account, contrary to the
Kalman filter algorithm for Q=0: The FxLMS and the preconditioned FxLMS are converging
much slower, as is expected since they are based on an LMS estimated gradient update.

But, note that the computational complexity per iteration of FxLMS and preconditioned
FxLMS is still lower than the computational complexity of the fast-array implementations of
the RLS and Kalman filter algorithms.

The same experiment was performed by choosing d in the RLS and the Kalman filter
algorithm to be d ¼ 10�4; see Figure 7. From this figure, it is clear that the overshoot of the RLS
algorithm with d ¼ 10�3 can be considerably reduced by lowering d to d ¼ 10�4; but at the
expense of convergence rate. Using d ¼ 10�4 in the Kalman algorithm, shows fast convergence
at the first few hundred samples, but then its convergence rate slows down to the convergence of
the RLS algorithm.

From these observations, we conclude that the overshoot or bad convergence of the RLS
algorithm at startup can be prevented by the Kalman filter algorithm, since uncertainty in the
secondary path state is accounted for.

To get insight in the robustness of the algorithms, the same experiment has been repeated for
an erroneous secondary path model, which contains 1 sample pure delay in addition to the
secondary path system. Figure 8 shows the learning curves obtained by the Kalman and the

1000 1500 2000 2500 3000
Time [samples]

M
S

E

Kalman

RLS, � = 10-3

100

10-2

10-1

10-3

10-4

Precon. FxLMS, µ = 0.05

FxLMS, µ = 0.05

� = 10-3 
Q = 2 • 10-3

Figure 6. Learning curves obtained by the Kalman, RLS, FxLMS and the preconditioned FxLMS
algorithm, averaged over 50 experiments.
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Figure 7. Learning curves obtained by the Kalman and the RLS algorithm for d ¼ 10�3 and for 10�4;
averaged over 50 experiments.
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Figure 8. Learning curves obtained by the Kalman and the RLS algorithm for d ¼ 10�3 and for 10�4 with
1 sample delay uncertainty in the secondary path model, averaged over 50 experiments.
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RLS algorithm for d ¼ 10�3 and 10�4: From this figure, we observe that the algorithms are, to
some extent, robust for the model uncertainty in the secondary path model, at least no
divergence is obtained. However, all algorithms converge to a suboptimal solution (c.f. with the
performance obtained in Figures 6 and 7), which is lower d ¼ 10�4 than for 10�3 for both the
Kalman and the RLS algorithms. From this observation, we conclude, that the robustness w.r.t.
model uncertainty (for this particular case) can be improved by lowering d to d ¼ 10�4: But
both, the Kalman and the RLS algorithm, converge to suboptimal solutions, and do not show
significant different convergence behaviour for this model uncertainty (apart from the
uncertainty in the secondary-path state).

The simulation examples merely demonstrate the potential of the (fast-array) Kalman filter
solution. Further research will be devoted to analyse its robustness w.r.t. secondary path model
errors. Such a robustness analysis is well known for the (modified) FxLMS type algorithms, for
a recent contribution see Reference [16]. We will also investigate the potential of exploiting H1
state-estimation [17] and robust Kalman filtering [18].

6. CONCLUSIONS

The active control problem can be reformulated in state–space form, which overcomes
formulating the control problem in terms of interchanging the adaptive filter and the secondary
path. In this way, uncertainty due to initial-state and time-variations are taken into account
explicitly. The state-estimation problem was solved by the Kalman filter and the structure in the
state–space matrices was exploited to develop a fast-array implementation of the algorithm.
Under the theoretical condition that there is no uncertainty in the secondary path state, it is
proven that the Kalman algorithm is equivalent to the modified filtered-RLS algorithm. Hence,
the Kalman algorithm can be seen as a generalization of the modified filtered-RLS algorithm. At
the same time, conditions for optimality of the modified filtered-RLS algorithm are derived.
When using exponential forgetting in the modified filtered-RLS algorithm, the forgetting factor
should also be applied to the reference signal.
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