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Fixed-point steady-state analysis of adaptive filters

Nabil R. Yousef and Ali H. Sayedn,y,z

Department of Electrical Engineering, University of California, Los Angeles, CA 90095, USA

SUMMARY

The steady-state performance of adaptive filters can vary significantly when they are implemented in finite
precision arithmetic, which makes it vital to analyse their performance in a quantized environment. Such
analyses can become difficult for adaptive algorithms with non-linear update equations. This paper
develops a feedback and energy-conservation approach to the steady-state analysis of quantized adaptive
algorithms that bypasses some of the difficulties encountered by traditional approaches. Copyright # 2003
John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper develops an approach to the roundoff error analysis of adaptive filters. The approach
is based on showing how a generic quantized adaptive filter can be represented as a cascade of
elementary sections, with each section consisting of a lossless mapping in the feedforward path
and a feedback interconnection, with roundoff errors acting as disturbances to the system. By
studying the energy flow through the cascade, we are able to establish a fundamental error
variance relation. Using this relation, we are able to extend results in the infinite precision case
to the quantized case with minimal calculations for a large class of adaptive algorithms. We also
derive new results.

Thus consider noisy measurements {d(i)} that arise from the linear model

dðiÞ ¼ uiw
0 þ vðiÞ ð1Þ

where w0 is a stationary deterministic unknown N � 1 vector that we wish to estimate, v(i)
accounts for stationary stochastic measurement noise and modelling errors, and ui denotes a row
input (regressor) vector of stationary stochastic elements. Many adaptive schemes have been
developed in the literature for the estimation of w0 in different contexts (e.g. echo cancellation,
channel estimation, channel equalization). In this paper, we focus on the following general class
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of algorithms:

wiþ1 ¼ wi þ muni feðiÞ ð2Þ

where wi is an estimate for w0 at iteration i and m is the step-size. Usually, fe(i) is a function of the
output estimation error, defined by

eðiÞ ¼ dðiÞ � uiwi ð3Þ

Different choices for fe(i) result in different adaptive algorithms. For example, Table I defines
fe(i) for several special cases of (2).

} In Table I, 0 4 d 4 1, R2 is a positive constant, and y(i) =
ui wi is the adaptive filter output.

An important performance measure for an adaptive filter is its steady-state mean-square-error
(MSE), which is defined as

MSE ¼ lim
i!1

E jeðiÞj2
� �

¼ lim
i!1

E jvðiÞ þ ui *wwij2
� �

where *wwi ¼ w0 � wi denotes the weight error vector.
Under the realistic assumption that (see, e.g. References [1–6]):
A.1. The noise sequence {v(i)} is independently and identically distributed (iid) and also

statistically independent of the regressor sequence {ui}.
we find that the MSE is equivalently given by}

MSE ¼s2v þ lim
i!1

Eðjui *wwij2Þ ð4Þ

Now the standard way for evaluating (4), and which dominates most derivations in the
literature, is the following. First, one assumes, in addition to A.1, that the regression vector ui is
independent of *wwi: Then the above MSE becomes

MSE ¼s2v þ lim
i!1

TrðRCiÞ ð5Þ

where Ci ¼ Eð *wwi *ww
n

i Þ denotes the weight error covariance matrix and R ¼ Eðuni uiÞ is the input
covariance matrix. As is evident from (5), this method of computation requires the
determination of the steady-state value of Ci, say C1. In quantized environments, finding C1

Table I. Examples for fe(i)

Algorithm fe(i)

LMS e(i)
NLMS e(i)/|| ui ||

2

LMF e3(i)
LMMN de(i) + (1 � d)e3(i)
SA sign[e(i)]
CMA y(i)[R2 � | y(i) |2]

}The list in the table assumes real-valued data. For complex-valued data, we replace e3 by e|e|2 and define sign ½aþ jb� by 1
2

(sign½a� þ jsign½b�).
}The value of *wwi depends only on the past values of vðiÞ and the current and past values of ui: Thus, the expected value of
the cross terms between vðiÞ and ui *wwi vanishes since vðiÞ is white and statistically independent of ui:
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is a burden, especially for adaptive schemes with non-linear update equations. The following are
the contributions of this work:

1. We develop an energy-conservation approach for evaluating the MSE of a large class of
adaptive schemes when implemented in finite precision. This approach bypasses the need
for working directly with Ci or with its limiting value, and it extends the results of [7] to the
finite precision case.

2. The approach further establishes the useful conclusion that the finite precision analysis of
an adaptive scheme can be obtained almost by inspection from the results in the infinite
precision case for a large class of algorithms, such as the LMS, NLMS, LMF, LMMN, and
sign algorithms. In contrast, analyses for both cases have usually been carried out
separately in the literature.

3. The approach allows us to derive a handful of new results, especially for adaptive filters
with non-linear updates for which approaches that require Ci are not easily applicable,
such as the LMF, LMMN, and CM algorithms.

We may remark that quantization errors can affect the performance of an adaptive filter in
several ways. For instance, these errors may affect the stability of the adaptive algorithm, i.e.
they may cause the algorithm to diverge. They can also degrade the steady-state performance of
the adaptive algorithm by causing the filter to attain a higher MSE value than what is expected
in the infinite precision case. The instability behaviour is more serious for the class of recursive
least squares (RLS) algorithms. In this paper, however, we focus on LMS-like algorithms. Such
algorithms are known for their inherent stability and robustness in fixed point environments
(see, e.g. References [1–6]). This is because finite precision errors do not tend to affect their
transient performance significantly; gradient errors are relatively large in the transient phase,
which makes the finite precision effects less significant. However, when LMS-like algorithms
approach steady-state, the adaptation error becomes relatively smaller and thus finite precision
errors can cause performance degradation in the form of excess mean-square-error. The main
goal of this paper is to derive expressions for the MSE of such LMS-like algorithms in a
quantized environment.

2. A. MATHEMATICAL MODEL

Figure 1 shows the quantized model used in the paper,|| and which is widely used in the context
of finite precision analyses of adaptive algorithms (see, e.g. References [9–14]). In this figure,
Q[x] denotes the fixed point quantization of the value x, and the superscript q distinguishes
quantized quantities from infinite precision quantities. Throughout the paper, rounding
quantization is considered. It is also assumed that the saturation thresholds of the quantizers
are properly chosen such that overflow never occurs and saturation errors are negligible. Thus,
only rounding errors are considered. The variance s2 of the rounding error, for real-valued

||Figure 1 shows only the system model. It does not show the quantizers used to obtain (2). A modified version of this
model will be used for the case of the CMA.
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quantities, is related to the quantizer saturation threshold L according to

s2 ¼
2�2BL2

12
ð6Þ

where it is assumed that the quantizer uses B bits in addition to a sign bit. The values of B and L

considered for quantization of the data (ui, d(i), and y(i)) will be denoted by Bd and Ld , and the
ones considered for quantization of the filter coefficients will be denoted by Bc and Lc. The
corresponding values of s2 will be denoted by s2d and s2c ; respectively. For complex-valued
quantities, the variance s2 is twice the value given in (6). Throughout the paper, we will use s2 to
denote the rounding error variance for both real and complex-valued quantities. However, the
value of s2 differs in each case.

We can write

dqðiÞ ¼ dðiÞ þ *ddðiÞ; u
q
i ¼ ui þ *uui; yqðiÞ ¼ u

q
i w

q
i þ *yyðiÞ ð7Þ

where *ddðiÞ is the system output quantization error with variance s2d ; *uui is a vector of input data
quantization errors with s2d being the variance of each of its entries, and *yyðiÞ is the quantization
error that occurs in computing the term u

q
i w

q
i : The variance of *yyðiÞ; s

2
*yy; depends on the procedure

by which yqðiÞ is computed. If all N products involved in u
q
i w

q
i are computed with high precision,

summed, and the final result is quantized to Bd bits, then s2*yy is approximately equal to s2d : If each
one of the N products is quantized to Bd bits first, s2*yy is equal to N s2d : The quantized estimation
error eq (i) is given from (7) by

eqðiÞ ¼ dqðiÞ � yqðiÞ ¼ eðiÞ þ *eeðiÞ ð8Þ

where *eeðiÞ ¼ *ddðiÞ � *yyðiÞ � *uuiw
0 þ *uui *wwi: Obviously, *eeðiÞ is a zero-mean sequence. Here, we note

that, in steady-state, the variance of the term *uui *wwi is equal to s2d E (jj *wwijj
2). If we assume that

E (jj *wwijj
2) 5 1 in steady-state, which is usually valid in practical applications, then we can

approximate *eeðiÞ by *eeðiÞ � *ddðiÞ � *yyðiÞ � *uuiw
0; with variance s2*ee ¼ s2d þ s2*yy þ s2d jjw

0jj2: We denote
the quantized error function by f q

e ðiÞ:

u i uq
i

w˚

v (i)

Q[.]

Q[.]

d(i)

dq(i)

eq(i)wq
i

yq(i)

Unknown
System

Adaptive

Filter

–

Figure 1. Quantization model.
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Taking the above quantizations into consideration, the adaptive recursion (2) becomes

wq
iþ1 ¼ wq

i þ Q½m u
qn
i f q

e ðiÞ�

¼ wq
i þ m u

qn
i f q

e ðiÞ �mi ð9Þ

where mi is a vector of multiplication quantization errors in the update term muqni f q
e ðiÞ; which is

defined for convenience of notation by

mi ¼
4 m u

qn
i f q

e ðiÞ � Q½m u
qn
i f q

e ðiÞ�

each entry of mi has variance s2c : The weight error vector is now defined as

*wwi ¼ w0 � w
q
i ð10Þ

3. QUANTIZED ENERGY RELATION

We start by defining the a-priori and a-posteriori estimation errors,

eaðiÞ ¼ u
q
i *wwi; epðiÞ ¼ u

q
i ð *wwiþ1 �miÞ

Using (3) and (8), it is easy to see that the errors eqðiÞ; eaðiÞf g are related via

eqðiÞ ¼ eaðiÞ þ vðiÞ þ *eeðiÞ

If we subtract w0 from both sides of (9) and multiply by u
q
i from the left, we also find that the

errors epðiÞ; eaðiÞ; eqðiÞ
� �

are related via

epðiÞ ¼ eaðiÞ � mjjuqi jj
2f q

e ðiÞ ð11Þ

Substituting (11) into (9), we obtain the update relation

*wwiþ1 ¼ *ww�
u
qn
i

jjuqi jj
2
½eaðiÞ � epðiÞ� þmi

By evaluating the energies of both sides of this equation and using a similar procedure to that
used in References [7, 8], we obtain

jj *wwiþ1 �mijj2 þ
1

jjuqi jj2
jeaðiÞj2 ¼ jj *wwijj2 þ

1

jjuqi jj
2
jepðiÞj2 ð12Þ

When u
q
i ¼ 0; it is obviously true that

jj *wwiþ1 �mijj
2 ¼ jj *wwijj

2 ð13Þ

Both results (12) and (13) can be grouped together into a single equation by defining

%mmðiÞ ¼ ðjjuqi jj
2Þy

in terms of the pseudo-inve rse of a scalar,nn so that we obtain

jj *wwiþ1 �mijj
2 þ %mmðiÞjeaðiÞj2 ¼ jj *wwijj

2 þ %mmðiÞjepðiÞj2 ð14Þ

This energy conservation relation, first established in References [15–17], holds for all adaptive
algorithms whose recursions are of the form given by (2). No approximations or assumptions are

nnFor a scalar x; the pseudo-inverse xy is equal to 1=x for x=0 and equal to zero for x ¼ 0:
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needed to establish (14); it is an exact relation that shows how the energies of the weight error
vectors at two successive time instants are related to the energies of the a priori and a posteriori
estimation errors. The relation also has an interesting system-theoretic interpretation. It establishes
that the mapping from *wwi;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%mmðiÞepðiÞ

p� �
to %wwiþ1 �mi;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%mmðiÞeaðiÞ

p� �
is energy preserving (or

lossless). Furthermore, combining (14) with (11), we see that both relations establish the existence
of the feedback configuration shown in Figure 2, where T denotes a lossless map and z�1 denotes
the unit delay operator. Here, we can see that the quantization error vector mi acts as a disturbance
input to the system. Such a disturbance plays the same role as that of system non-stationarity [18].
On the other hand, the data quantization error *eeðiÞ is added to the plant noise v(i).

3.1. Relevance to fixed point analysis

Relation (14) has several ramifications. It was used in References [15–17] to study the robustness
and l2-stability of adaptive filters and in References [7, 18] to study the steady-state and tracking
performances of various adaptive algorithms. It was also used in References [19, 20] to study the
transient performance of adaptive filters. Here, we show its significance to finite precision
analyses of adaptive algorithms.

First, we impose the following modelling assumption.
A.2. Quantization errors are zero-mean, mutually independent, and independent of all other

signals.
This assumption is typical in the context of finite precision analysis of adaptive algorithms

(see e.g. References [9–14]), and it enables the derivation of closed-form expressions for the
steady-state MSE. A more sophisticated non-linear model for treating quantization errors,
which takes into account quantizer underflow effects, has been used in Reference [21] for the
LMS algorithm; though it does not lead to closed-form expressions.

Imposing the equality E ðjj *wwiþ1jj2Þ ¼ E ðjj *wwijj2Þ in steady-state, and using (11) and A.2 it is
straightforward to verify that the energy relation (14) leads to

Eð %mmðiÞjeaðiÞj2Þ ¼ TrðMÞþE %mmðiÞ eaðiÞ �
%mm
%mmðiÞ

f q
e ðiÞ

����
����
2

 !
ð15Þ

Figure 2. Lossless mapping and a feedback loop.
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where M ¼ E mim
n
i

� �
: For iid multiplication errors, Tr(M) = N s2c : This equation can now be

solved for the steady-state excess mean-square-error (EMSE):

z¼4 lim
i!1

E ðjeaðiÞj
2Þ

Observe from (4) that the desired MSE is given by MSE = s2v þ z; so that finding z is equivalent
to finding the MSE.

3.2. A class of error functions

We now focus on the class of algorithms whose error functions satisfy the following
condition:

f q
e ðiÞ ¼ f q

e ðu
q
e ; e

qðiÞÞ ¼ feðuqe ; e
qðiÞÞ þ ZðiÞ ð16Þ

where Z (i) is a zero-mean random variable, which is statistically independent of all other
algorithm quantities. Note that Z (i) is the error in calculating f q

e ðu
q
e ; e

qðiÞÞ from u
q
i and eqðiÞ: The

variance of Z (i) also depends on the adaptive algorithm used.
For the LMS and sign algorithms, we can see that this condition is satisfied with s2Z ¼ 0. For

the LMF and LMMN algorithms, if the quantity ðeqðiÞÞ3 is calculated via a look-up table or if
the term is first calculated in a high precision, then both algorithms satisfy the condition in (16),
with s2Z equal to s2d and 2s2d þ ð1� dÞ2s2d for the LMF and LMMN algorithms, respectively. To
obtain the error function of the NLMS algorithm, the norm jjuqi jj

2 is usually calculated in 2Bd

bits precision, then 1/jjuqi jj
2 is obtained using a look-up table, multiplied by eqðiÞ; and quantized

to Bd bits [12]. In this case, we have

ZNLMSðiÞ ¼ e1ðiÞeqðiÞ þ e2ðiÞ

where e1(i) and e2(i) are two zero-mean random variables of variance s2d : In this case, the NLMS
algorithm does not generally satisfy condition (16). However, note that, in steady-state and due
to A.2, the variance of the term e1ðiÞeqðiÞ is equal to s2d (MSE+ s2d ), which can be neglected with
respect to s2d ; since (MSE + s2d ) 5 1, which is reasonable in practical applications. In this case,
the NLMS satisfies condition (16) with s2Z = s2d : On the other hand, the CMA does not satisfy
(16).

Using (8), (16), and A.2, we can rewrite the error variance relation (15), in terms of ea(i) and
%vvðiÞ ¼4 vðiÞ þ %eeðiÞ as

Eð %mmðiÞjeaðiÞj2Þ ¼ jTrðMÞ þ m2s2ZTrðR
qÞ þ E %mmðiÞ eaðiÞ �

m
%mmðiÞ

feðu
q
i ; eaðiÞ þ %vvðiÞÞ

����
����
2

 !
ð17Þ

where TrðRqÞ ¼ Eðuqni u
q
i Þ ¼ TrðRÞ þ Ns2d :

Moreover, for the infinite precision case, Equation (17) is given by [7]:

Eð %mmðiÞjeaðiÞj2Þ ¼ E %mmðiÞ eaðiÞ �
m
%mmðiÞ

feðui; eaðiÞ þ vðiÞÞ

����
����
2

 !
ð18Þ

where all the quantities are now defined in terms of ui; vðiÞf g instead of u
q
i ; %vvðiÞ

� �
: Comparing

(17) with (18), we can observe the following. If we replace ui; vðiÞf g by u
q
i ; %vvðiÞ

� �
; and add the
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two terms Tr(M) and m2s2ZTrðR
qÞ to the right-hand side of the infinite precision variance relation

(18), we obtain the finite precision variance relation (17).
Thus, instead of directly solving (17) for z, we can do the following. First, we evaluate both

sides of the infinite precision variance relation (18). Second, we replace terms in the result that
are related to ui; vðiÞf g by the corresponding terms that are related to u

q
i ; %vvðiÞ

� �
and add the two

terms Tr(M) and m2s2ZTrðR
qÞ to the right-hand side. Finally, we solve the resulting equation for

z ¼ E jeaðiÞj2
� �

: Fortunately, we do not need to perform the first step as this is already done in the
infinite precision analysis [7]. This is a useful observation in the context of finite precision
analysis of adaptive algorithms, as it shows how to extend the results of the infinite precision
case to those of the quantized case with minimal effort if (16) is satisfied. In the literature, both
cases have generally been studied separately.

Here, we want to stress that the approach presented in this paper is not restricted by the
validity of (16). In fact, it can be used regardless of (16). If, for a specific algorithm, (16) is valid,
then the infinite precision results can be extended to the finite precision case. If not, then
Equation (15) can be solved to get the EMSE in the general case. In this paper, we will find the
EMSE for CMA, for which (16) does not hold.

4. QUANTIZED ANALYSIS

We now apply the above general procedure to various adaptive algorithms from Table I. Due to
space limitations, we omit some trivial details and only highlight the main steps in the
arguments. The reader will soon realize the convenience of working with (18).

4.1. The LMS algorithm

First, we solve both the infinite and finite precision energy equations (18) and (17) for the LMS
algorithm, and show how to extract the results of the quantized case from those of the infinite
precision case. Later we directly apply our procedure to other algorithms.

Infinite precision case: For LMS, in the infinite precision case, we have feðiÞ ¼ eðiÞ ¼ eaðiÞ
þvðiÞ: Substituting into (18) and using A.1, it follows immediately that

2mzLMS ¼ m2E jjuijj2jeaðiÞ
2j

� �
þ m2s2vTrðRÞ ð19Þ

To solve for z LMS we consider three cases:
1. For sufficiently small m, we can assume that the term m2E jjuijj

2jeaðiÞ
2

� �
is negligible relative

to the second term on the right-hand side of (19), so that

zLMS ¼
m
2
s2vTrðRÞ ðsmall mÞ ð20Þ

2. For larger values of m, Equation (19) can be solved by imposing the following
assumption:yy

A.3. At steady state, jjuijj2 is statistically independent of jeaðiÞ
2j:

This assumption in fact becomes realistic for long filter lengths. Furthermore, it becomes
exact for the case of constant modulus data that arises in some adaptive filtering applications

yyBy larger values of m we do not mean a large m; but rather step-size values that are not infinitesimally small and still
guarantee filter stability.
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(see, e.g. Reference [22]). Using A.3, and (19), we directly obtain [1, 2]

zLMS ¼
ms2vTrðRÞ
2� mTrðRÞ

ðlarge mÞ ð21Þ

3. For Gaussian white-input signals R ¼ s2uI
� �

; Equation (19) can be more accurately solved
by imposing the widely used independence assumption [2]:

A.4. At steady state, *wwi is statistically independent of ui
to yield the well-known result

zLMS ¼
ms2vTrðRÞ

2� mðN þ lÞs2u
ðGaussianÞ ð22Þ

where N is the filter length, l = 1 if the fuig are complex-valued and l = 2 if the fuig are real-
valued.

Finite precision case: Now for the quantized case, substituting in (17) and using A.1 and A.2,
we obtain

2mzLMS ¼ TrðMÞ þ m2E jjuqi jj
2jeaðiÞ

2j
� �

þ m2s2vTrðR
qÞ

For small enough values of m, we have

zLMS ¼ 1
2
ðm�1TrðMÞ þ ms2%vvTrðR

qÞÞ ð23Þ

where s2%vv ¼ s2v þ s2*ee : For larger values of m, using A.3, we obtain

zLMS ¼
m�1TrðMÞ þ ms2%vvTrðR

qÞ
2� mTrðRqÞ

ð24Þ

For Gaussian white-input signals, the quantized error variance relation can be solved using
A.4. to yield

zLMS ¼
m�1TrðMÞ þ ms2%vvTrðR

qÞ
2� mðN þ lÞs2u

ðGaussianÞ ð25Þ

where s2uq ¼ s2u þ s2d :
The same results were obtained in the literature by analysing the finite precision LMS

recursion (see, e.g. References [9, 13]). This can require some tedious algebra. Here, we see that
instead of solving the finite precision energy relation (17), we used the solution of the infinite
precision energy relation (18), replaced ui; vðiÞf g by u

q
i ; %vvðiÞ

� �
; and added the two terms Tr(M)

and m2s2ZTrðR
qÞ to the RHS. Solving for z = E jeaðiÞ

2j
� �

; we obtained the quantized results. We
may add that most of these steps can be done just by inspection.

Moreover, we can see that, unlike the infinite precision case, the EMSE is not a monotonically
increasing function of m. In the finite precision case there exists an optimum step-size (m0), which
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minimizes the EMSE. This value is given by

mLMS
0 ¼

1

s%vv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMÞ
TrðRqÞ

s

The corresponding minimum achievable EMSE zLMS
0 is given, from (20), by

zLMS
0

� �
¼ s%vv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMÞTrðRqÞ

p
The same expressions were obtained in Reference [13].

4.2. The NLMS algorithm

For the normalized NLMS algorithm,

feðiÞ ¼ eðiÞ=jjuijj
2

In this case, relation (18) and assumption A.1 lead to the equality

ð2m� m2ÞE
jeaðiÞj

2

jjuijj
2

� �
¼ m2s2vE

1

jjuijj
2

� �
ð26Þ

Again this is an exact equality. We consider two cases.
(1). Under assumption A.3, we have

E
jeaðiÞj2

m2jjuijj2

� �
¼ E jeaðiÞj

2
� �

E
1

m2jjuijj2

� �

Thus, the solution of (26) becomes

ð2m� m2ÞEjeaðiÞj2E
1

jjuijj
2

� �
¼ m2s2vE

1

jjuijj
2

� �
ð27Þ

This result is in fact exact for constant modulus data. Now, replacing ui; vðiÞf g by u
q
i ; %vvðiÞ

� �
;

and adding TrðMÞ þ m2s2dTrðR
qÞ to the RHS, the quantized energy relation is given by

ð2m� m2ÞEjeaðiÞj2E
1

jjuqi jj
2

 !
¼ TrðMÞ þ m2s2dTrðR

qÞ þ m2s2%vvE
1

jjuqi jj
2

 !
ð28Þ

Solving for z, we obtain

zNLMS ¼

m�1TrðMÞ þ ms2dTrðR
qÞ þ ms2%vvE

1

jjuqi jj
2

 !

2� mð ÞE
1

jjuqi jj
2

 ! ð29Þ
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The values of mNLMS
0 and zLMS

0 are thus approximately given by

mNLMS
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMÞ= s2dTrðR

qÞ þ s2%vvE
1

jjuqi jj
2

 !" #vuut ð30Þ

zNLMS
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMÞ= s2dTrðR

qÞ þ s2%vvE
1

jjuqi jj
2

 !" #vuut =E
1

jjuqi jj
2

 !
ð31Þ

(2). In some works (see, e.g. Reference [3] p. 443), the following approximation is instead used:

E
jeaðiÞ

2j

jjuijj2

� �
�

E jeaðiÞ
2j

� �
E jjuijj2
� �

in which case the solution of (26) becomes

ð2m� m2Þ
TrðRÞ

E jeaðiÞ
2j

� �
¼ m2s2vE

1

jjuijj2

� �
ð32Þ

Again, replacing ui; vðiÞf g by u
q
i ; %vvðiÞ

� �
; and adding TrðMÞ þ m2s2dTrðR

qÞ to the RHS, the
quantized energy relation is given by

ð2m� m2Þ
TrðRqÞ

E jeaðiÞ
2j

� �
¼ TrðMÞ þ m2s2dTrðR

qÞ þ m2s2%vvE
1

jjuqi jj
2

 !
ð33Þ

Solving for z, we obtain

zNLMS ¼

m�1TrðMÞ þ ms2dTrðR
qÞ þ ms2%vvE

1

jjuqi jj
2

 !

ð2� mÞ
TrðRqÞ ð34Þ

Here zNLMS
0 is still given by (30), while zNLMS

0 is now given by

zNLMS
0 ¼ TrðRqÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMÞ s2dTrðR

qÞ þ s2%vvE
1

jjuqi jj
2

 !" #vuut ð35Þ

The finite precision analysis of the NLMS was previously done in Reference [12] in a less direct
way and under stronger assumptions.

4.3. The LMF and LMMN algorithms

For the least-mean mixed-norm (LMMN) algorithm with real-valued data (the case of complex-
valued data is considered further ahead towards the end of this section), we have [23]:

feðiÞ ¼ deðiÞ þ ð1� dÞe3ðiÞ

The least-mean fourth (LMF) algorithm corresponds to the special case d = 0 [24]. Introduce,
for compactness of notation,

%dd ¼ 1� d; E jvðiÞj4
� �

¼ xv4; E jvðiÞ6j
� �

¼ xv6
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By ignoring higher-order terms and by using A.1, the energy equation (18) implies that

2mbzLMMN ¼ m2aTrðRÞ þ m2cE jjuijj
2jeaðiÞj

2
� �

ð36Þ

where we introduced the constants

a ¼ d2s2v þ 2d%ddxv4 þ %dd2xv6 ð37Þ

b ¼ dþ 3%dds2v ð38Þ

c ¼ d2 þ 12d%dds2v þ 15%ddxv4 ð39Þ

We again consider three cases:
(1). For values of m that are small enough so that the term m2cE jjuijj

2jeaðiÞj
2

� �
could be ignored,

Equation (36) becomes

2mbzLMMN ¼ m2aTrðRÞ

Replacing ui; vðiÞf g by u
q
i ; %vvðiÞ

� �
; and adding TrðMÞ þ m2 2þ %dd2

� �
s2dTrðR

qÞ to the RHS, the
quantized energy relation is given by

2mbzLMMN ¼ Tr Mð Þ þ m2 2þ %dd2
� �

s2dTr R
qð Þ þ m2a TrðRqÞ

where the constants a, b, and c are now defined by

a ¼ d2s2%vv þ 2d%ddx%vv
4 þ %dd2x%vv

6 ð40Þ

b ¼ dþ 3%dds2%vv ð41Þ

c ¼ d2 þ 12d%dds2%vv þ 15%ddx%vv
4 ð42Þ

x4%vv ¼ E j%vvðiÞj4
� �

; and x6%vv ¼ E j%vvðiÞj6
� �

: Solving for z, we get

zLMMN ¼
1

2b
m�1TrðMÞ þ m 2þ %dd2

� �
s2dTr R

qð Þ þ ma Tr Rqð Þ
	 


ðsmall mÞ ð43Þ

The values of mLMMN
0 and zLMMN

0 are thus given by

mLMMN
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMÞ= 2þ %dd2

� �
s2dTr R

qð Þ þ a Tr Rqð Þ
	 
q

ð44Þ

zLMMN
0 ¼

1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMÞ 2þ %dd2

� �
s2dTr R

qð Þ þ a Tr Rqð Þ
	 
q

ð45Þ

For d = 0, the above expression collapses to

zLMF ¼
1

6s2v
m�1TrðMÞ þ 3ms2dTrðR

qÞ þ mx*vv
6TrðR

qÞ
	 


ðsmall mÞ ð46Þ

Corresponding values of mLMF
0 and zLMF

0 are given by

mLMF
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMÞ= 3s2dTrðR

qÞ þ x*vv
6TrðR

qÞ
	 
q

ð47Þ

zLMF
0 ¼

1

3s2v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMÞ= 3s2dTrðR

qÞ þ x*vv
6TrðR

qÞ
	 
q

ð48Þ

Note that we did not need the independence assumption (A.4) to obtain these results.
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(2). For larger values of m, using A.3 again, and following the same procedure, we get the
following new expressions for the EMSE:

zLMMN ¼
m�1TrðMÞ þ m 2þ %dd2

� �
s2dTr R

qð Þ þ ma Tr Rqð Þ
2b� mcTrðRqÞ

ðlarge mÞ ð49Þ

zLMF ¼
m�1TrðMÞ þ 3ms2dTr R

qð Þ þ mx*vv
6 Tr Rqð Þ

6s2%vv � 15mx*vv
4TrðR

qÞ
ðlarge mÞ ð50Þ

(3). For Gaussian white-input signals R ¼ s2uI
� �

; using A.4 instead of A.3, we obtain the
following new expressions

zLMMN ¼
m�1TrðMÞ þ m 2þ %dd2

� �
s2dTr R

qð Þ þ mMs2
uqa

2b� mðNþ 2Þs2
uqc

Þ
ðGuassianÞ ð51Þ

and

zLMF ¼
m�1TrðMÞ þ 3ms2dTr R

qð Þ þ mMs2uqx
*vv
6

6s2%vv � 15mðNþ 2Þs2uqx
*vv
4

ðGuassianÞ ð52Þ

where s2uq ¼ s2u þ s2d :
For the case of complex-valued data, we replace e3 by e | e |2 and assume the noise is circular,

i.e., Eðv2ðiÞÞ ¼ 0: Then repeating the above arguments we find that the three expressions (43),
(49), and (51) are still valid but with b and c replaced by

b0 ¼ dþ 2%dds2v

c0 ¼ d2 þ 8d%dds2v þ 9%ddxv4

Corresponding expressions for the LMF algorithm can be obtained by setting d ¼ 0: Here, we
may also add that more precise values for m0 and z0 can be obtained by minimizing the more
general expressions for z over m.

Figure 3 compares the simulation and theoretical results of the steady-state MSE of the
LMMN algorithm, with d ¼ 0:5; for a large range of m and two values of the wordlength. In the
simulations, the unknown system weight vector w0 is of length 10 and the elements of the input
vector, ui, are white Gaussian of unit variance. The plant noise is chosen to be a linear
combination of normally and uniformly distributed independent random variables of variances
s2n ¼ 10�6 and s2u ¼ 10�2=12; respectively. Each simulation result is the steady state statistical
average of 50 runs, with up to 20,000 iterations in each run. We can see from the figure that the
theoretical and experimental MSE are in good match.

4.4. The sign algorithm

For the sign algorithm (SA), we have

feðiÞ ¼ sign½eðiÞ�

In this case, relation (18) leads to the equality:

2mE½eaðiÞ signðeaðiÞ þ vðiÞÞ� ¼ m2TrðRÞ ð53Þ
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By assuming that e(i) and v(i) are real-valued jointly Gaussian [25], and by using A.1 and Price’s
theorem}} 7 [26], we obtain

E eaðiÞ signðeaðiÞ þ vðiÞÞ½ � ¼

ffiffiffi
2

p

r
E jeaðiÞj2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2v þ E jeaðiÞ

2j
� �q

Substituting into (53), we get [27]

m

ffiffiffi
8

p

r
E jeaðiÞj2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2v þ E jeaðiÞj2

� �q ¼ m2TrðRÞ

Using the assumption that the quantization of the estimation error does not introduce any
errors in its sign [14], replacing ui by u

q
i ; and adding Tr(M) to the RHS, the quantized energy

relation is given by

m

ffiffiffi
8

p

r
E jeaðiÞj

2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2v þ E jeaðiÞj

2
� �q ¼ TrðMÞ þ m2TrðRqÞ

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-20

-19

-18
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-16

-15
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M
S

E
 (

dB
)

Theory (Bc=Bd=8)    

Simulation (Bc=Bd=8)

Theory (Bc=Bd=10)    

Simulation (Bc=Bd=10)

Figure 3. Theory and simulation MSE for the LMMN vs m.

}}For two jointly Gaussian real-valued random variables x and y; we have: E ðx signðyÞÞ ¼
ffiffi
2
p

q
1
sv
EðxyÞ:
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Solving for E jeaðiÞj
2

� �
; we find that

zSA ¼
a
2

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4s2v

q� �
ð54Þ

where a ¼
ffiffip
8

p
m�1TrðMÞ þ mTrðRqÞ
� �

Corresponding values of mSA0 and zSA0 are given by

mSA0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMÞ
TrðRqÞ

s
ð55Þ

zSA0 ¼
p
4
TrðMÞTrðRqÞ þ

p
2
s2vTrðMÞTrðRqÞ þ

p2

16
Tr2ðMÞTr2ðRqÞ

� �1=2
ð56Þ

These results are the same expressions obtained in Reference. [14] by additionally using the
independence assumptions.

4.5. The CMA

We now study the finite precision performance of the well-known constant modulus algorithm
(CMA), whose error function is given by [28]

feðiÞ ¼ yðiÞ R2 � jyðiÞ2
	 


ð57Þ

In this case, we use a modified version of the quantization model used in the previous section.
This model is shown in Figure 4. The quantized error function of the CMA is given, from (57),
as

f q
e ðiÞ ¼ Q yqðiÞ Rq

2 � Q jyqðiÞj2
	 
	 
	 


¼ yqðiÞ Rq
2 � jyqðiÞj2 þ e1ðiÞ

	 

þ e2ðiÞ ð58Þ

ui ui
q

Q[x]

s(i)
Channel Q[x]

Q[x]
R

q

Equalizer
q
iw

CMA Error function

2

f  (i)e
q

y  (i)q

Figure 4. CMA quantization model.
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where e1(i) and e2(i) are two quantization errors of variance s21 ¼ s22 ¼ s2d : Furthermore, we now
define the a priori and a posteriori estimation errors by

eaðiÞ ¼ sði� DÞejy � yqðiÞ ¼ u
q
i w

0
i � u

q
i wi ¼ u

q
i *wwi

epðiÞ ¼ u
q
i ð *wwiþ1 �miÞ

Unfortunately, for the case of the CMA, we cannot express feðiÞ in the form given by (16). Thus,
we need to solve the quantized energy relation (14) for the CMA recursion. For mathematical
tractability of the analysis, we impose the following two reasonable assumptions in steady-state
i ! 1ð Þ }for more motivation and explanation on these two assumptions, see References [8,
29]:

A.5. The transmitted signal s(i –D) and the estimation error ea(i) are independent in steady-
state so that Eðsnði� DÞeaðiÞÞ ¼ 0; since s(i –D) is assumed zero mean.

A.6. The scaled regressor energy m2jjuijj2 is independent of yqðiÞ in steady-state.
We consider first the case of real-valued data fsð�Þ; yqð�Þ; uig: In this case, we can assume

that the zero forcing response (i.e., the convolution of the channel and the equalizer) hD that the
adaptive equalizer attempts to achieve can be of either form hD ¼ � 0; . . . ; 0; 1; 0; . . . ; 0½ �:

In the following, we continue with the choice hD ¼ 0; . . . ; 0; 1; 0; . . . ; 0½ �; which yields
eaðiÞ ¼ sði� DÞ � yqðiÞ: A similar analysis holds for the case hD ¼ 0; . . . ; 0; � 1; 0; . . . ; 0½ �:

Substituting (58) into (14), we obtain

Eð %mmðiÞjeaðiÞj2Þ ¼TrðMÞ

þ E %mmðiÞ eaðiÞ �
m
%mmðiÞ

yqðiÞ Rq
2 � yqðiÞÞ2 þ e1ðiÞ

� �	 

þ e2ðiÞ

� �����
����
2

 !
ð59Þ

We write more compactly

ea ¼
4 eaðiÞ; %mm¼4 %mmðiÞ; y¼4 yqðiÞ; uq ¼4 u

q
i ; s¼4 sði� DÞ; e1 ¼

4 e1ðiÞ; e2 ¼
4 e2ðiÞ

for i ! 1; so that (59) becomes, after expanding,

2mEðeay ½Rq
2 � y2 þ e1� þ eae2Þ ¼ TrðMÞ þ m2E ðjjmqjj2 y Rq

2 � y2 þ e1
	 


þ e2Þ
2

� �� �
Using this equality we can now obtain an expression for the steady-state MSE, E e2a

� �
:

Replacing y by s � ea, using assumptions A.1, A.2, A.5, and A.6 and neglecting 2mE e4a
� �

for
sufficiently small m and small e2a; it is straightforward to show that the steady-state MSE can be
approximated by

zCMA �
TrðMÞ=mþ mE s2Rq2

2 � 2Rq
2s

4 þ s2s21 þ s6 þ s22
 �

E jjuqjj2
� �

2E 3s2 � Rq
2

� �
This result implies that the steady-state MSE is composed of two terms. The first term decreases
with m and increases with the multiplication error variance Tr(M). The second term increases
with m and the received signal variance, E jjuqjj2

� �
: Thus, unlike the stationary case (see, e.g.

References [8, 29]), the steady-state MSE is not a monotonically increasing function of m. We
can also see that in the noiseless case, and for non-constant modulus data s �ð Þf g; there exists a
finite optimal value of the step size, m0, that minimizes the above expression for the steady-state
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MSE, which is given by

mCMA
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMÞ= E s2Rq

2 � 2Rq
2s

4 þ s2s21 þ s6 þ s22
� �

E jjuqjj2
� �	 
q

where E jjuqjj2
� �

¼ E u
qn
i u

q
i

� �
¼ E jjuijj

2
� �

þ Ns2d : This expression shows that m0 decreases with the
signal variance, E jjuqjj2

� �
; and increases with the multiplication error variance Tr(M). The

corresponding minimum value of the steady-state MSE is then given by

zCMA
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMÞE s2Rq2

2 � 2Rq
2s

4 þ s2s21 þ s6 þ s22
 �

E jjuqjj2
� �r

E 3s2 � Rq
2

� �
Here, we may add that for complex-valued data, the steady-state MSE will have a different
expression than that in the real-valued case. Following the same derivation, and assuming signal
constellations that satisfy the circularity condition E s2ðiÞ

� �
¼ 0; in addition to the condition

E 2jsðiÞj2 � R2

� �
> 0 (both of which hold for most constellations [28]), we can show that the

steady-state MSE for complex-valued data, and for sufficiently small step-sizes, can be
approximated by

zCMA �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMÞ=mþ mE jsj2Rq2

2 � 2Rq
2jsj

4 þ jsj2s21 þ jsj6 þ s22
 �

E jjuqjj2
� �r

2E 2jsj2 � Rq
2

� �
In this case, the optimum value of the algorithm step size still has the same value as in the real-
valued data case, while the minimum achievable steady-state MSE is given by

zCMA
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMÞE jsj2Rq2

2 � 2Rq
2jsj

4 þ jsj2s21 þ jsj6 þ s22
 �

E jjuqjj2
� �r

E 2jsj2 � Rq
2

� �
Finally, we may add that, for the infinite precision case s2c ¼ s2d ¼ 0

� �
; the expressions for the

steady-state MSE reduce to the expressions obtained in References [8, 29].
We now provide some simulation results that compare the experimental performance with the

one predicted by the derived expressions. The channel considered in this simulation is given by c
= [0.1; 0.3, 1, �0.1, 0.5, 0.2]. A 4-tap FIR filter is used as a T

2
-fractionally spaced quantized

equalizer, with Bc = Bd = 8, and 9. In this simulation, the transmitted signal was 6-PAM,
sðiÞ 2 1; 0:6; 0:2;�0:2;�0:6;�1f g with E s6

� �
¼ 0:3489; E s4

� �
¼ 0:3771; E s2

� �
¼ 0:4667; and

R2 ¼ 0:808: The value of jjuijj
2 is the norm of the received signal vector. The value of E jjuijj

2
� �

was computed as the average over 10,000 realizations of jjuijj
2: The value of experimental MSE

was obtained as the average over 100 repeated runs. Figures 5 and 6 are plots of the
experimental MSE and the theoretical MSE versus the step-size m for Bc = Bd = 8 and 9 bits,
respectively. It can be seen from the figure that the theoretical results reasonably match the
experimental results. We can also see that, for Bc = Bd = 8 bits, the experimental MSE reaches
a minimum value of �30.13 dB, which corresponds to an optimal value of m equal to 1.5 �
10�2, while our theory predicted a minimum achievable MSE of �30.38 dB at m0 = 0.94 �
10�2. For Bc = Bd = 9 bits, the experimental MSE reaches a minimum value of �32.11 dB,
which corresponds to an optimal value of m equal to 10�2. On the other hand, our theory
predicted a minimum achievable MSE of -33.38 dB at m0 = 0.47 � 10�2.
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Figure 5. Theoretical and simulation MSE of CMA for Bc = Bd = 8.
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Figure 6. Theoretical and simulation MSE of CMA for Bc = Bd = 9.
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Here, we note that the experimental value results validate that the steady-state MSE is not a
monotonically increasing function of m, as predicted by our analytical results. Furthermore, the
experimental values of the minimum achievable MSE match reasonably well the analytical
values. Thus, the derived results for the minimum MSE can be reliable in predicting the best
steady-state performance, which the CMA can achieve for a given word-length. However, the

Table II. Expressions for EMSE in a quantized environment.
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experimental values for the optimum step size are lower than the corresponding predicted
analytical values. This is due to quantizer underflow effects that were not taken into
consideration in our quantization model. Thus, a more conservative (larger) design value for m0
should be taken into consideration to account for this effect.

4.6. Summary of results

Table II summarizes the derived expressions for the finite precision steady-state EMSE for
several of the algorithms of Table I. For the first three EMSE results in the table, the derivation
provided in the article is different from prior approaches in that it relies on energy conservation
arguments. In the SA case, the EMSE expression has been obtained without relying on the
independence assumption. All other EMSE expressions in the table appear to be new. Table III
lists the derived expressions for the optimum step-size of each algorithm and the corresponding
minimum achievable EMSE.

Table III. Optimum algorithm step-size and minimum EMSE.
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5. CONCLUSIONS

In this paper, we developed a framework for the finite precision steady-state analysis of adaptive
filtering algorithms that, in our opinion, facilitates the derivation of earlier results and also leads
to some new results, especially for adaptive algorithms with complex update equations.

One of the main features of the framework developed herein is that its starting point is the
fundamental energy (or variance) relation (15). Comparing this relation to the corresponding
infinite precision variance relation (18), we can extend the infinite precision results to the finite
precision case with minimal effort for a large class of adaptive algorithms. In the general case,
the finite precision variance relation could be solved to arrive at the desired EMSE. We could
also find expressions for the optimum algorithm step-size that minimizes the EMSE and the
corresponding minimum achievable EMSE, for each algorithm.
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