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SUMMARY The article describes recent adaptive estimation algo-
rithms over distributed networks. The algorithms rely on local collabora-
tions and exploit the space-time structure of the data. Each node is allowed
to communicate with its neighbors in order to exploit the spatial dimension,
while it also evolves locally to account for the time dimension. Algorithms
of the least-mean-squares and least-squares types are described. Both in-
cremental and diffusion strategies are considered.
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1. INTRODUCTION

Distributed networks linking PCs, laptops, cell phones, sen-
sors and actuators will form the backbone of future data
communication and control networks. Applications will
range from sensor networks to precision agriculture, en-
vironment monitoring, disaster relief management, smart
spaces, target localization, as well as medical applications
[1]–[4]. In all these cases, the distribution of the nodes in
the field yields spatial diversity, which should be exploited
alongside the temporal dimension in order to enhance the
robustness of the processing tasks and improve the proba-
bility of signal and event detection [1].

Distributed processing deals with the extraction of in-
formation from data collected at nodes that are distributed
over a geographic area. For example, each node in a net-
work of nodes could collect noisy observations related to a
certain parameter of interest. The nodes would then inter-
act with each other in a certain manner, as dictated by the
network topology, in order to arrive at an estimate of the pa-
rameter. The objective is to arrive at an estimate that is as
accurate as the one that would be obtained if each node had
access to the information across the entire network.

Obviously, the effectiveness of any distributed imple-
mentation will depend on the modes of cooperation that are
allowed among the nodes. Figure 1 illustrates three such
modes of cooperation.

In an incremental mode of cooperation, information
flows in a sequential manner from one node to the adjacent
node. This mode of operation requires a cyclic pattern of
collaboration among the nodes, and it tends to require the
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Fig. 1. Three modes of cooperation.

least amount of communications and power [5]–[8], [15].
In a diffusion implementation, on the other hand, each node
communicates with all its neighbors as dictated by the net-
work topology. The amount of communication in this case
is higher than in an incremental solution. Nevertheless, the
nodes have access to more data from their neighbors. The
communications in the diffusion implementation can be re-
duced by allowing each node to communicate only with a
subset of its neighbors. In this mode of cooperation, the
choice of which subset of neighbors to communicate with
can be randomized according to some performance crite-
rion.

2. ADAPTIVE NETWORKS

In this work we describe distributed algorithms that enable a
network of nodes to function as an adaptive entity following
the works [8]–[13]. In order to clarify what we mean by
an adaptive network, let us first review the structure of a
traditional adaptive filter.

As is well known, and as shown in Fig. 2, an adap-
tive filter is generally a digital filter that changes its internal
structure in response to an excitation and a reference sig-
nal. At each time instant, the filter compares its output to
a reference signal and generates an error signal. The filter
then adjusts its coefficients depending on whether the error
is large or small. Thus, the key fact to note is that an adap-
tive filter responds in real-time to its data and to variations
in the statistical properties of this data. We want to extend
this ability to the network domain. By an adaptive network
we therefore mean an inter-connected structure of adaptive
nodes that is able to respond to data in real-time and to track
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Fig. 2. An adaptive filter structure.

variations in the statistical properties of the data as well. As
a result, in an adaptive network, whenever information ar-
rives at a particular node, the information creates a ripple
effect throughout the network and it influences the perfor-
mance and behavior of the other nodes as dictated by the
network topology — see the schematics in Fig. 3.

Fig. 3. A schematic representation of an adaptive network consisting of an
interconnected system of adaptive nodes.

To illustrate the concept of an adaptive network, con-
sider a collection of nodes and assume the network is re-
quired to estimate a certain parameter of interest – see
Fig. 4. Each node collects local observations and at the
same time interacts with its immediate neighbors. At every
instant, the local observation is combined with information
from the neighboring nodes in order to improve the estimate
at the local node. By repeating this process of simultaneous
observation and consultation, the nodes are constantly ex-
hibiting updated estimates that respond to the observations
in real time. In steady-state, after sufficient observations and
cooperation, the nodes would converge to desired estimates
of the unknown parameter.

We now describe several adaptation rules that exploit
both temporal and spatial information and allow the nodes
to estimate a parameter of interest by cooperating distribu-
tively.

2.1. Notation

In the remainder of the article we use boldface letters for
random quantities and normal font for non-random (deter-
ministic) quantities. We also use capital letters for matri-
ces and small letters for vectors. For example, d is a ran-
dom quantity and d is a realization or measurement for it,
and R is a covariance matrix while w is a weight vector.
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Fig. 4. An illustration of an adaptive network strategy.

The notation ∗ denotes complex conjugation for scalars and
complex-conjugate transposition for matrices.

To begin with, and following [10], consider a net-
work with N nodes (see Fig. 5). Each node k has access
to time-realizations {dk(i), uk,i} of zero-mean spatial data
{dk, uk}, k = 1, . . . , N , where each dk is a scalar measure-
ment and each uk is a 1 × M row regression vector. We
collect the regression and measurement data into two global
matrices:

U ∆= col{u1, u2, . . . , uN} (N ×M) (1)

d ∆= col{d1, d2, . . . , dN} (N × 1) (2)

where the notation col{·} denotes a column vector (or ma-
trix) with the specified entries stacked on top of each other.
These quantities collect the data across all N nodes. The
objective is to estimate the M × 1 vector wo that solves

min
w

E‖d− Uw‖2 (3)

where E is the expectation operator.

Fig. 5. A distributed network with N active nodes accessing space-time
data.



The traditional iterative steepest-descent solution for
determining wo is given by

wi = wi−1 + µ

N∑

k=1

(Rdu,k −Ru,kwi−1) (4)

where µ > 0 is a step-size parameter, wi is an estimate for
wo at iteration i, and

Ru,k
∆= E u∗kuk and Rdu,k

∆= E dku∗k

An equivalent description of (4) that is prune to a distributed
implementation can be motivated as follows.

Let us define a cycle visiting every node only once. Let
ψ

(i)
k denote a local estimate of wo at node k at time i, and

assume node k has access to ψ
(i)
k−1, which is an estimate of

wo at node k − 1 (see Fig. 6).

Fig. 6. A cycle covering nodes 1 through N .

If at each time instant i, we start with the initial condi-
tion ψ

(i)
0 = wi−1 and iterate cyclicly from node 1 to node

N then, at the end of the procedure, the local estimate at
node N will coincide with wi from (4), i.e., ψ

(i)
N = wi. In

other words, the following implementation is equivalent to
(4):





ψ
(i)
0 = wi−1

ψ
(i)
k = ψ

(i)
k−1 − µk [Rdu,k −Ru,kwi−1]

∗

k = 1, . . . , N

wi = ψ
(i)
N

(5)

Observe that the iteration for ψ
(i)
k is over the spatial index k.

Recursion (5) still requires the N nodes to have access to the
global information wi−1. In order to resolve this difficulty
and arrive at a distributed implementation, we can resort to
incremental techniques [5], [6], [8], [15]. If each node relies
on the local estimate ψ

(i)
k−1 received from node k − 1, as

opposed to wi−1, then an incremental version of algorithm

(5) would result, namely,




ψ
(i)
0 = wi−1

ψ
(i)
k = ψ

(i)
k−1 − µk

[
Rdu,k −Ru,kψ

(i)
k−1

]∗

k = 1, . . . , N

wi = ψ
(i)
N

(6)

An adaptive implementation of (6) can be obtained by re-
placing the second-order moments {Rdu,k, Ru,k} by instan-
taneous approximations, say of the LMS type, as follows:

Rdu,k ≈ dk(i)u∗k,i , Ru,k ≈ u∗k,iuk,i (7)

by using data realizations {dk(i), uk,i} at time i. The ap-
proximations (7) lead to a distributed incremental LMS al-
gorithm of the form derived in [8]–[10]:

For each time i ≥ 0, repeat:




ψ
(i)
0 = wi−1

ψ
(i)
k = ψ

(i)
k−1 + µku∗k,i

(
dk(i)− uk,iψ

(i)
k−1

)

k = 1, . . . , N

wi = ψ
(i)
N

(8)

Obviously, different instantaneous approximations in (7) for
the second-order moments lead to different adaptation rules.
For example, an NLMS-type incremental solution would
take the form:

For each time i ≥ 0, repeat:




ψ
(i)
0 = wi−1

ψ
(i)
k = ψ

(i)
k−1 + µku∗k,i

ε+‖uk,i‖2
(

dk(i)− uk,iψ
(i)
k−1

)

k = 1, . . . , N

wi = ψ
(i)
N

(9)

where ε > 0 is a small parameter.

3. INCREMENTAL LEAST-SQUARES SOLUTIONS

We can also consider incremental RLS implementations as
described in [12]. Thus assume again that each node k has
access to regressor and measurement data uk,i and dk(i),
k = 1, . . . , N . At each time instant i, the entire network
has access to space-time data

yi =




d1(i)
d2(i)

...
dN (i)


 and Hi =




u1,i

u2,i

...
uN,i


 . (10)

Here yi and Hi are snapshot matrices unveiling the network
data status at time i. We can then formulate an exponen-
tially weighted regularized least-squares (LS) problem [14],



where the weight vector estimate wi is found by solving:

min
w

[
λi+1w∗Πw +

(Yi −Hiw
)∗Wi

(Yi −Hiw
)]

(11)

where Π > 0 is a regularization matrix, and the weighting
matrix is given by

Wi = diag{λiΓ, λi−1Γ, · · · , λΓ,Γ} (12)

with a spatial weighting matrix

Γ = diag{γ1, γ2, · · · , γN} (13)

and a (time) forgetting factor

0 ¿ λ ≤ 1. (14)

Moreover, Yi and Hi collect all the data blocks available
from the beginning of the observation period up to current
time

Yi =




y0

y1
...

yi


 and Hi =




H0

H1

...
Hi


 . (15)

The global data matrices Yi and Hi exhibit space-time
structure, which naturally suggests a distributed solution.
An algorithm that updates wi recursively and in a distributed
fashion is given by [12]:

ψ
(i)
0 ← wi−1; P0,i ← λ−1Pi−1

for k = 1 : N

ek(i) = dk(i)− uk,iψ
(i)
k−1

ψ
(i)
k = ψ

(i)
k−1 + Pk−1,i

γ−1
k +uk,iPk−1,iu∗k,i

u∗k,iek(i)

Pk,i = Pk−1,i − Pk−1,iu∗k,iuk,iPk−1,i

γ−1
k +uk,iPk−1,iu∗k,i

end
wi ← ψ

(i)
N ; Pi ← PN,i .

(16)

where Pk,i and Pi are M×M matrices updated as explained
above. Note that the iterations are performed over the spa-
tial index k. Therefore, a path is induced across the network,
along which wi−1 is spatially updated by sequentially visit-
ing every node once. Moreover, at each time i, the estimate
ψ

(i)
k at node k is the LS solution considering data blocks
Yi−1 and Hi−1 in addition to the data collected along the
path. At the end of the cycle, ψ

(i)
N will contain precisely the

desired solution wi. If we start from i = 0 with w−1 = 0
and P−1 = Π−1 and repeatedly apply (16) taking into ac-
count sequentially all the data blocks up to time i then, by
induction, ψ

(i)
N (or wi) will be the solution to the global

LS problem (11). Figure 7 depicts the structure of the in-
cremental implementation, in which both ψ

(i)
k and Pk,i are

transmitted to the next node in the path.

Fig. 7. The cooperation strategy of the distributed RLS algorithm (dRLS)
described by (16).

A simplification that requires less communications
while keeping the performance close to the exact implemen-
tation (especially for λ → 1) can be obtained as follows. We
allow collaboration for the estimates while keeping the ma-
trices Pk,i evolving locally and independent from the neigh-
bor nodes. This approximation leads to the following algo-
rithm [12]:

ψ
(i)
0 ← wi−1; P0,i ← λ−1Pi−1

for k = 1 : N

ek(i) = dk(i)− uk,iψ
(i)
k−1

ψ
(i)
k = ψ

(i)
k−1 + Pk,i−1

γ−1
k +uk,iPk,i−1u∗k,i

u∗k,iek(i)

Pk,i = Pk,i−1 − Pk,i−1u∗k,iuk,iPk,i−1

γ−1
k +uk,iPk,i−1u∗k,i

end
wi ← ψ

(i)
N ; Pi ← PN,i .

(17)

Algorithm (17) iterates the estimates ψ
(i)
k over space,

while Pk,i is iterated over time with local data only. As
a consequence it requires transmission complexity O(M)
as opposed to O(M2) for (16). Figure 8 presents the algo-
rithm’s collaboration strategy, in which estimates are shared
along the path and matrices Pk,i evolve locally.

4. DIFFUSION LMS SOLUTION

When more communication resources are available, we may
take advantage of the network connectivity and devise more
sophisticated peer-to-peer cooperation rules. We describe
two such LMS-based diffusion protocols here following
[9]–[11] – see Figs. 9 and 10; extensions to RLS-based
diffusion schemes appear in [13].

The neighborhood of a node k at time i− 1 is denoted
by Nk(i − 1) and is defined as the set of nodes directly
connected to it, including itself. Each individual node k
consults peer nodes from its neighborhood and combines
their past estimates



Fig. 8. The cooperation strategy of the low communications distributed
RLS algorithm (LC-dRLS).

{ψ(i−1)
` ; ` ∈ Nk(i− 1)}

with its own past estimate ψ
(i−1)
k . The node generates an

aggregate estimate φ
(i−1)
k and feeds it into its local adaptive

filter. The strategy can be expressed as follows for LMS-
type recursions:

φ
(i−1)
k = fk

(
ψ

(i−1)
` ; ` ∈ Nk(i− 1)

)

ψ
(i)
k = φ

(i−1)
k + µku∗k,i

(
dk(i)− uk,iφ

(i−1)
k

)
(18)

for some local combiner fk (·). The combiners fk(·) can
be nonlinear or even time-variant, to reflect, for instance,
changing topologies or to respond to non-stationary envi-
ronments.

One simple combining rule is to average the local and
neighbors’ previous estimates, i.e.,

Fig. 9. A network with diffusion cooperation strategy.

φ
(i−1)
k =

∑

`∈Nk

c(k, `) ψ
(i−1)
`

ψ
(i)
k = φ

(i−1)
k + µku∗k,i

(
dk(i)− uk,iφ

(i−1)
k

)
(19)

where c(k, `) = 1/deg(k), with deg(k) denoting the degree
of node k (number of incident links at this node, includ-
ing itself). This scheme exploits network connectivity more
fully, leading to more robust algorithms. If links or nodes
eventually fail, the adaptive network can react by relying
on the remaining topology. Note that the adaptive network
would work even for non-connected graphs, relying on the
individual agents. Furthermore, since more information is
aggregated in the local adaptive filter updates, individual
nodes can attain better learning behavior when compared to
the non-cooperative case, provided that the combiners fk(·)
are well designed.

Another combination rule is motivated by the analysis
results of [16]. The rule allows the network to assign convex
combination weights to the local estimate and the aggregate
estimate. Moreover, the weights can be adjusted adaptively
so that the network can respond to node conditions and as-
sign smaller weights to nodes that are subject to higher noise
levels. One particular implementation is as follows in terms
of combination weights {αk}:

αk =
1

1 + | exp(−zk)|2
ψ

(i−1)

k =
∑

`∈Nk/k

ck(`)ψ(i−1)
`

φ
(i−1)
k = αkψ

(i−1)
k + (1− αk)ψ

(i−1)

k

ek(i) = dk(i)− uk,iφ
(i−1)
k

ψ
(i)
k = φ

(i−1)
k + µ u∗k,iek(i)

hk =
(
ψ

(i−1)
k − ψ

(i−1)

k

)
ek(i)αk (1− αk)

zk = zk +
µzuk,i

‖uk,i‖4 hk

Fig. 10. A network with an adaptive diffusion cooperation strategy.
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In order to illustrate the adaptive network performance,
we present a simulation example in Figs. 11 and 12. Fig.
11 depicts the network topology and the network statistical
profile. The regressors follow a first order Markov process
with power σ2

u,k and correlation index αk. The background
noise power is denoted by σ2

v,k. Note how the averaging dif-
fusion protocol (19) outperforms the non-cooperative case
(where each node runs an individual filter). Fig. 12, left
plot, presents the average global excess mean-square error
(EMSE), defined as

ζg(i) =
1
N

N∑

k=1

ζk(i)

where the individual EMSE at node k is depicted in the right
plot and is defined as (see also Sec. 5):

ζk(i)E
∣∣∣uk,i

(
wo −ψ

(i−1)
k

)∣∣∣
2

5. MEAN-SQUARE PERFORMANCE

The prior algorithms exploit both the spatial and tempo-
ral dimensions of the data. In [8], [10], [12] we studied the
mean-square performance of incremental LMS (8) and low-
communications dRLS (17) using energy conservation ar-
guments [14]; performance analysis for diffusion schemes
of the LMS and RLS types appear in [11], [13] and are not
reviewed here for brevity.

The analysis in the incremental case [8], [10], [12] re-
lied on the following assumptions for the random variables
{dk(i), uk,i}:

1. The unknown vector wo relates {dk(i), uk,i} as

dk(i) = uk,iw
o + vk(i) (20)

where vk(i) is some white noise sequence with vari-
ance σ2

v,k and independent of {dl(j), ul,j} for all l, j.
2. uk,i is independent of ul,i for k 6= l (spatial indepen-

dence).
3. For every k, the sequence {uk,i} is independent over

time (time independence).
4. The regressors {uk,i} arise from a source with circular

Gaussian distribution with covariance matrix Ru,k.

Define the error signals:

ψ̃
(i)

k−1
∆= wo −ψ

(i)
k−1 (21)

ea,k(i) ∆= uk,iψ̃
(i)

k−1 (22)

ek(i) ∆= dk(i)− uk,iψ
(i)
k−1 (23)

where (21) denotes the weight-error vector, (22) defines the
a priori local error, and (23) defines the output error. Mean-
square analysis is interested in evaluating, in steady-state
and for each node k, the mean-square deviation (MSD), the
excess mean-square error (EMSE), and the mean-square er-
ror (MSE). These quantities are defined as

ηk
∆= E‖ψ̃(∞)

k−1‖2 (MSD) (24)

ζk
∆= E|ea,k(∞)|2 (EMSE) (25)

ξk
∆= E|ek(∞)|2 = ζk + σ2

v,k (MSE) (26)

Unlike traditional adaptive filter performance, in the dis-
tributed case, the weight error vectors converge to a spatial
error profile and stabilize at individual error energy levels,
i.e.,

E‖ψ̃(i)

k ‖2 → εk , as i →∞
with a value εk that is possibly different for each node k.
Moreover, due to cooperation, the nodes are interconnected.
This fact makes the analysis more challenging.

5.1. Incremental LMS

Introduce the eigen-decomposition Ru,k = UkΛkU∗
k ,

where Uk is unitary and Λk is a diagonal matrix with the
eigenvalues of Ru,k. Let

F kI − 2µkΛk + γµ2
kΛ2

k + µ2
kbkbT

k

where bk = diag{Λk} is a column vector containing the di-
agonal entries of Λk, γ = 1 for circular complex regressors,
and γ = 2 for real regressors. Then it was shown in [8],
[10] that the MSD and EMSE are given by

ηk = ak (I −Πk,1)
−1

q (27)

ζk = ak (I −Πk,1)
−1

bk (28)



where ak is a row vector, Πk,1 is a matrix, and q is a column
vector:

q = col{1, 1, · · · , 1}
Πk,l

∆= F k+l−1F k+l · · ·FNF 1 · · ·F k−1

l = 1, . . . , N

ak
∆= gkΠk,2 + gk+1Πk,3 + · · ·+ gk−2Πk,N + gk−1

gk = µ2
kσ2

v,kbT
k

Analyzing these results, we find that every node individu-
ally experiences the influence of the entire network, with
some emphasis given to the local statistics, as represented
by bk and σ2

v,k.
For sufficiently small step-sizes, we can use the ap-

proximation
F k ≈ I − 2µkΛk

i.e., F k becomes a diagonal matrix. As a result,

I −Π ≈ 2µ1Λ1 + 2µ2Λ2 + · · ·+ 2µNΛN
∆= D

and
ak ≈ µ2

1σ
2
v,1b

T
1 + · · ·+ µ2

Nσ2
v,NbT

N
∆= a

where D is a diagonal matrix and a is a row vector. Then

ηk ≈ aD−1q (MSD)

which reveals an interesting behavior. Despite the sim-
ple cooperation mode in the incremental strategy, for small
step-sizes, there is an equalization effect on the MSD
throughout the network. In the same vein, the EMSE for
small step-sizes is given by

ζk ≈ aD−1bk (EMSE)

5.2. Incremental Least-Squares

In a similar vein, the mean-square-error performance of the
low-communication incremental least-squares solution (17)
was studied in [12]. Let

F k = (1− 2βk + δβ2
k)I + β2

kbkrT
k

where δ = 1 for complex signals and δ = 2 for real signals,
rk = diag{Λ−1

k }, and βk is given by

βk =





1−λ
γ−1

k

, for λ → 1

1−λ
γ−1

k λ + (1−λ)M
, for smaller λ .

in terms of the forgetting factor λ. Then it was shown in
[8], [10] that the MSD and EMSE are again given by

ηk = ak (I −Πk,1)
−1

q (29)

ζk = ak (I −Πk,1)
−1

bk (30)

where now gk = β2
kσ2

v,krT
k .

6. CONCLUDING REMARKS

We have described several distributed and cooperative algo-
rithms that endow distributed networks with learning abili-
ties. They address distributed estimation problems that arise
in a variety of applications, such as environment monitor-
ing, target localization and potential sensor network prob-
lems [1].

For low energy profile implementations, the incremen-
tal LMS algorithm performs well. As the available re-
sources increase, more sophisticated learning rules, such
as recursive least-squares, can help speed network conver-
gence. Still, with the increase in the size of networks, set-
ting a cycle may not be a trivial task. In order to alleviate
topology constraints and exploit more fully network con-
nectivity, diffusion protocols can be developed. They give
rise to peer-to-peer estimation protocols that exploit spatial
diversity, improve robustness, and benefit the network in
terms of estimation performance in comparison to the non-
cooperative case. Diffusion protocols may also be extended
to the RLS case and other types of adaptive updates.
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