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Discussion by Ali H. Sayed
�

The main result of the article by Bolzern et al. is Theorem 3.1 In order to put the result into
perspective, and in order to comment on its value, let us first summarize its conclusion.

Thus consider the standard state-space model (1)–(2) in the paper, where ������� denotes a regres-
sor sequence and �	����� is the state variable. One can pose the problem of estimating the uncorrupted
output 
������	�
�����������	����� in a robust manner by seeking an estimator �
������ that satisfies a (suboptimal)���

criterion, namely one that guarantees that the following bound is met:�������� �"!$# 
������&%'�
������)( *���+���� �"!-, ����. ����� � . �����-/ �0������ �"!-1 ����� * / 23�	�)45�+% �� !76 �98 ���! 23�	�)45�+% �� !76;:=< * (1)

for some < , and for any initial guess >� ! and any square-summable sequences ? .$@ 1BA .
One solution to this problem (also known as the central solution) is given by equations (4),(5),(10),

(11) in the paper:

��	�����C� ��D���D%FEG�"/IHI����� 2�J �����&%K������� � ��	���&%FEG� 6 @ �	�L%MEG�	� �� ! @
(2)�
������C� ������� � ��	����� @ (3)HI�����N� O �����P�������EQ/R������� � O �����P�S����� @
(4)

O ���T/UEG�C� 2 O ����� ��� /U�VEW% < � * �P�������P������� � 6 ��� / ,YX @ O �)45�	� 8 ! @
(5)

if the feasibility condition (12) is satisfied, i.e.,
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This condition is obviously always satisfied for any <a` E . Also, since the standard Kalman (or

� * )
filter solution satisfies (1) with < �'b , it is clear that we need only focus on choices of < that lie in
the interval # E @ bc� .

Theorem 3 in the paper then states that the above
�d�

-filter actually guarantees a tighter bound
in (1) above than the desired < . In particular, the theorem states that it holds that�e������ �"!$# 
������&%'�
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This means the following. If one desires an
�d�

filter with a certain robustness level, say >< , then
one could instead design an

� �
-filter as above with the following value of < ,

< � � ><b % >< ` >< @
(7)

which is larger than >< . Then by (6), the filter designed with this < will have a robustness level that
does not exceed bES/ < � * � >< _
Figure 1 compares the values of < (solid line) that correspond to values of >< in the interval # E @ bc� ,
as given by the transformation (7). The horizontal axis is >< and the dotted curve is the line J � >< .
The solid curve is < . The figure shows that the difference between < and >< becomes pronounced
for values ><a` EY_ b . This suggests that the above design procedure of interchanging >< and < is most
useful for >< in the interval EY_ b : ><I: b . The question now is why use a larger < for designing an� � % filter of level >< ?
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Figure 1: Comparison of the values of < and >< as related by (7). The solid curve shows how < varies
as a function of >< .

In an attempt to answer the above question, the authors introduce the
� * (or mean-square)

performance that is associated with an
�d�

filter of level < , and which is given by (cf. Eqs. (6)–(7)
in the paper): �

* � < �	� E] ������� �"! ������� ����� ����� 8 * ����� � ����� � /;HI����� HI����� ��� �S����� @ (8)

where � �����	� X % HI�����P��������� and 8 * ����� satisfies8 * ���T/
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Here HI����� is still given by (4) in terms of the Riccati variable O ����� . We are writing

�
* � < � instead

of

�
* in order to emphasize the fact that it is a function of < (through O ����� ).



Now the authors’ motivation in the paper for proposing the use of a larger < than the desired ><is the following. If the above
� * performance could be shown to decrease with < , then by using

a larger < one not only guarantees an
�d�

-filter with the desired robustness level >< , but one also
obtains an

���
filter with a better

� * performance. The validity of such a conjecture, however,
is left unanswered in the paper for general models. Right before the beginning of Section 4 the
authors state: “It would be tempting to argue that the actual mean-square performance of the central���

-filter is monotonic (i.e., decreasing with < ) as well. As a matter of fact, such a property can be
proven in the scalar parameter case � � E or in the case of constant regressor vector, but its general
validity is still an open issue.” Also, in the last paragraph of the discussion in Section 5, it is stated
that “In general, an increase of < is expected to improve the mean-square-performance at the cost
of decreased robustness.”

We believe that this issue can be clarified analytically. In any case, let us assume that the au-
thors’ conjecture is valid in general so that the

� * -performance of the
� �

-filter (2)–(5) can be
expected to decrease with increasing values of < . The natural question then is whether the improve-
ment can be significant to justify the procedure. Figure 2 plots the

� * -performance of an
� �

-filter
for different values of < in the interval # E @ bc� . The state-space model used was of dimension 10 and
the filter was run for

� 4 4 iterations each time (with the same random data for each < ). The noise
sequences were Gaussian with variances 4h_ 4BE . Also , � 4h_ E and 8 ! � 4h_ � X . The regressor vectors
were generated randomly. This experiment was repeated extensively several times with random
data, always exhibiting a similar behavior.
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Figure 2: A plot of the mean-square performance of an
� �

-filter as a function of < .

Two remarks follow from this example and from the extensive simulations:

(i) The figure shows that the
� * -performance improves for values of < that lie approximately in

the range # E @ EY_ b ( . This is because the
� * -norm seems to decrease rapidly within this interval.

(ii) The figure also shows that for values of < larger than EY_ b there is minor improvement in the� * -norm of the filter. This is because for these values of < , the
� * -norm essentially reaches



its steady-state value (which coincides with that of the Kalman filter). Observe that in view
of the authors’ conjecture that the

� * performance of an
� �

filter is generally expected to
decrease with < , and in view of the fact that the Kalman filter achieves the smallest (i.e., op-
timal)

� * performace for < � b , it is reasonable to expect (or to conjecture again) that the� * performance of an
� �

filter should in general exhibit the typical behavior shown in Fig.
2. We have observed this behavior in many random simulations. It is of course a worthy and
interesting issue to investigate analytically.

While remark (i) suggests that a noticeable improvement in
� * -performance can be obtained for

values of < in the interval # E @ EY_ b ( , this observation seems to run against the purpose of the procedure
proposed in the paper. We saw in Figure 1 that replacing >< by a higher value < according to the
transformation (7) could make a difference only for values of < larger than EY_ b . But for this range
of < , Figure 2 above suggests that the

� * -performance is essentially at a steady-state value and is
therefore practically insensitive to < . One way around this difficulty is perhaps to devise a tighter
bound than the one presented in Theorem 3 of the paper.

We may also mention that the simulation results in the paper use values < � E and < � EY_ 4 �
, for

which the transformation (7) does not lead to noticeable differences between < and >< , as indicated
by Figure 1. The resulting improvement in

� * performance that is reported by the authors is not
therefore due to the proposed transformation (7) but rather to the inherent sensitivity of the

� *
performance to changes in < around unity, as indicated in the example of Figure 2. The above
discussion suggests that a more convincing example may not exist.

In all, this is a nicely written article that raises some issues that deserve closer examination.


