
IEEE COMMUNICATIONS LETTERS, VOL. 13, NO. 7, JULY 2009 483
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Abstract—From 1820 4 × 4 binary matrices, 253 binary pre-
processing matrices are designed for double space-time transmit
diversity (DSTTD) systems with two 2 × 2 space-time block
code (STBC) encoders. Among them, six matrices yielding the
highest average minimum-post-processing SNR are proposed
from numerical experimentation under uncorrelated channel
conditions. The proposed preprocessing performs a superposition
of the first and second (second and first) STBC symbols and a
selection of two transmit antennas. Simulation results show that
the proposed method provides 1.7 dB (1.8 dB) SNR improvement
in uncorrelated (correlated) channel environment at 10−3 bit
error rate over the conventional antenna shuffling method.

Index Terms—Double space-time transmit diversity (DSTTD),
antenna shuffling, antenna selection, superposition.

I. INTRODUCTION

TRANSMIT antenna shuffling (or grouping) has been
proposed for the double space-time transmit diversity

(DSTTD) systems to enhance system performance [1]–[3].
The DSTTD symbol matrix is generated by two space-time
block code (STBC) encoders [4] at the transmitter. Shuffling
is then performed by multiplying a DSTTD symbol matrix
with a preprocessing matrix influenced by feedback from the
receiver so that the system performance can be improved. For
the preprocessing matrices, the systems in [2] and [3] use six
permutation matrices to shuffle four DSTTD symbols with
four transmit antennas. Thus, 3-bit feedback information is
required to distinguish among the shuffling matrices.

In this paper, we introduce a general binary preprocessing
matrix set with 1820 matrices including six conventional
antenna shuffling matrices. The number of preprocessing ma-
trices can be reduced to 253 by exploiting certain properties.
Since 253 candidates can be a burden to the system, we
propose to use the six preprocessing matrices that yield
the highest average minimum-post-processing signal-to-noise
ratio (SNR) by a computer simulation under uncorrelated
channel conditions. Interestingly, the proposed binary pre-
processing performs a superposition of the first and second
(second and first) symbols coded by the different STBC
encoders and a selection of two transmit antennas among
four. From bit-error-rate (BER) simulations, it is seen that
the proposed binary processing method provides SNR gain
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Fig. 1. Transceiver model for a preprocessed DSTTD system.

compared to the conventional antenna shuffling DSTTD sys-
tem, regardless of the spatial correlation. At the 10−3 BER,
1.7 dB and 1.8 dB SNR gains are provided in uncorrelated
and correlated channel environments, respectively, with the
same 3-bit feedback quantity. Furthermore, it is also seen that
0.5 dB and 1.1 dB gains in uncorrelated and correlated channel
environments, respectively, can be still obtained with only 2-
bit feedback information.

Notation. The superscripts ‘T ’ and ‘∗’ denote transposition
and complex conjugate transposition for any scalar, vector or
matrix, respectively; A−1 and [A]ll denote matrix inversion
and the lth diagonal element of A, respectively; and IN and
0N represent that N -dimensional identity and zero matrices,
respectively.

II. SYSTEM MODEL

The transceiver model of the DSTTD system with four
transmit and two receive antennas is shown in Fig. 1. The
2 × 4 MIMO channel matrix is denoted by H = [h1 h2]T ,
where hn ∈ C4×1 is a vector channel for the nth receive
antenna. An information symbol vector x = [x1 x2 x3 x4]T

yields two 2 × 2 STBC matrices[
c∗
1

c∗
2

]
=

[
x1 −x∗

2
x2 x∗

1

]
and

[
c∗
3

c∗
4

]
=

[
x3 −x∗

4
x4 x∗

3

]
.

After multiplying the two STBC matrices (DSTTD matrix)
with a preprocessing matrix Wk ∈ C4×4 according to the
feedback index k, it is transmitted by four transmit antennas
for two consecutive symbol periods. Denoting yn(t) as a
received symbol, where t is a time index, the received signal
can be written as

[
y1(0) y1(1)
y2(0) y2(1)

]
= HWk

⎡
⎣ x1 −x∗

2
x2 x∗

1
x3 −x∗

4
x4 x∗

3

⎤
⎦

︸ ︷︷ ︸
DSTTD

+ V (1)

where V ∈ C2×2 is a noise matrix whose elements are
additive white Gaussian noise (AWGN) with variance N0.
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The linearized form expression of the signal model in (1)
is given by

y � [y1(0), y∗
1(1), y2(0), y∗

2(1)]T = Skx + v (2)

where v ∈ C4×1 is the vector representation of the AWGN
matrix V , and Sk is the 4 × 4 equivalent channel matrix:

Sk =

⎡
⎣

s∗
k,1

s∗
k,2

s∗
k,3

s∗
k,4

⎤
⎦
∗

=

⎡
⎣ hT

1 wk,1 hT
1 wk,2 hT

1 wk,3 hT
1 wk,4

h∗
1wk,2 −h∗

1wk,1 h∗
1wk,4 −h∗

1wk,3

hT
2 wk,1 hT

2 wk,2 hT
2 wk,3 hT

2 wk,4

h∗
2wk,2 −h∗

2wk,1 h∗
2wk,4 −h∗

2wk,3

⎤
⎦. (3)

Here, sk,m and wk,m are the mth column vectors of Sk and
Wk, respectively. If the minimum mean square error (MMSE)
detector, i.e., x̂ = (S∗

kSk + ρ−1I4)−1S∗
ky, is assumed at the

receiver, the post-processing SNR for xl can be written as
follows [5]:

SNRk,l = ([Φ]ll)
−1 − 1 (4)

where Φ = (ρS∗
kSk +I4)−1; ρ = Es

N0
is the system SNR; and

Es is the average transmission power per antenna. The receiver
determines the Wkopt from a set WS = {W1, · · · , WK} by
solving the min-max optimization:

Wkopt = arg max
Wk∈WS

(
min

l
(SNRk,l)

)
(5)

and feeds back kopt, represented by �log2 K� bits, to the
transmitter, where �·� is a ceil operation.

III. PREPROCESSING MATRIX DESIGN

For the conventional DSTTD system with antenna shuffling
in [2] and [3], the preprocessing matrix set was defined as

Wshuffling �{[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
,

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
,

[
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

]
,

[
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

]
,

[
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

]
,

[
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

]}
(6)

In this case, the antenna shuffling matrix is a permutation
matrix, i.e., exactly one entry in each row and column is
equal to 1, and all other entries are 0. This construction
of the preprocessing matrix can be interpreted to mean that
there are neither superposition nor repetition of cm’s and
that every transmit antenna is used for every transmission.
In contrast, to allow the superposition and repetition of cm’s
with transmit antenna selection, any 4-by-4 matrix having the
binary elements 0 and 1 can be a candidate for a preprocessing
matrix Wk. Meanwhile, to keep the average transmit power
of the proposed system to the same level of the conventional
shuffling system, we assume that the total number of elements
1 is limited to four, and we can then choose the candidates of
4-combinations from a set with 16 elements, i.e., ( 16

4 ) = 1820.
As a result, 11-bit (=�log2(1820)�) feedback information is
required. To reduce the feedback information, we examine
some interesting properties. Using these properties, we can
reduce the feedback information by 3 bits without performance
degradation.

A. Properties of Preprocessing Matrices

The number of candidates for the binary preprocessing
matrices can be reduced by the following properties without
any performance degradation.

Property 1. The minimum-post-processing SNR in (5) from
Wk is identical to that from WkP , where P is the permuta-
tion matrix P1 =

[
02 I2
I2 02

]
or P2 =

[
Q 02
02 Q

]
. Here, Q = [ 0 1

1 0 ].
Proof: The effective channel matrix that corresponds to

WkP can be represented as S̄k = FSkP , where F = [ B 0
0 B ].

Here, B = I2 when P = P1 or B =
[

1 0
0 −1

]
when P = P2.

As a result, Φ in (4) is replaced by Φ̄ = (ρS̄∗
kS̄k + I4)−1.

The new Φ̄ can be seen to be:

Φ̄ =
(
P T

(
ρS∗

kF T FSk + I4

)
P

)−1
= P T ΦP (7)

using P T = P−1 and the orthonormality of the column
vectors of F and P . Due to the column and row permutations
with the same permutation matrix P , the positions of the
diagonal elements of Φ in (7) are permuted. Therefore, the
minimum-post-processing SNR does not vary.

Property 2. When one wk,m is zero, the minimum-post-
processing SNR in (4) from Wk is identical to that from
WkP , where P is a permutation matrix P3 =

[
I2 02
02 Q

]
.

Proof: From the Property 1, without loss of generality,
we assume that wk,1 is zero. The effective channel matrix for
WkP3 can be represented as S̄k = FSkP3G, where G =[

C 02
02 I2

]
and C =

[ −1 0
0 1

]
. The new Φ̄ can be then derived as

Φ̄ =
(
GT P T

3

(
ρS∗

kF T FSk + I4

)
P3G

)−1
= GT P T

3 ΦP3G
(8)

using the orthonormality of the column vectors of F , G, and
P3. Noting that P3 permutes the positions of the diagonal
elements of Φ, and that G does not change of diagonal
elements of P T

3 ΦP3 in (8), the minimum-post-processing
SNR does not vary.

Due to the above properties, i.e., Wk ≡ WkP (a wk,m is
zero for Property 2), we can reduce the number of preprocess-
ing candidates from 1820 to 307 without any sacrifice in the
post-processing SNR: from 1820 to 1820−28

2 +28 = 924 where
28 among 1820 is the number of matrices excluded from being
divided by two according to Property 1 since wk,1 = wk,3

and wk,2 = wk,4; from 924 to 924−28
2 + 28 = 476 where 28

among 924 is the number of matrices excluded from being
divided by two according to Property 1 since wk,1 = wk,2

and wk,3 = wk,4; and from 476 to 476 − 338
2 = 307 where

338 among 476 is the number of matrices that Wk = WkP3

in Property 2.

B. Conditions of Preprocessing Matrices

For the linear detection of x in (2) without ambiguity, the
effective channel matrix Sk in (3) should be a full rank matrix
satisfying the following conditions.

Condition 1. Both wk,1 and wk,2 are not zero; otherwise,
sk,1 and sk,2 become zero and the rank of Sk is then two.
Similarly, both wk,3 and wk,4 are not zero.

Condition 2. wk,1 �= wk,3 or wk,2 �= wk,4; otherwise,
sk,1 = sk,3 and sk,2 = sk,4 and the rank of Sk is then two.
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Fig. 2. Frequency of use of the designed 253 preprocessing matrices.
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Due to Conditions 1 and 2, the number of candidates for Wk

can be reduced by 38 and 16, respectively. Consequently, 253
binary preprocessing matrices yield the different minimum-
post-processing SNR, and 8-bit (= �log2(253)�) feedback
information is required for this optimal binary preprocessing
DSTTD system.

IV. NUMERICAL RESULTS

To reduce further feedback information and system com-
plexity with the least performance degradation, we propose to
use the six binary preprocessing matrices that yield the highest
average minimum-post-processing SNR among the 253.

A. Proposed Six Preprocessing Matrices

The simulation environment is as follows. An MMSE
detector is employed; the elements of H are i.i.d complex
Gaussian random variables with zero mean and unit variance;
the feedback channel is error free; and the information bits
are modulated by QPSK with Es = 1.

Fig. 2 shows the average minimum-post-processing SNR,
i.e., E (minl (SNRk,l)) over 10, 000 channel realizations, in
descending order. From this simulation, a six binary prepro-
cessing matrix set yielding the highest average minimum-post-
processing SNR can be obtained as

Wproposed ={[
0 1 1 0
0 0 0 0
0 0 0 0
1 0 0 1

]
,

[
0 1 1 0
0 0 0 0
1 0 0 1
0 0 0 0

]
,

[
0 0 0 0
0 1 1 0
0 0 0 0
1 0 0 1

]
,

[
0 1 1 0
1 0 0 1
0 0 0 0
0 0 0 0

]
,

[
0 0 0 0
0 0 0 0
0 1 1 0
1 0 0 1

]
,

[
0 0 0 0
0 1 1 0
1 0 0 1
0 0 0 0

]}
(9)

Using Wk ∈ Wproposed, c∗1 and c∗2 in (1) are superposed
with c∗4 and c∗3, respectively, and they are then transmitted
through two selected transmit antennas (the underlined mth
row in (9) means the selected mth transmit antenna). The
conventional antenna shuffling matrices in (6) yield the second
largest minimum-post-processing SNR as illustrated in Fig. 2.

B. BER Performance Comparison

In this subsection, we compare the uncoded BER perfor-
mance of the conventional antenna shuffling DSTTD system
with the proposed DSTTD system. For the sake of comparison,
the plain DSTTD system without feedback and the DSTTD
system with full (8 bits) feedback as an upper bound are
included in our simulation. The BER is obtained by averaging
over the independent transmission of 50, 000 frames con-
structed by 100 QPSK symbols for a given ρ. Channel H is
fixed during a frame, but it varies independently over frames.
A spatial correlation is considered as R

1/2
R HR

1/2
T , where

RR = I2 and RT = toeplitz[1, 0.9, 0.81, 0.729]T [3].
As expected, the performance of the proposed DSTTD

system is the closest to the bound in Fig. 3. The proposed
DSTTD system provides 1.7 and 1.8 dB SNR gains in un-
correlated and correlated channels, respectively, compared to
the conventional antenna shuffling DSTTD system with the
same 3-bit feedback quantity at the 10−3 BER. Moreover,
using only 2-bit feedback information, the proposed DSTTD
system can obtain 0.5 and 1.1 dB SNR gains in uncorrelated
and correlated channels, respectively.

V. CONCLUSION

For the DSTTS systems, six processing matrices yielding
the highest average minimum-post-processing SNR were pro-
posed and improved BER performance was achieved com-
pared to the conventional antenna shuffling method.
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