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We describe how certain lossless cascade net-
works arise rather naturally in the study of
fast algorithms for matrices with displacement
structure. In particular, we consider an appli-
cation to rational interpolation problems with
analyticity requirements in the left-half plane.
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1. Introduction

Wilhelm Cauer was a pioneer in the development
of modern theories of network synthesis. After
early contributions to the theory of synthesis of
two-terminal networks [1], he made a visit to MIT
(the Massachusetts Institute of Technology) where
he inspired the famous thesis of O. Brune [2].
Here it was shown that impedance functions of
finite-dimensional passive systems were rational
positive-real functions, and vice versa. A few years
later, S. Darlington presented his famous result [3]
that any such function could be realized as a cas-
cade of lossless sections terminated in a resistive
load. Since that time, lossless networks have been
encountered in a surprising variety of problems, of-
ten far removed from network theory. We shall not
attempt to enumerate such problems. Qur modest
aim will be to describe how a certain algorithm for
the triangular factorization of matrices with dis-
placement structure leads naturally to a certain
lossless cascade. In fact, here we shall illustrate
this for the special class of Hankel-like matrices,
R, defined by an equation of the form (see Sec. 3)

FR+ RF* + GJG* = 0. 1)
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The fast algorithm generalizes one presented by
I. Schur in 1917 [4] for the class of Toeplitz and
quasi-Toeplitz matrices, and hence will be called a
generalized Schur algorithm. For further general-
izations, and several other results and applications,
we may refer to the recent survey [5]. Here we shall
only consider an application to interpolation prob-
lems.

2. Triangular Factorization

The well-known procedures for the triangular fac-
torization of a strongly regular Hermitian matrix
(i.e., a matrix with nonzero leading minors) go by
many names: Jacobi, Cholesky, Schur reduction,
etc. In fact, they are all effectively just Gaussian
elimination (see, e.g., [6]).

The assumption of strong regularity of a ma-
trix R guarantees the existence of a triangular fac-
torization of the form R = LD 'L*, where L is
a lower-triangular matrix with the same diagonal
entries as the diagonal matrix D. Equivalently, if
we introduce the normalization

L=LD1,

then we can also express R in the alternative fac-
tored form R = LDL*, where the lower triangular
factor L now has unit diagonal entries. This latter
factorization is perhaps more common but, in any
case, the columns of L and L are simply scaled ver-
sions of each other and it therefore does not matter
whether we work with L or L. Here we prefer to
work with L, because, as suggested by our later
expression (18), its columns will have a natural
interpretation as the states of first-order sections.

The columns of L and the diagonal entries of D
can be recursively computed as follows. Let [y and
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dp denote the first column and the (0,0) entry of
R, respectively. If we subtract from R the outer
product lody ll(’;, we obtain a new matrix with an
identically zero first row and column. That is,

R—lods 1l = [g }‘2’1] — R, (@
where R; is called the Schur complement of the
(0,0) entry of R. This step can now be repeated
to compute the Schur complement R» of the (0, 0)
entry in R;, and so on. Each further step corre-
sponds to a recursion of the form

(0 n, | = 7=t 3)
where d; denotes the (0,0) entry of the it Schur
complement R;, and /; denotes the first column of
R;.

Hence, starting with an n x n strongly regular
matrix R and performing n consecutive Schur com-
plement steps, we obtain the triangular factoriza-
tion of R, viz.,

1. [O0] 1077
R:lod01l0+[11]d11[11:| +...,

2 Lp-'L*, (4)

where
D = diagonal{dy, ...,dn-1},

and the (nonzero parts of the) columns of the lower
triangular matrix L are {lo, ..., l,—1}. This proce-
dure requires O(n®) elementary operations (addi-
tions and multiplications).

The connection with triangular factorization can
also be seen by rewriting (2) as

1% 0o
R = lody 13 + [0 Rl] ,
_ 0 dy*t 0o 1"
o L R nl ]
If we partition the entries of Iy as ly =

col{dy, to}, where tg is also a column vector, then
the last equality can be written as

ro| L 0 ][d 1 o
" | tody " In—a Ri| [tody! In-1 |

or, equivalently, as

1 0 _[do 017"
I:—todal In_1:|R_|:t0 Rl] ’

This explains why (2), also known as Schur reduc-
tion, is the same as Gaussian elimination; accord-
ing to Stewart [6], it was Alan Turing who in 1948
first made explicit the connection between Gaus-
sian elimination and triangular factorization.

3. A Generalized Schur Algo-
rithm for Hankel-Like Ma-
trices

We now show how the Gaussian elimination pro-
cedure can be speeded up in the presence of dis-
placement structure. For this purpose, we consider
strongly-regular Hermitian matrices R that satisfy

FR+RF*+GJG* =0, (5)

where F' is an arbitrary lower triangular matrix
with diagonal entries { f;}7=,, G is a so-called n xr
generator matrix, and J is any nonsingular matrix
satisfying J2 = I, e.g., a signature matrix.

We say that R in (5) is a Hankel-like matrix
with respect to (F,G,J). This class of matrices
includes, as special cases, Hankel, Vandermonde,
Cauchy, and Loewner matrices (see, e.g., [5, 7])-

Our first point is to show that the Hankel-like
structure is preserved under Schur complementa-
tion. That is, if R; is the Schur complement of dy
in R then R; is also Hankel-like. To check this, we
let Iy and go denote the first column of R and the
top row of G, respectively. We then conclude from
(5) that the first column [y and the top left-corner
element dy of R obey the identities

Flo+1lof§ +GJg; =0, (6)

do(fo+ f5) +90J95 =0. (7)
Now, using (2), (6), and (7) we find that

FRy + R F* = —-GJG* + GJgjdy 13 +
lody " goJ G* + lodg 15 (fo + f5) -

Note that the right-hand side of the above expres-
sion is easily seen to be a perfect square since we
can express it as

—[G = lod5 90] T [G = lodyt90]"

This establishes that the first Schur complement
of R, denoted by R;, satisfies

Fi\Ry + Ry Fy + G, JGE =0,

where Fj is the submatrix obtained after deleting
the first row and column of F', and G is computed
from G as follows

0 _
[Gl]zG—lodolgO. (8)

The matrix G; has one less row than G. Also, the
result remains unchanged if the right-hand side of
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(8) is multiplied from the right by any J—unitary
matrix ©g. That is,
{G — lody " 90}©0,

is also a generator matrix for R; since

{G = lydy " g0} O JOF{G — lody ' go}* =
———
J
{G — lody ' 90} J{G — lody " go}*-

The argument can now be repeated for the suc-
cessive Schur complements and leads to the follow-
ing theorem.

Theorem (Generator Recursion) Consider an
n x n strongly-reqular Hermitian matrizx R that
obeys the displacement equation

FR+ RF*+GJG* =0, 9)
where F' is lower triangular, G isn xr, J is an
r X r signature matriz, and the diagonal entries
of F are denoted by {f;}. The Schur complements
R; are also structured with generator matrices G,
viz., FiR; + R;F} + G;JG; = 0, where F; is the
submatriz obtained after deleting the first row and
column of F;_1, and G; is an (n —1) X r generator
matriz that satisfies, along with I; (the 1t column
of R;), the following recursion

0 _
I:Gi+1:| = {Gi — l;d; ' 9;}0;, (10)
where ©; is any r X r J—unitary matriz, g; is the
top row of G;, l; is the first column of R;, and d;
is the (0,0) entry of R. Moreover, d; and l; satisfy
the relations

di(fi+ fi) +9iJg; =0, (11)

Fli+Lff +G;Jgf =0. (12)

The equation for /; reads as follows,

(F+fz n-i)li = =G} iJ g

If no restrictions are further imposed on the diag-
onal entries of F', then the displacement equation
(9) may not specify R uniquely and, consequently,
the /; in the above equation may not be uniquely
defined. In other words, the recursion (10) is ad-
equate as long as the [; and d; can be uniquely
determined from (12) or from other available in-
formation.

3.1. The Special Case of a Unique R

But an important special case that is of interest is
when the displacement equation (9) uniquely de-
fines R. This happens when the eigenvalues of F'
(or equivalently its diagonal entries, since F is tri-
angular) satisfy the condition

fi+ 7 #0 forall i,3j.

In this case, we can uniquely solve for [; and ex-
press it in the form

li=—(Fi + f{I,i)"'GiJg;.
If we now substitute this expression for /; into the

generator recursion (10), we obtain the following
alternative update for the generator matrices:

[GO ] = {Gi +(®; —I.-4)G; J9:9: } 0;,
i+l

9iJ g7
where ®; is a “Blaschke” matrix of the form,

(3

®; = (Fi — filn—i)(Fi + fiLni) " (14)
Also,
9:iJg;
4=~ 379 15
YA (15)

3.2. Specialization to Array Form

Assume, without loss of generality, that the signa-
ture matrix J has the form J = (I, ® —1I,). If we
now choose a J—unitary matrix ©; so as to reduce
g; to the form

90, =[04; 0], (16)
with a single nonzero entry, §;, say in the j* col-
umn, it is then easy to verify that the above gener-
ator recursion reduces to the following array form:

0
= 17
[Gi+1] (17)
0; 0 0 Ij 0 0
000,_;1 00 Ir—j—l

This shows that the columns of G; can be obtained

as follows:

(i) Keep all the columns of G;0; unchanged except
for the jt* column.

(ii) Multiply the j** column by ®;.
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4. A J—Lossless Cascade

The point to note here is that the expressions for
G; and /; in (10) and (12) can be grouped together
and rewritten in the following revealing form:

I e B P g 1CY
[Flz Gin ] = [4: Gi] [—Jg;“ 0,

(18)
This suggests that we may regard the [; and G;
as the state and the input, respectively, of a first-
order state-space model, whose state-space repre-
sentation is shown in matrix form on the right-
hand side of (18). Likewise, the Fl; and G;;1 cor-
respond to the updated state and the output of
the same model.

Interestingly, the above first-order state-space
model satisfies certain losslessness conditions as we
shall now verify. However, the sections also have an
important blocking property that can be exploited,
as shown in the next section, in the solution of ra-
tional interpolation problems.

If we introduce the transfer function of the above
state-space model,

Oi(s) 2 ©; + Jgi (s + 1) 'd; 1g:0;,  (19)

and use the proper choice for ©;, as in (16), we get

I 0 0
0i(s)=0; |0 & o (20)
0 0 I

This transfer function clearly satisfies
0;(s)JOI(s) =J on Re(s) =0.

If we further assume that Re(f;) < 0, it then fol-
lows that ©;(s) is analytic in the left-half plane
(Re(s) < 0) and hence also a J—lossless transfer
function. A sequence of n recursions will then lead
to a cascade of such J—lossless sections, as further
explained in the next section.

It is rather striking to note how naturally such
sections arise in the study of matrices with dis-
placement structure. More general cases are also
described in [5].

5. An Application to Interpo-
lation Problems in the Left-
Half Plane

The special structure of the sections ©;(s) can also
be used as a motivation for a recursive solution
of rational interpolation problems. Such problems

have a long history in mathematics and in circuit
theory, control theory, and system theory. In this
section, we briefly describe a recursive solution to
rational analytic interpolation problems that has
been recently proposed in [8]; this reference also
elaborates on connections with earlier work on the
subject.

The basis for our approach is the generalized
Schur algorithm. We shall shortly verify that the
recursive algorithm of the theorem, when applied
to a conveniently chosen structured matrix, leads
to a cascade of J—lossless first-order sections, each
of which has an evident interpolation property.
This is due to the fact that linear systems have
“transmission zeros”: certain inputs at certain fre-
quencies yield zero outputs. More specifically, each
section of the cascade will be shown to be charac-
terized by a (p+4) x (p+¢) rational transfer matrix,
0;(s) say, that has a left zero-direction vector g;
at a frequency f;, viz.,

[ai bi] [gi’ll Gi’lz] (fi) =0,

9:9i(fi) = 021 Q22
which makes evident (with the proper partition-
ing of the row vector g; and the matrix func-
tion ©;(s)) the following interpolation property:
ai@i,u@;zlz,(f,-) = —b;. This suggested to us that
one way of solving an interpolation problem is to
show how to construct an appropriate cascade so
that the local interpolation properties of the ele-
mentary sections combine in such a way that the
cascade yields a solution to the global interpola-
tion problem.

We note that if R is assumed positive-definite,
then the rotation ©; in (16) can always be chosen
to reduce g; to the form

90, =[6; 0],

with the non-zero element in the first leading en-
try. Consequently, each section ©;(s) will have the
form
_ Bi(s) 0
=0 % 0 e
with I
A S—]i
B;(s) = . 22
The relevant observation to make here is that
each section ©;(s) has an obvious blocking prop-
erty, which results from the easily verified equality

9i09;(fi) =0,

9:0:(fi) = 9:0i [g ITO_I] =6 0] [8 Ir0—1:| =0.
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If we further partition the row vector g; and the
transfer matrix ©;(s) accordingly with J, we con-
clude that
;11 Oj12 N o
o s ][ @2 ) = 0.

which makes evident the interpolation property:
;0,120 212( fi) = —b;. Therefore, each first-order
section satisfies a local blocking and/or interpo-
lation property. This fact plays a central role in
our approach to interpolation problems. While one
can use purely algebraic arguments, we think it
is useful to present a physical (network-theoretic)
interpretation as well. The following example il-
lustrates the main points in our construction (for
more involved examples and for a detailed discus-
sion on the approach described herein, the reader
may consult [8]).

We consider the well-known tangential
Nevanlinna-Pick problem where one is interested
in finding a p x g Schur matrix functions S(s) (i.e.,
analytic and strictly bounded by unity in the left-
half plane, Re(s) < 0) that satisfies the tangential
conditions

u,S(f,) = Vi, (23)

for1=0,1,...,n—1 and Re(f;) < 0. Here, u; and
v; are 1 X p and 1 x ¢ row vectors, respectively. To
solve this problem we introduce the matrices F, G,
and J:

Jo
b5
F=| , (24)
fn—l
U Vo
Ul V1
G= , (25)
Un—1 Un—1
— IP 0
J= [0 _Iq] , (26)

and apply the recursive procedure (17) to F' and
G. The “Blaschke” matrix ®; is now a diagonal
matrix since F is also diagonal, viz.,

0
fiv1—Ffi
fiv1+5;

fon—1—fi
fa—1t+F;

©(s) of n first-order

This leads to a cascade
J—lossless sections,

O(s) = 09(5)O1(5)...Op_1(s) .

It is now instructive to see how the local block-
ing properties of the individual sections combine
together to impose a global blocking property on
the entire cascade. We start with the first section
and invoke its blocking property: go®o(fo) = O,
where gq is the first row of G. It thus follows that

90©(fo) = 9000(fo) ©1(fo) ... On-1(fo) =0.

0

In system-theoretic terms this means that when
the first row of G is fed into the cascade @(s) we
get a zero-output at the ’frequency’ fo,

[U,O ’Uo] @(fo) = 0 .

But what happens when the second row of G is
fed into the cascade? To answer this question, let
us first check how does the first section of the cas-
cade react to the second row of G. That is, let us
evaluate the quantity [u; v1 | ©9(f1). Using the
definition of ©¢(s) we see that

o - [P 0.

= 0 [g ITO_I] + Bo(f1)®0 [(1] g] )

Therefore, [u1 v1 | O(f1) is equal to

[u1 v1] O [g IT°1]+[U1 1] Bo(f1)0 [(1) g] .

But if we compare the second rows on both sides of
the generator recursion (17) we see that the above
expression should be equal to the top row of G;.
That is, g1 =

[u1 v1 ] O [g 2] + Bo(f1) [u1 v1] O [(1) g],

= [U]_ ’U]_] @0(f1) . (27)

This shows that when the second row of G enters
the cascade we get the top row of G; at the out-
put of the first section at the 'frequency’ fi thus
leading to [u1 vy | ©(f1) =

= [’u,l Ul] @o(fl) @1(f1) ‘. @n—l(fl)’
~—

9101(f1) ©2(f1) ... On-1(f1),
———

0
=0,

which shows that the second row of G also annihi-
lates the entire cascade at the frequency f;. This
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argument can be continued to show that the re-

maining rows of G are also zero directions of the

cascade ®(s) at the corresponding f;, viz.,

[ui v; | ©(f;) =0. (28)

If we now partition the J—lossless cascade ®(s)
accordingly with J,

_ [ ©11(s) O12(s)
O(s) = [@21(2) ezz(j)] )

we then conclude from (28) that the p x g Schur
matrix function,

S(s) = —©12(5)©0 (5) ,

is one solution that satisfies u;5(f;) = v;. That is,
it solves the tangential Nevanlinna-Pick interpola-
tion problem.

The same line of reasoning can be used to
solve more involved interpolation problems of the
Hermite-Fejér type, as detailed in [8]. But more
important perhaps is to stress that the arguments
used in the solution of the above interpolation
problem are essentially matrix-based arguments.
This has the nice feature of being equally applica-
ble to time-variant extensions of classical interpo-
lation and matrix completion problems, as detailed
in [9, 10].
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