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ABSTRACT

We present a time-domain feedback analysis of the FxLMS
algorithm, which has been receiving increasing attention in
the literature due to its potential application in the active
control of noise. In particular, we introduce a generalized
FxL.MS variant and derive conditions for its I, —stability. We
also show that the algorithm can in fact be regarded as a
member of the class of filtered-error variants. A special case
of the generalized algorithm is the so-called MFxLMS re-
cursion, which refers to a recent modification of the stan-
dard FxLMS update. While this modification significantly
improves the convergence behaviour of FXLMS, it requires
of the order of 3M elementary computations per time step.
This is in contrast to the 2M operations required by the stan-
dard FxLMS. We suggest two new modifications that keep
the computational load at the 2M level, and which present
improved convergence over the FxXLMS algorithm. Simula-
tion results are included to demonstrate the points raised in
the paper.

1. Introduction

One of the most widely used adaptive algorithms for active
noise control is the so-called Filtered-x Least-Mean-Squares
(FxLMS) algorithm [1, 2]. It starts with an initial guess w_,
for an unknown M x 1 weight vector w, and updates it via
an update equation of the form

wi = w,~1 + u(1) Flu]] Fld(1) - u,w,—1]. (1)

where the {u,} are given row vectors and the {d(1)} are noisy

measurements of the terms {usw}, viz., d(¢) = w,w + v(i).
The factor u(t) is a time-variant step-size parameter.
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Figure 1: Structure of filtered-error gradient algorithms.

The difference [d(i)—u,w,_1] will be denoted by (1) and will
be referred to as the output estimation error. The following

error measures will also be useful for our later analysis: W,
will denote the difference between the true weight w and
its estimate w,, W; = W — Wi, and e,(i) will denote the
apriori estimation error, ea(1) = u;W,~1. As indicated in
Figure 1, a filtered version of &,(i) is observed (see[2}-[5]),
where F denotes the filter that is assumed to be of finite-
impulse response type and of order Mr, say F(g~!)[z(i)] =

Flz(i)] = 057 £ 2(i - 5).

Former analyses of the FxXLMS algorithm have relied on sev-
eral approximations. In the simplest case, it has been of-
ten assumed that the updated weights change very slowly
over the filter length Mg of the error path, which in effect
ignores the contribution of the filter function F. Another
analysis method that has been exploited extensively in the
field of echo cancellation is the so-called transfer-functional
description [3, 6]. Here many assumptions have to be made
(see [7] for details) in order to obtain a linear time-invariant
filter function that describes the filter behaviour from the
noise sequence to the apriori error sequence. Also, stochastic
descriptions have been employed in order to describe the be-
haviour of the algorithms in the mean sense [1]. Motivated by
these considerations, we shall pursue here an analysis within
a purely deterministic framework and also suggest two algo-
rithmic variants with improved computational requirements.

In [7, 8], a new time-domain method has been suggested for
the analysis of filtered-error (FE) gradient-based algorithms.
The method describes the update equation in a feedback form
with a lossless (or contractive) time-variant feedforward block
and a time-variant scalar gain in the feedback loop. The
point is that such feedback structures are amenable to sta-
bility analysis via tools that are by now standard in system
theory. We shall show here that the FxXLMS algorithm be-
longs to the class of FELMS algorithms, which then allows
us to apply the conclusions of [7, 8]. More specifically, it is

Algorithm Complexity | Memory Convergence
(M > Mpr) | Capacity Behaviour
FxLMS 2M 4+ Mp 3M Poor
MFxLMS 3M +2Mr | 3M + Mp Good
MFxLMS-1 | 2M +2Mr | 3M + Mr Good
MFxLMS-2 | 2M 4+ 3Mr | 3M +2Mr | Reasonable

Table 1: Comparison of complezity and storage capacity.

known that the FxXLMS algorithm (1) requires of the order
of 2M elementary computations (additions and multiplica-
tions) per time step. Its convergence behaviour, however, is



very poor as evidenced by the simulations included at the
end of this paper. A modified version of the FxLMS al-
gorithm has been recently suggested in [9]. This so-called
MFxLMS variant exhibits a considerably improved conver-
gence behaviour albeit at the cost of increased computations,
which are now of the order of 3M. This figure may still be
prohibitive in several applications of interest where the value
of M is significantly large. We shall suggest two other vari-
ants, (9) together with (11a) and (15a,15b) further ahead.
These modifications, while they keep the computational cost
at 2M, they nevertheless present an improved convergence
behaviour when compared to the standard FxLMS. These
comparisons are summarized in Table 1, where the last two
lines refer to the two variants proposed herein.

2. A Time-Domain Feedback Analysis

For the sake of generality. and for reasons to become clear
later, we shall allow for the following more general form of
the update equation (instead of (1)):

wi = w1 +p()Fuf]G(i.¢7") Fld(1) —ww,i 1], (2)

where a time-variant filter G(i,¢ ") is included in the update
relation. The update equation (2) can be written in terms of
the weight-error vector w; = w — w,,

Wi = W1 — p(i)Flul] G(i,¢7") Fléa(i)]. (3)

The above equation allows us to express W, in terms of
Wy—1-1, for some {,

1
Wi=Wioio = Y = k) F[ul_,] Gli — k.g ") Fléa(i — k)]
k=0
or, in a form more suitable for our further investigation,

!
Wisiot = Waoa+ ) u(i—k)Flul_4JG(i—k ¢ ) Fléa(i—k)].

k=1

Now using €,(f) = v(z) + u/W,—; and the linearity of F, we
note that
Flea@)] = Flo(i)]+ Flea(d)] = Flo(s)] + Fluiw,_]
Flo(1)] + Flui]Ww._,
Mp—1

+ 3" (i, k) G — k,g™") Fléa(i — k).
k=1

I

The above equality then leads to the following relation

1

F[éa(’)] = 1 - C(;',q_l )G(ia lI'l)

[Flo(d]+ Fluiw, 1],

(4a)
where the coefficients of the time-variant filter C(1,¢7") (of
order Mr) are given by

e(, 1) = u(i - ) Fifu] Flul_], (4b)

forl=1,..,Mr—1, and where we have also used the following
notation for the filtered input vector sequence u;:

Mp—1

Flu} = Z fr ik {4c)
k=1

for 1 =1,.., Mr — 1. Note that the lower index in (4c) starts

at I. We can now rewrite the weight-error update equation
(3) in the form

G(ig7") [Flo(9)] + Fludwi-i]

B ot e P TP

» (5)

which is of the filtered error type. Hence, the conclusions of
[7, 8] are applicable, namely, that l,-stability of the general-
ized FxLMS recursion (2) will be guaranteed if

<1,
2,snd
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where Cy and Gu are lower triangular band matrices
that describe the linear time-variant filters C(3,¢™!) and
G(1,¢7 ), respectively, and where we have defined

o 1
MO = TEE

My = diag(p(0), #(1)....,u(N))
My = diag(a(0), (1), .. a(N)).

The original FXLMS algorithm (1) corresponds to G = 1,
and in the case of a constant step-size parameter g, the same

analysis shows that a sufficient condition for its l,-stability is
to require

<1 (6a)
2,and

”1-#(1-@)‘1
l[.

with

1
i< min § s . 6b
A 22y { TP } (eb)
Comparing with the discussion after (1), we see that the
above stability condition is applicable to the original FxLMS

recursion (1) without either a slow adaptation assumption or
a modification as in the MFxLMS algorithm [9].

2.1. An Optimal Choice for G(i,¢™!)

1t follows from (5) that the update equation for the general-
ized FxLMS recursion (2) can be written in the form

W, = W14 I‘(i)F[u:] 1 — C(f(;i?;a)(" q-q);(i)f
e(i) = Flo(i)]+ Flud(w — wi1) . (7)

If we compare this with the MFXLMS representation in [9],
we thus see that the modification carried out in the MFxLMS
case amounts to canceling the effect of the extra filtering
step G/(1 — CG), so that a final update equation that is
similar in nature to a standard LMS equation will result.
This is achieved by incorporating additional terms into the
update relation, namely, Flu,wi_1] and F[u;Jwi_;. These
terms correspond to filtering the input data u, and the signal
u;w,—1 by F as well; thus amounting to an increase in the
computational complexity to 3M.

To get further insight into the nature of the modification
induced by the MFxLMS algorithm, let us analyze it from
the point of view of the generalized FXxLMS recursion (7).
We see that in order to cancel the effect of the additional



filtering operation G/(1 — CG), we need to choose a G, say
Go(i,¢71), such that

Go(i.g™")

1= CligGu(ig) &

This leads to the expression

1

Goling™) = .
S e el

(8a)

or in terms of the matrix representations Cx and G, v,
Gon=[IN+Cn]". (8b)

Using Go(i,¢™*) in the generalized recursion (7) will obvi-
ously lead to the MFxLMS algorithm. This also means that
the MFxLMS recursion can be equivalently rewritten in the
form (2) with the above Go(i,¢™'), namely,

Wi = Wi + u(i)F[u’] ! =55 FLd(0) —uwio]. (9)

1+C(ug

We now propose two new modifications with lower computa-
tional requirements.

2.2. The MFXLMS-1 Algorithm

The first modification replaces the time-variant coefficients
¢(t,1) by constant approximations. This is especially use-
ful when statistical information is available about the data.
In particular, assume the input sequence is stationary with
autocorrelation function r; = Eu(k)u®(k — 1)]. If the pro-
cess is ergodic and the order M of the input vector u, is
sufficiently large, the terms u;_ju; can be approximated by
wi—u) & Mr,. We shall also assume that the time-variant
step size p(f) in (9) is chosen to be

o

#0) = TP - (10)

which is known as the projection step-size. The term

{|F[a]|}? can be approximated by

Mp-1Mp-—1

IFdi3~M > S r, fif

1=0 3=0
and the filter coefficients c(i,!) can also be approximated by:

e(s, 1) (i — R [w]Fui_]

N T e i fid
PIHAD DA P/

fl

= ad&l), (11a)
where we have defined the averaged coefficient
Me=t M=t fif
6(” — Zs:l =0 J J (11b)

Eﬁﬁ_l Zﬁ’é"l rimy fi £ .

These approximate coefficients depend only on the error-filter
F and on the autocorrelation coefficients {r,}. They can
therefore be computed in advance, assuming knowledge of F.

This approximate solution also has another advantage, be-
yond the simplification in the computations. It provides us
with an approximate stability result for the FxLMS algo-
rithm. Since the filter coefficients c(i,1) are equivalent in the
FxLMS algorithm as well as in the optimal filter Go(f,¢7"),
we can use the averaged coefficients to conclude stability

bounds. More specifically, condition (6a) can be approxi-
mated by
a
max |l - ——————| < 1 12a)
Q 1—aC(e’) (

which is now given in terms of the normalized step-size o and
in terms of the constant filter C(g™") whose coefficients are
the &(1). This condition also suggests a choice for a in order
to speed up the convergence of the resulting algorithm: it
can be chosen as the solution of

a

1- 1 — aC(e’?)

. (12b)

min max
a Q

2.3. The MFxLMS-2 Algorithm

We have shown in the earlier sections that the MFxLMS al-
gorithm can be written in two equivalent forms. The first
one is:

W, = Wi-1+ u(i)F[u,‘] E(i), (13&)
é(1) = Flv()]+ Flu}(w—wi21), (13b)

and the second one is (9):
Wi = Wie1 + p(i) F[u]] ﬁ‘c‘(l':?:ﬁ Fléa(®)).  (13¢)

The difference between both representations is that the sec-
ond one operates directly on the available signal F[éq(3)] by
filtering it through 1/(1+ C), while the first one modifies the
update equation and uses the filtering operations F{u,wi_i]
and F[u;Jw;_;. The net result, however, is the same since we
already know that both representations are equivalent and,
in particular, that

€li) = T gy Fleatil] = Gotin VL] (14)
If we know é(s) then it can be used in the update form
(13a). The MFxLMS algorithm computes it by introduc-
ing the terms F[u;w;_;] and F[u;]w,_1, as explained above.
The generalized FxLMS algorithm computes it by filtering
through 1/(1 + C), which in turn requires the evaluation of
the filters C(i, ¢~") themselves.

This suggests the following modification. We have in (14) a
relation between &(s) and 1/(14+C). The only known quantity
in (14) is F[éa(1)], and we can rewrite the expression in the
form

&(1) = Flea(9)] - C(i, ¢ 7")[e(3))-
Since &(i) is also unknown, we need an estimate, say é(i).
The above equation reads then

é(i) = Flea(s)] - €, a7 )[EG)]

An approximate solution would be to use a gradient-type
algorithm in order to estimate the coefficients of C(s, ¢ ),



that is C(i,¢™') and also &(i). If the error energy [e(@)?
(or as often used in literature, its mean-value E[|5(1)}%]) is
minimized, the following gradient-type update would result:

Mp-1

ei) = Flea(i)]— D i~ 1,k)E(i—k), (15a)
k=1

G0 = ei-1,0)+ cli)eli = 1) . (15b)

14 M (i — k)P

3. Simulation Results

In the following simulations we demonstrate several of the
points raised in our previous discussions. In all experiments
we have chosen a Gaussian white random sequence with vari-
ance one as the input signal, and the additive noise was set at
—~60dB below the input power. We provide plots of learning
curves for the relative system mismatch, defined as

N LA
R

The curves are averaged over 50 Monte Carlo runs in order to
approximate E{S;¢i(1)]. The results in the figures are also in-
dicated in dB. In all experiments we employed the projection
normalization (10). Figure 2 exhibits learning curves of the
several algorithms when run with their optimal normalized
step-size a, in order to have fastest convergence. The order
of the system to be identified was taken as M = 20 and the
error filter path was defined as

F@)y=1+¢"+¢ 2 +¢"

indicating a low pass behaviour as it is commen in acoustic
ducts. - The coefficients of the corresponding averaged filter
C(q7") are given by

c1 =10.75 ¢ =0.5 ¢ = 0.25,
that is,
C(qg7') =0.75¢"" 4+ 0.5¢72 + 0.25¢~°.

We continue to use the projection step-size parameter (10.)
If we use the above averaged coefficients as approximations,
we obtain an approximate stability range for the MFxLMS-1
algorithm at 0 < a < 0.5 (recall (12a)); the optimal conver-
gence speed is attained at ao, = 0.45 (recall (12b)). In the
simulations that were carried out, the results were very close
to these values with a stability bound at 0.57 and fastest
convergence at 0.5. In particular, the optimal step-size from
[2] for this case is 0.8333, which is already in the unstable
region.

As Figure 2 shows, the average filter solution that corre-
sponds to the proposed version MFxLMS-1 leads to a learn-
ing curve (indicated by the letter (c)) which is close to the
optimal one (i.e., the one that corresponds to the MFxLMS
recursion and is indicated by the letter (d) in the figure). We
obtained fastest convergence for a, = 1.2 and stability bound
at 2 precisely as in the MFxLMS case.

The figure also indicates the result of the second modification
MFxLMS-2 (curve (b)), which is appropriate when the statis-
tics of the input sequence is not known apriori. While curve

E[Sre(1)]

20}

20} (2)
- (b)

N ©
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Figure 2: Learning curves for FxLMS algorithm with o =

0.5 (a) and modifications: MFLMS-2 (b) @ = 1.15 and

MFzLMS-1 (c) @« = 1.2 in comparison to MFTLMS (d)

a=1.2.

(b) is less appealing than the curves (c) and (d), it never-
theless improves on the convergence of the standard FxLMS
recursion, which is indicated by curve (a). The optimal con-
vergence speed for the MFxLMS-2 algorithm was found for
a, = 1.15 and stability bound at 1.3. A fifth learning curve
for the LMS algorithm, with u; and (1) prefiltered by F, is
not explicitly shown in the figure since it essentially coincides
with the MFXLMS algorithm (curve (d)).
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