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Abstract—A joint rate and power control algorithm is proposed for dis-
tributed wireless networks. The algorithm is robust to uncertainties in the
network dynamics and is shown to achieve better SIR performance than a
conventional scheme.

I. INTRODUCTION

The evolution of mobile wireless communication and sensor
networks has greatly triggered the interest in finding more effi-
cient power control algorithms. This is due to the fact that power
consumption is a key limiting factor in the performance of wire-
less networks. This limitation is further compounded by the fact
that nodes need to cater to desired data rates, which in turn re-
quire the SNR level, and consequently the power level, to be
above certain desired values. It then follows that a fundamental
tradeoff exists between power levels, data rates, and congestion
rates in a network. There have been many power control al-
gorithms that have been investigated in the literature. Some of
the initial distributed power control strategies have been given
in [1] and [2], which balance the signal to interference ratios in
a distributed way. The approaches from [3], [4] include quality
of service (QoS) requirements, while the Kalman filtering ap-
proach from [5] uses admission control as the central QoS issue.
Still most of these solutions do not combine in a cohesive man-
ner the requirements of power, data rate, and congestion. For
instance, the above solutions may not perform well when the
desired rates in the network vary due to the use of certain rate
adaptation or congestion control algorithms. Allowing for such
variable data rates is desirable nowadays in view of the availabil-
ity of newer wireless devices that support multiple data rates. In
this paper, following the approach of [8], we propose a joint rate
and power control strategy that maintains a minimum bound on
the variance between the actual and desired SIR levels.

II. NETWORK MODEL

We consider a sensor network operating under dynamic net-
work conditions. Some of the nodes perform important tasks
like routing and congestion control for high data rate commu-
nications. They also handle some data and network processing
for other nodes that may be connected to them. We will assume
a protocol similar to the one proposed in [9], where nodes are
organized into local clusters or cells with one node acting as the
master node. Any node that wishes to communicate is allowed
to do so only with the master node and using a time slot. A
time slot is allocated to any node that wishes to communicate
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in a cell, and the nodes communicating during the same time-
slot in other cells cause interference in this cell. The Signal-to-
Interference-plus-Noise-Ratio (SIR) for node i at time k on an
uplink channel is

γi(k) =
Gii(k)pi(k)∑

j∈A Gij(k)pj(k) + σ2
i (k)

(1)

where Gij is the channel gain from the j − th node to the in-
tended master node of the i−th cell, pi is the transmitting power
from the i− th node, σ2

i is the power of white Gaussian noise at
the receiver of the master node that node i is connected to, and
A is the set of nodes that are interfering with node i. Figure 1
shows a schematic representation with three cells, three master
nodes, and active and interfering nodes.
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Fig. 1. A schematic representation with three cells, three master nodes, and
active and interfering nodes. The active node is node i and the interfering
nodes are nodes j and k.

III. POWER AND RATE CONTROL STRATEGY

Let fi(k) denote the flow rate at node i at time k. We shall
assume that each node in the network employs the following
flow-rate control algorithm every time period:

fi(k + 1) = fi(k) + µ[d(k) − c(k)fi(k)] (2)
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where µ > 0 is a step-size parameter and c(k) is a measure of
the amount of congestion in the network 1. Moreover, d(k) con-
trols the rate increase per iteration. Now, in view of Shannon’s
capacity formula, the flow rate fi(k) demands an SIR level γ′

i(k)
that is given by

fi(k) =
1
2

log2[1 + γ′
i(k)] (3)

Using this fact and the update (2), we find that the desired SIR,
in dB scale, should vary according to the rule

γ̄′
i(k + 1) = [1 − µc(k)]γ̄′

i(k) + µ′d(k) (4)

where µ′ = 20µ/ log2(10) and γ̄i(k) = 10 log γi(k).
We shall initially assume that each node in the network ad-

justs its power according to the power control algorithm:

p̄i(k + 1) = p̄i(k) + αi[γ̄′
i(k) − γ̄i(k)] (5)

where αi is a step-size parameter that is allowed to vary from
one node to another and γi(k) is a measurement of the actual
SIR that is achieved by pi(k). Now let

βi(k) =
Gii(k)∑

j∈A
Gij(k)pj(k) + σ2

i (k)

denote the scaling factor that determines how pi(k) affects the
achieved γi(k) in (5), i.e.,

γi(k) = βi(k)pi(k)

or, equivalently, in dB scale,

γ̄i(k) = β̄i(k) + p̄i(k) (6)

We refer to β̄i(k) as the effective channel gain. We shall assume
that β̄i(k) varies according to the model

β̄i(k + 1) = β̄i(k) + ni(k)

where ni(k) is a zero-mean disturbance of variance σ2
n and is

independent of p̄i(k). Substituting this model for β̄i(k) into (6),
we find that the achieved γ̄i(k) varies according to the rule:

γ̄i(k + 1) = (1 − αi)γ̄i(k) + αiγ̄
′
i(k) + ni(k) (7)

Our objective is to design the power control sequence {pi(k)}
such that the actual SIR levels {γi(k)} will tend to the desired
SIR levels {γ′

i(k)}. We shall address this design problem by
formulating a robust quadratic control problem as follows. First,
we drop the node index i for simplicity of notation (it is to be
understood that the resulting control mechanism is implemented
at each node). Second, we introduce the two-dimensional state
vector:

xk
∆=

[
γ̄(k)

γ̄′(k)

]

1Note that c(k) could be determined based on the SIR estimation as well.
When a one step ahead predicted SIR is less than the actual desired value, c(k)
takes higher value than otherwise.

Then combining (4) and (7) we arrive at the state-space model:

xk+1 =
[ 1 − α α

0 1 − µc(k)

]
xk +

[
n(k)

µ′d(k)

]

or, more compactly,

xk+1 = Akxk + wk (8)

where the 2 × 2 coefficient matrix Ak is given by

Ak =
[ 1 − α α

0 1 − µc(k)

]
(9)

and where wk is a 2 × 1 zero-mean random vector with covari-
ance matrix

Q = EwkwT
k =

[
σ2

n
µ′2σ2

d

]
(10)

In order to drive γi(k) towards the desired level γ′
i(k) we shall

employ a control sequence uk in (8) as follows:

xk+1 = Akxk + Buk + wk (11)

for some given 2 × 2 matrix B and 2 × 1 control sequence uk.
For example, let

uk =
[

up(k)
uf (k)

]
denote the individual entries of uk. Then choosing

B =
[

1 0
0 0

]
simply amounts to adding a control signal up(k) into the power
update (5). Likewise, choosing

B =
[

0 0
0 1

]
amounts to adding a control signal uf (k) into the desired SIR
update (4). More generally, for arbitrary choices of B, the con-
trol signals that are added into the updates for {p̄i(k), fi(k)} are
combinations of {up(k), uf (k)}.

In addition to employing a control sequence {uk}, we shall
assume that we have access to output measurements that are re-
lated to the state vector as follows:

yk = Cxk + vk (12)

for some known matrix C and where vk denotes measurement
noise with covariance matrix R,

R = EvkvT
k

Usually, C = I so that the entries of yk correspond to
noisy measurements of the actual and desired SIR levels
{γ̄(k), γ̄′(k)}. We will now propose a design procedure that
takes into account uncertainties that arise due to the lack of per-
fect knowledge about the network conditions. For example, the
congestion control function c(k) is usually not known exactly
and has to be estimated, and this estimation process introduces
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errors in the assumed state-space model. Thus assume that the
factor c(k) can be modelled as

c(k) = c̄(k) + Gδ(k)D̄ (13)

with δ(k) being a zero mean random noise with variance ρ∆, G
and D̄ are known scalars, and c̄(k) is bounded as

cl ≤ c̄(k) ≤ cu (14)

for some known positive scalars {cl, cu}. In other words, we
allow for both deterministic and stochastic uncertainties in c(k).
In this way, the matrices Ak themselves are not known exactly
but they are now modelled as Ak = Āk + δAk where

Āk =
[ 1 − α α

0 1 − µc̄(k)

]
(15)

and
δAk = GδkD (16)

where
G = M̄, D =

(0 0
0 −µD̄

)
(17)

We shall design the control sequence {uk} as follows. First, we
use the robust algorithm of [12] to estimate the state of perturbed
state-space models as in (15)–(16). Then, the control sequence
{uk} will be designed such that an upper bound on the following
stochastic quadratic cost function J is minimized:

J = E

{ ∞∑
k=0

‖Lxk‖2

}

with L = [ 1 −1 ], and where E denotes the expectation op-
erator. This choice of L results in

Lxk = γ̄(k) − γ̄′(k)

so that ‖Lxk‖2 is a measure of the energy of the difference
between {γ̄(k), γ̄′(k)}. The resulting control will guarantee
the following performance over all models {Āk + δAk}. Let
x̃k = xk − x̂k denote the state estimation error. Then the
construction will determine state estimates {x̂k}, and a con-
trol sequence {uk} as a function of these state estimates, such
that an upper bound on E‖Lxk‖2 is minimized. Moreover, it
will hold that the effect of the noise disturbances on the error
{γ̄(k) − γ̄′(k)} will be limited in the following manner:

E

{ ∞∑
k=0

|γ̄(k) − γ̄′(k)|2
}

< ν2

{ ∞∑
k=0

(‖wk‖2 + ‖vk‖2
)}

+ b

(18)
for some constant b > 0 and for the smallest possible ν2, and
over all noise sequences {wk, vk}. The following statement is
specialized to B = I .

A Minimum Variance Power and Rate Control Algorithm.
Let

A1 =
[

1 − α α
0 1 − µcl

]
, A2 =

[
1 − α α

0 1 − µcu

]

Given a 1×2 vector L, the following is a robust joint power and
rate-flow control strategy:

1. Introduce a 2×2 matrix Af and a 2×1 vector Bf . Determine
Af and Bf in the following manner [12]. Given scalars {γ1 >
1, γ2 > 1}, solve the following convex optimization problem
over the variables {P1, P2, Q1, Q2,W}:

min Tr(P1 + P2 + W )
γ

γ − 1
(19)

subject to the conditions


Z ′ 0 AT
mP1 Ĵ

0 γ−1
2 P2 0 Q1

P1A 0 P1 0
ĴT QT

1 0 P2


 > 0 (20)

and (
W Q2

QT
2 P2

)
> 0 (21)

with P1 > I and P2 > I , where

Z ′ = γ−1
1 P1 − ρ∆GT DT (P1 + P2)DG

γ = min{γ1, γ2}
and

Ĵ = −CT Q2 − Q1 + AT P2 (22)

Determine Af and Bf as

Af = (Q1P
−1
2 )T

Bf = (Q2P
−1
2 )T

2. Using the just found {Af , Bf}, define

Ǎ1 =
[

A1 − Kc Kc
A1 − Af − BfC Af

]
Ǎ2 =

[
A2 − Kc Kc

A2 − Af − BfC Af

]

B̄ =
[

I 0
I −Bf

]
for some 2 × 2 matrix Kc to be determined. Determine Kc, X ,
and the smallest positive ν2 that guarantee[

H̃m −ǍT
mXB̄

−B̄T XǍm ν2I − B̄T XB̄

]
> 0

where

H̃m = X − ǍT
mXǍm − L̃T L̃, m = 1, 2

with
L̃ = [ L 0 ]

Then set

uk = −Kcx̂k

x̂k+1 = Af x̂k + Bfyk + uk

3. Partition uk as

uk =
[

up(k)
uf (k)

]
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and update the rate flow and the power at the relevant node as
follows. Let κ = (log2(10))/20. Then

γ̄′(k) = fi(k)/κ

p̄i(k + 1) = p̄i(k) + αi[γ̄′
i(k) − γ̄i(k)] + up(k)

fi(k + 1) = fi(k) + µ[d(k) − c(k)fi(k)] + κuf (k)

We may note that the above optimization problem is per-
formed only once off-line to get the control parameters.

IV. SIMULATION RESULTS

To illustrate the performance of the proposed algorithm, we
simulate the model proposed in [10] for the channel gain from
the i−th node to its master node. In this model, Gii has a log-
normal distribution, namely

Gii = S0d
−β
ii 10α/10 (23)

where S0 is a function of the carrier frequency, β is the path
loss exponent (PLE), and dii is the distance of node i from its
master node. The value of β depends on the physical environ-
ment and varies between 2 and 6 (usually 4). Moreover, α is a
zero mean Gaussian random variable with variance σ2

α, which
usually ranges between 6 and 12.

Let gi
∆= ln(Gii). Then, based on the above statistical char-

acterization, the random variable gi has a Gaussian distribution:

fgi
(g) =

1
σg

√
2π

e
− (g−ḡ)2

2σ2
g

with mean
ḡ = ln(S0) − β ln(dii)

and standard deviation

σg = (σα ln 10)/10

We shall neglect the effect of fast fading since the power update
algorithm generally has a large time period. On the other hand,
for the shadowing effect, we shall assume that the correlation
sequence for the random process {gi(k) = lnGii(k)} is given
by

Rg(τ) ∆= Egi(k)gi(k − τ) = σ2
ga|τ |, a = 10−vT/D

where σ2
g ranges between 3 and 10 dB, v is speed, T is the time

period for channel probing, and D is the distance at which the
normalized correlation reaches the value 1/10. We assume that
the velocity of the nodes is small enough so that we can ap-
proximate a ≈ 1 and, hence, Rg(τ) ≈ σ2

g . We simulate a net-
work consisting of 9 cells with 8 nodes per cell. Queries through
nodes arrive at the system with a poison distribution with arrival
rate θ. The service (or holding) time for each user is an expo-
nential distribution with average holding time give by 1/φ. We
consider a traffic load between 5.5 and 11 Erlang per cell, where

the ratio of arrival rate to average service time
(

θ
φ×9

)
denotes

the traffic in Erlang per cell. New nodes need to have atleast 12
dB SIR to get admission into the system. To maintain a uniform

power distribution between nodes we vary the master node ran-
domly among the nodes. The maximum acceptable power that a
node can transmit is the amount of power that causes the SIR to
be 20dB without any other user interference at a distance of 25
meters. The value of αi used in the proposed algorithm for every
node i is 0.2. Fig. 2 illustrates the performance of the proposed
algorithm in comparison to the algorithm [7]:

p̄i(k + 1) = p̄i(k) + α[γ̄i(k) − γ̄′
i(k)] (24)
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Fig. 2. Variance in SIR tracking.

APPENDIX A : ROBUST PERFORMANCE

In this appendix, we show that the algorithm of Section 5 is
stable and ensures a robust performance level of ν2, as in (18).
Define

ηk
∆=

(
xk
x̃k

)
, ok

∆=
(
wk
vk

)
(25)

Let V (ηk) = ηT
k Xηk, for some X > 0 to be determined in

order to satisfy the inequality

EV (ηk+1)−EV (ηk)−ν2(wT
k wk +vT

k vk)+Ez̃T
k z̃k < 0 (26)

where z̃k = L̃ηk = γ̄(k) − γ̄′(k), with all the quantities as
defined in Sec. 5. We will show that, for a given Af and Bf , if
X is determined such that the above inequality is satisfied, then
(18) is guaranteed. Indeed, if we sum inequality (26) over k, and
if we assume that the system is exponentially stable (which will
be shown at the end of this appendix), we get for all wk, vk ∈ l2,

E

{ ∞∑
k=0

|γ̄(k) − γ̄′(k)|2
}

< EV (η0)+ν2

{ ∞∑
k=0

‖wk‖2 + ‖vk‖2

}

(27)
as desired. Now assume a control structure of the form

x̂k+1 = Af x̂k + Bfyk + uk, uk = −Kcx̂k (28)
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for some given {Af , Bf} and unknown Kc. Combining this
equation with

xk+1 = (Āk + δAk)xk + uk + wk

yk = Cxk + vk

and assuming, for example, that Āk + δAk is equal to one of the
boundary points, say Ǎ1, we find that ηk satisfies the state-space
model:

ηk+1 = Ǎ1ηk + B̄
(
wk
vk

)
(29)

where

Ǎ1 =
(

A1 − Kc Kc
A1 − Af − BfC Af

)
, B̄ =

(
I 0
I −Bf

)
(30)

Likewise, for the boundary point Ǎ2. Using (29) and expanding
(26) gives

ηT
k ǍT XǍηk − ηT

k Xηk + ηT
k ǍT XB̄ok + oT

k B̄T XǍηk

− ν2oT
k ok + oT

k B̄T XB̄ok + ηT
k L̃T L̃ηk < 0

(31)

With Ǎ taking values between Ǎ1 and Ǎ2, condition (31) is
equivalent to requiring

− (
ηT

k oT
k

) [
H̃m −ǍT

mXB̄
−B̄T XǍm ν2I − B̄T XB̄

](
ηk
ok

)
< 0

(32)
where

H̃m = X − ǍT
mXǍm − L̃T L̃, m = 1, 2

Hence, (32) is satisfied if(
H̃m −ǍT

mXB̄
−B̄T XǍm ν2I − B̄T XB̄

)
> 0, m = 1, 2 (33)

for some Kc, ν2, and X > 0, as desired. Inequality (33) also im-
plies that the system is stable because of the following reasons.
Note that, for any boundary point Ǎm, the Lyapunov function
V (.) satisfies, in the absence of noise,

V (ηk) − V (ηk+1) = ηT
k (X − ǍT

mXǍm)ηk (34)

But inequality (33) implies that H̃m > 0 for all Ǎ taking val-
ues between Ǎ1 and Ǎ2. This in turn implies that V (ηk+1) −
V (ηk) < 0 for all uncertainties. Hence, the process ηk is expo-
nentially stable.
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