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ABSTRACT

In this work, we derive a near-optimal combination rule for adap-

tation over networks. To do so, we first establish a useful result

pertaining to the steady-state distribution of the estimator of an LMS

filter. Specifically, under small step-sizes and some conditions on the

data, we show that the steady-state estimator is approximately Gaus-

sian and provide an expression for its covariance matrix. The result

is subsequently used to show that the maximum ratio combining rule

over networks, which is used to combine the estimators across neigh-

bors within a network, is near optimal in the minimum variance un-

biased sense. The result suggests a rule for combining the estimators

within neighborhoods that can lead to improved mean-square error

performance.

Index Terms— LMS adaptation, steady-state distribution,

steady-state error, adaptation over networks.

1. INTRODUCTION

Consider a collection of N LMS-based filters for estimating a

weight vector wo of size M . Let wk,∞, k = 1, . . . , N , denote

the steady-state estimator by each filter, assuming the step-sizes

are small enough to ensure filter convergence in the mean-square

sense [1]. Such collections of filters arise in the study of adaptive

networks, with nodes spread over a spatial domain [2] [3] [4]. The

N filters could refer to nodes within any particular neighborhood

in the network – see Fig. 1. A question of interest is to investigate

how to combine the estimators provided by the individual nodes to

obtain an estimator wc that can outperform the estimators {wk,∞}
in the mean-square-error sense. To address this question, we first

take a step-back and derive a result for the classical LMS filter from

a new perspective. This viewpoint will allow us to obtain an insight

that facilitates the computation of wc and the assessment of its per-

formance. Specifically, we will first show that, for small step-sizes,

and under some assumptions on the data, the steady-state estimator

wk,∞ for the kth filter is approximately Gaussian distributed with

mean wo and covariance matrix µkσ
2
v,k(2I − µRu,k)

−1, where µk

is the step-size, σ2
v,k is the variance of noise at node k, and Ru,k

is the covariance matrix of the regression data also at node k. The

main observation here is the determination that wk,∞ is approx-

imately Gaussian distributed. Under this Gaussianity condition,

we will then be able to derive an expression for the (near) optimal

combination w
c. We use the term “near-optimal” as opposed to

“optimal” to highlight the fact that we are establishing approximate

Gaussianity in steady-state as opposed to exact Gaussianity. As the
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Fig. 1. A neighborhood with adaptive nodes estimating a parameter

vector wo.

simulations will indicate, the approximate Gaussianity result is well

justified. Then, by appealing to the Gauss-Markov Theorem [1], we

provide an expression for the minimum-variance unbiased estimator

(MVUE) w
c (see (40) further ahead). In the special case when

Ru,k = Ru and µk = µ across the nodes, our result (40) will sim-

plify in (43) to the conclusion that the optimal wc can be obtained

by means of the maximal ratio combining (MRC) rule applied to the

individual estimators {wk,∞}, namely,

w
c
,

1
∑N

l=1
σ−2

v,l

·
(

N∑

k=1

1

σ2
v,k

wk,∞

)
(1)

Given the Gaussianity property, as established by Theorem 3.4, the

discussion in the paper therefore establishes that the linear combina-

tion rules (1) and (40) are (near-) optimal in the mean-square sense

over the class of both linear and nonlinear estimators for wo (and not

only over the class of linear estimators).

2. DATA MODEL AND ASSUMPTIONS

We consider a linear regression model of the form:

d(i) = uiw
o + v(i) (2)

where wo is the unknown vector of size M × 1, ui is the regression

vector of size 1 × M at time i, and v(i) is noise also at time i.
All random variables are assumed to have zero means. We focus

initially on a single node running an LMS filter. We are interested

in estimating the unknown parameter wo. We use the least-mean

squares (LMS) algorithm [1] to update the weight estimator as:

wi = wi−1 + µu∗

i (d(i)− uiwi−1) (3)
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The error vector at time i is defined as

w̃i , wo −wi (4)

Substituting (2) and (3) into (4) yields the recursion

w̃i = (I − µu∗

iui)w̃i−1 − µu∗

i v(i) (5)

As is customary in the literature on LMS adaptation, we adopt the

following assumptions:

Assumption 2.1 The regression data ui are independent and iden-

tically distributed (i.i.d.) real Gaussian random variables with zero

mean and covariance matrix Ru.

Assumption 2.2 The noise signals v(i) are i.i.d. real Gaussian ran-

dom variables with zero mean and variances σ2
v .

Assumption 2.3 The regression data ui and the noise signals v(j)
are independent of each other for all i and j.

Assumption 2.4 The step size µ is sufficiently small such that

µE‖ui‖2 = µTr(Ru) ≪ 1 (6)

to guarantee the mean-square convergence of LMS.

It was argued in [5] that w̃i converges in distribution; it was further

noted that the limiting distribution is difficult to characterize. Based

on the data model (2) and Assumptions 2.1-2.4, we will actually

establish that the probability density function (pdf) of the estimator

wi at steady-state, i.e., w∞, is well approximated by a Gaussian

distribution.

3. PDF OF THE WEIGHT ERROR VECTOR

Using a standard averaging theory approximation for small step-

sizes [6], we replace the instantaneous product u∗

iui by its expecta-

tion Ru and write (5) as

w̃i ≈ (I − µRu)w̃i−1 − µu∗

i v(i) (7)

We further introduce the eigenvalue decomposition of Ru, say,

Ru = UΛU∗

(8)

where U is an M ×M unitary matrix and Λ is an M ×M positive-

definite diagonal matrix. Introduce the transformed variables:

wo = U∗wo, wi = U∗

w̃i, ui = uiU (9)

Then (7) can be transformed into

wi ≈ (I − µΛ)wi−1 − µu∗

i v(i) (10)

Assuming w−1 = 0, the initial error vector becomes

w̃−1 = wo −w−1 = wo
(11)

so that

w−1 = U∗

w̃−1 = U∗wo = wo
(12)

Then, after n iterations, we find from (10) that

wn ≈ (I − µΛ)n+1wo − µ
n∑

k=0

(I − µΛ)n−k
u

∗

kv(k) (13)

Taking expectations of both sides and recalling that uk and v(k) are

independent of each other, we obtain

Ewn = (I − µΛ)n+1wo
(14)

Actually, expression (14) is an exact relation (and not an approxima-

tion) under Assumptions 2.1-2.3. Indeed, if we take expectations of

both sides of (5), we get

Ew̃i = (I − µRu)Ew̃i−1

= (I − µRu)
i+1

Ew̃−1 (15)

where the first equality follows from Assumptions 2.1-2.3. Expres-

sion (15) can be easily transformed into (14). Now, since (14) is

decaying exponentially, we conclude that wn is an asymptotically

unbiased estimator for wo. This result is well-known in the adaptive

filtering literature [1].

We now proceed to introduce a centered error vector in order to

investigate the statistical distribution of wn in steady-state. Let

wn , wn − Ewn

= wn − (I − µΛ)n+1wo

≈ −µ
n∑

k=0

(I − µΛ)n−k
u

∗

kv(k) (16)

Because I − µΛ is diagonal, expression (16) can be expressed

element-wise as

w(n,m) ≈ −µ
n∑

k=0

(1− µλm)n−k
u(k,m)∗v(k)

= −µ
n∑

k=0

(1− µλm)ku(n− k,m)∗v(n− k) (17)

where w(k,m) and u(k,m) denote the mth entries of wk and uk ,

respectively, m = 1, . . . ,M . Note that (17) is a weighted sum of

a set of i.i.d. random variables {u(k,m)∗v(k)}, k = 0, . . . , n.

In the sequel we show that w(k,m) can be well approximated by a

Gaussian random variable. We first establish three auxiliary lemmas.

The proofs for the first two lemmas are omitted due to limited space.

Lemma 3.1 Let u and v denote two mutually-independent Gaus-

sian random variables, i.e., u ∼ N(0, σ2
u) and v ∼ N(0, σ2

v). Then,

the pdf of the product x = uv is [7]

px(x) =
1

πσuσv
K0

(
|x|

σuσv

)
(18)

where K0(·) is the zeroth-order modified Bessel function of the sec-

ond kind [8], defined as

K0(x) =

∫
∞

0

cos(x sinh(t))dt =

∫
∞

0

cos(xt)√
t2 + 1

dt (19)

Moreover, the characteristic function of x is

φx(ξ) =
1√

1 + σ2
uσ2

vξ2
(20)

Lemma 3.2 Let {xk}, k = 0, . . . , n, be a set of i.i.d. random vari-

ables, each distributed according to the pdf (18). The normalized

weighted sum

yn =
1

σuσv

√
1− ρ2

1− ρn+1

n∑

k=0

ρkxk (21)
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where 0 < ρ < 1 is a constant, has the characteristic function

φyn(ξ) =
n∏

k=0

1√
1 + ρ2k 1−ρ2

1−ρn+1 ξ2
(22)

When n is asymptotically infinite, (22) becomes

φy∞
(ξ) , lim

n→∞

φyn(ξ) =
(
(ρ2 − 1)ξ2; ρ2

)−1/2

∞
(23)

where the notation (a; q)∞ is the q-analog of the Pochhammer sym-

bol (q-Pochhammer symbol, or q-series) [8], defined as

(a; q)∞ ,

∞∏

k=0

(1− aqk) (24)

Lemma 3.3 The function φy∞
(ξ) in (23) is well approximated by

the characteristic function of the standard Gaussian random vari-

able, which is given by

φo(ξ) , e−ξ2/2
(25)

when 1 − ρ ≪ 1. This fact implies that y∞ is approximately

distributed as a standard Gaussian random variable, i.e., y∞ ∼
N(0, 1).

Proof First, by (23), the natural logarithm of φy∞
(ξ) is

ln (φy∞
(ξ)) = −1

2

∞∑

k=0

ln
(
1 + ρ2k(1− ρ2)ξ2

)
(26)

Expanding (26) by using the Maclaurin Series expansion of the nat-

ural logarithm function ln(1 + x) yields

ln (φy∞
(ξ)) = −1

2

∞∑

k=0

ρ2k(1− ρ2)ξ2 +O
(
(1− ρ2)2

)
(27)

Let ǫ , 1 − ρ ≪ 1. Then, 1 − ρ2 = 2ǫ − ǫ2 ≈ 2ǫ ≪ 1. So, (27)

can be expressed as

ln (φy∞
(ξ)) = − (1− ρ2)ξ2

2

∞∑

k=0

ρ2k + o(ǫ) ≈ − ξ2

2

which completes the proof.

Theorem 3.4 At steady-state, the random variable w(k,m) in (17)

is well approximated by a Gaussian random variable with zero mean

and variance
µσ2

v

2−µλm
.

Proof First, because u(k,m)∗ and v(k) are mutually-independent

zero-mean real Gaussian random variables, by Lemma 3.1, the pdf

of xk,m , u(n− k,m)∗v(n− k) is

pxk,m
(x) =

1

π
√
λmσ2

v

K0

(
|x|

σuσv

)
(28)

At steady-state and using Lemmas 3.2 and 3.3, the normalized

weighted sum

y∞,m =

√
1− ρ2

λmσ2
v

∞∑

k=0

ρkxk,m (29)

with ρ = 1 − µλm ∈ (0, 1) has a characteristic function that is

well approximated by that of the standard Gaussian random variable,

when µλm ≤ µTr(Ru) ≪ 1. Because the characteristic function of

a random variable defines its probability distribution, we conclude

that y∞,m is well approximated by the standard Gaussian random

variable. Moreover, we can make the identification:

w(∞,m) ≈ −µ

√
λmσ2

v

1− ρ2
y∞,m (30)

which implies that, approximately,

w(∞,m) ∼ N

(
0,

µσ2
v

2− µλm

)
(31)

as desired.

Remark: The classical Central Limit Theorem (CLT) [7] cannot be

applied directly to (17) to conclude that the entries w(n,m) satisfy

a Gaussian distribution. This is because the terms that appear inside

the summation in (17) do not satisfy the conditions that are usually

required by CLT. In particular, Lemma 3.2 indicates that the sum

does not converge to an actual Gaussian distribution in steady-state.

Only when ρ = 1, w(n,m) is asymptotically Gaussian in n, which

can also be concluded by CLT.

Based on this theorem, we can get a corollary on the limiting

distribution of the estimate wi when i goes to infinity.

Corollary 3.5 At steady-state, the estimate w∞ is approximately

distributed as a Gaussian random vector, i.e.,

w∞ ∼ N
(
wo, µσ2

v(2I − µRu)
−1
)

(32)

Proof According to (14), we already know that

Ew∞ , lim
n→∞

Ewn = lim
n→∞

(I − µΛ)n+1wo = 0 (33)

Then, some algebra shows that (32) follows from (16) and (17), and

from Theorem 3.4.

With Assumption 2.4, the mean-square-deviation (MSD) can be

approximated as

MSD , E‖w̃∞‖2 = E‖w∞‖2 ≈
M∑

m=1

µσ2
v

2− µλm
≈ µMσ2

v

2

which coincides with the small-step-size approximation for the MSD

of LMS according to (23.58) in [1].

4. NEAR-OPTIMAL COMBINATION OVER NETWORKS

Let us return to a neighborhood consisting of N nodes, as indicated

by Fig. 1. According to Corollary 3.5, the steady-state estimator for

the kth node, denoted by wk,∞, is approximately distributed as

wk,∞ ∼ N (wo, Pk) (34)

where Pk = µkσ
2
v,k(2I − µkRu,k)

−1. Define

W∞ , col(w1,∞, . . . ,wN,∞) (35)

P , diag(P1, . . . , PN ) (36)
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Fig. 2. φy∞
(ξ) versus φo(ξ).
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Fig. 3. φy∞
(ξ)− φo(ξ) versus ξ.

where col(·) is a column vector obtained by stacking its arguments

on top of each other and diag(·) is a (block) diagonal matrix ob-

tained by placing its arguments on the diagonal. Suppose the regres-

sion data are independent of each other across the nodes, then

W∞ ∼ N (1N ⊗ wo,P) (37)

where 1N is an all-one vector with N entries and ⊗ is the Kronecker

product. We can express (37) in the following linear model form

W∞ = Hwo + V (38)

where H , 1N ⊗ IM and V is zero mean (it actually consists of the

weight error vectors across the nodes):

V ∼ N(0,P) (39)

Then, according to the Gauss-Markov Theorem [1], the MVUE of

wo is given by

w
c
, (HTP−1H)−1HTP−1

W∞

=

(
N∑

k=1

P−1

k

)−1( N∑

k=1

P−1

k wk,∞

)
(40)

If the regressors across the network have uniform covariance matrix

and step-size, i.e., Ru,k = Ru and µk = µ, then (34) reduces to

wk,∞ ∼ N
(
wo, σ2

v,kPo

)
(41)

where Po = µ(2I − µRu)
−1, and (36) reduces to

P = Rv ⊗ Po (42)

where Rv , diag(σ2
v,1, . . . , σ

2
v,N ). Thus, (40) becomes

w
c = [(1T

NR−1
v 1N )−1 ⊗ Po][(1

T
NR−1

v )⊗ P−1
o ]W∞

=
N∑

k=1

σ−2

v,k∑N
l=1

σ−2

v,l

wk,∞ (43)
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Fig. 4. Comparison of CDF between [w∞]1 and the corresponding

Gaussian random variable.

The combination coefficients in (43) are proportional to the normal-

ized signal-to-noise ratios across the nodes; this is of the same form

as the MRC rule [1]. We conclude that MRC is a near-optimal fusion

method.

5. SIMULATION RESULTS

We plot the characteristic function φy∞
(ξ) versus φo(ξ) in Fig. 2,

and the difference φy∞
(ξ) − φo(ξ) in Fig. 3 for ρ = 0.995. We

see that the difference between φy∞
(ξ) and φo(ξ) is negligible with

respect to φy∞
(ξ). In Fig. 4, we plot the cumulative distribution

function (CDF) of [w∞]1 for M = 10, µ = 0.01, σ2
v = 0.1, Ru =

I , and [wo]1 = 1. The CDF is obtained over 2000 trials. In each

trial we take w1000 as the steady-state estimate. We also plot the

simulated and theoretical CDF of a Gaussian random variable with

mean [wo]1 = 1 and variance µσ2
v/(2−µ) = 5.0×10−4 where the

simulated CDF is obtained over 2000 samples. We see that the CDF

of [w∞]1 matches well that of the corresponding Gaussian random

variable.
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