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ABSTRACT

We study the mean-square performance of a diffusion least mean-
squares protocol proposed in recent work to address the problem of
distributed estimation [1, 2]. By relying on energy conservation ar-
guments [8] we derive closed form expressions for the mean-square
deviation (MSD) and the excess mean-square error (EMSE) of the
adaptive network. Examples show a good agreement between simu-
lations and theory.

Index Terms— Adaptive filters, distributed estimation, adaptive
estimation, adaptive networks, cooperative systems, mean-square analy-
sis, diffusion algorithm.

1. INTRODUCTION

Recently, distributed and cooperative estimation algorithms have been
proposed to address the problem of distributed estimation based on
the concept of adaptive networks [1, 3, 6]. The problem arises in
several applications, such as environment monitoring, target local-
ization and sensor network applications [7]. In [1] static and dy-
namic diffusion protocols that solve the global estimation problem
in a cooperative fashion have been proposed, and the mean behav-
ior of the static diffusion algorithm has been studied. The algorithms
formulated therein solve the estimation problem in a fully distributed
manner by sharing the computational burden among the individual
nodes. Every node is equipped with local learning abilities and co-
operates only with its direct neighbors, giving rise to peer-to-peer
protocols that are able to respond in real time to changes in the en-
vironment. In this work we extend the analysis performed in [1] and
study the mean-square steady-state performance of an adaptive net-
work driven by a diffusion protocol. As a result, we provide closed
form expressions for the mean-square deviation (MSD) and excess
mean-square error (EMSE). Examples show a good match between
simulations and theory.

2. DIFFUSION LMS

The global estimation problem consists of a network of intercon-
nected nodes pursuing the same M × 1 unknown vector wo from
measurements collected at theN nodes (see Fig.1). Each node k has
access to time realizations {dk(i), uk,i}, k = 1, . . . , N , of zero-
mean random data {dk, uk}, with dk(i) a scalar measurement and
uk,i a regression row vector; both at time i. In order to accomplish
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Fig. 1. A distributed network with N nodes.

the estimation task we rely on adaptive networks embedded with a
peer-to-peer diffusion learning protocol as proposed in [1, 2]. An
adaptive network results from equipping the nodes of the network
with local learning rules. The available communication topology
is then employed to implement a cooperation protocol among the
nodes in order to efficiently exploit spatial and temporal information.
Different learning rules allied with different cooperation protocols
give rise to different adaptive networks. The diffusion protocol is
comprised of an aggregate step followed by an adaptation procedure
based on an LMS rule (or other similar rules). Since in general every
node k in a neighborhood tends to have a different neighborhood for
connected topologies, the aggregation step helps fuse information
from nodes across the network into node k. Assuming each node k

has an unbiased estimate ψ
(i−1)
k of wo at time i−1, in the aggregate

step a vector combining estimates from the nearby nodes, i.e.,

φ
(i−1)
k = fk

�
ψ

(i−1)
� ; � ∈ Nk,i−1

�
(1)

is generated, for some local combiner fk (·), and where Nk is the
set of nodes connected to node k, including itself. The aggregate
estimate is then fed into the local adaptive filter and the new local
estimate ψ

(i)
k is generated after an adaptive rule, say of the LMS

type, as

ψ
(i)
k = φ

(i−1)
k + μku∗

k,i

�
dk(i) − uk,iφ

(i−1)
k

�
(2)

where μk is a local step-size. The combiners fk(·) might be nonlin-
ear or even time variant, to reflect, for instance, changing topologies
or to respond to non-stationary environments.

1361-4244-1198-X/07/$25.00 ©2007 IEEE SSP 2007



In order to illustrate the technique, we explore a linear combiner
model. At node k, the aggregated estimate φ

(i−1)
k is generated by

linearly combining the neighbors’ estimates, i.e., by using

φ
(i−1)
k =

�
�∈Nk

c(k, �) ψ
(i−1)
�

ψ
(i)
k = φ

(i−1)
k + μku∗

k,i

�
dk(i) − uk,iφ

(i−1)
k

�
(3)

for a set of local combiners c(k, �) satisfying
�

�∈Nk

c(k, �) = 1 (4)

Fig. 2. A network with diffusion cooperation strategy.

One such combiner is the Metropolis rule. Let nk and n� be the
degree for nodes k and �, i.e., nk = |Nk|. We have
��
�

c(k,�)=1/ max(nk,n�) if k �=� are linked

c(k,�)=0 if k and � are not linked

c(k,k)=1−��∈Nk/k c(k,�) for k=�

(5)

Other possible rules are the Laplacian and the nearest neighbor rules.
The Laplacian is given by

C = IN − κL , L = D − Ad (6)

where L is the network Laplacian, Ad is the network adjacency ma-
trix, D = diag{n1, . . . , nN}, and κ = 1/nmax. The nearest neigh-
bor rule is given by

c(k, ·) =
1

|Nk| (7)

3. ANALYSIS FRAMEWORK

Algorithm (3) embeds the combined effect of several adaptive filter
updates, in addition to the network topology. Hence, performance
analysis is challenging. We resort to state-space representations and
introduce the global quantities:

ψi Δ
= col{ψ(i)

1 , . . . , ψ
(i)
N } , φi−1 Δ

= col{φ(i−1)
1 , . . . , φ

(i−1)
N }

Ui
Δ
= diag{u1,i, . . . , uN,i} , di

Δ
= col{d1(i), . . . , dN (i)}

in terms of the stochastic quantities whose realizations appear in (3).
Now let

D = diag{μ1IM , μ2IM , . . . , μNIM} (8)

be a diagonal matrix collecting the local step-sizes. In addition, the
measurements are assumed to obey the linear model

dk(i) = uk,iw
o + vk(i) (9)

where vk(i) is the background noise, assumed independent over time
and space and with variance σ2

v,k. A global data model is given by

di = Uiw
(o) + vi (10)

where

vi = col{v1(i), . . . , vN (i)}
and

w(o) = qN ⊗ wo , qN = col{1, . . . , 1} (N × 1)

Let

G = C ⊗ IM

where C = [c(k, �)] is a diffusion combination matrix satisfying
CqN = qN and it has information about the network topology:
a nonzero entry c(k, �) means that node k is connected to node �.
Since Gw(o) = w(o), it can be verified that

ei = di − UiGψi−1

= eGa,i + vi (11)

where

eGa,i = UiG�ψi−1
and �ψi−1 Δ

= w(o) − ψi−1 (12)

The local rule (3) and the related weight error vector �ψ(i)
can be

represented globally in a compact state-space form as:

ψi = Gψi−1 + DU∗
i

�
di − UiGψi−1�

= G�ψi−1 − DU∗
i ei (13)

3.1. Weighted Energy and Variance Relation

Initially we characterize the network performance in steady-state by
the global quantities MSD and EMSE, which are defined as

η =
1

N
lim

i→∞
E‖�ψi−1‖2 (MSD) (14)

ζ =
1

N
lim

i→∞
E‖�ψi−1‖2

Ru
(EMSE) (15)

We will evaluate the performance of the diffusion network by ex-
tending the energy conservation approach of [4, 8] to this case. In-
troduce the global a priori and a posteriori weighted estimation er-
rors:

eDΣG
a,i = UiDΣG�ψi−1

and eDΣ
p,i = UiDΣ�ψi

(16)

for some arbitraryΣ ≥ 0. Substituting (11) into (13) and performing
weighted energy balance on both sides, the cross terms cancel out
and we are left with the following energy relation:

‖�ψi‖2
Σ +

�
eDΣG
a,i

�∗eGa,i +
�
eGa,i

�∗eDΣG
a,i = ‖�ψi−1‖2

G∗ΣG

+
�
eGa,i

�∗UiDΣDU∗
i eGa,i + v∗iUiDΣDU∗

i vi (17)
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Substituting the error definitions (12) into (17) yields

E‖�ψi‖2
Σ = E‖�ψi−1‖2

Σ′ + Ev∗iUiDΣDU∗
i vi (18)

Σ′ = G∗ΣG − G∗ΣDU∗
iUiG − G∗U∗

iUiDΣG

+ G∗U∗
iUiDΣDU∗

iUiG (19)

Note that no assumptions are needed to arrive at (18)–(19). Nev-
ertheless, we need to rely on simplifying assumptions to make the
analysis tractable. We proceed by assuming temporal independence
of the regression data, as is common in the analysis of traditional
adaptive schemes [8]. In addition, we assume spatial independence,
as it is more likely to hold in the distributed domain. An impor-
tant remark is that these assumptions do not compromise the spatial-
temporal nature of the algorithm, neither its distributiveness [4]. It
is assumed only for analysis purposes. As a result, after taking ex-
pectations, (18) yields

E‖�ψi‖2
Σ = E‖�ψi−1‖2

Σ′ + Ev∗iUiDΣDU∗
i vi (20)

Σ′ = G∗ΣG − G∗ΣDRuG − G∗RuDΣG

+ G∗EU∗
iUiDΣDU∗

iUiG (21)

where Ru = EU∗
iUi = diag{Ru,1, . . . , Ru,N}, with Ru,k =

Eu∗k,iuk,i.

3.2. Gaussian Signals

In (20) and (21), one needs to calculate data moments that may be
challenging in the general case. In this work we treat the Gaussian
case. Thus, we assume the regressors arise from circular Gaussian
sources [8]. By performing the eigen-decomposition Ru = TΛT ∗,
where T is unitary, Λ = diag{Λ1, . . . , ΛN}, Λk > 0 and diagonal,
and defining the transformed quantities

ψ
(i)

= T ∗ �ψ(i)
Ui = UiC Σ = T ∗ΣT

Σ
′
= T ∗Σ′T G = T ∗GT D = T ∗DT = D

the variance relation (20) becomes

E‖ψ(i)‖2
Σ = E‖ψ(i−1)‖2

Σ
′ + Ev∗iUiDΣDU∗

i vi (22)

Σ
′

= G
∗
ΣG − G

∗
ΣDΛG − G

∗
ΛDΣG

+ G
∗ �

EU∗
iUiDΣDU∗

iUi

�
G (23)

The transformed variance relation (22)–(23) requires the calculation
of data moments, which can be accomplished by exploiting the block
structure of the quantities therein. To do so, we resort to the block
vector operator σ = bvec{Σ}, which converts a block matrix Σ
into a single column vector σ in two steps as follows. Let Σ be a
NM × NM block matrix

Σ =

�
����

Σ11 Σ12 · · · Σ1� · · · Σ1N

Σ21 Σ22 · · · Σ2� · · · Σ2N

...
...

...
. . .

...
ΣN1 ΣN2 · · · ΣN� · · · ΣNN

�
���� (24)

where each block Σk� isM × M . First, the block columns

Σ� = col{Σ1�, . . . , ΣN�} , � = 1, . . . , N

are stacked on top of each other, yielding the matrix

Σc =

�
����

Σ1

Σ2

...
ΣN

�
���� (25)

Note that Σc is N2M × M . Subsequently, each Σk� is vectorized
by using the standard vec{} operator:

σ� = col{σ1�, . . . , σN�} , with σk� = vec{Σk�} (26)

and we finally let

σ = col{σ1, σ2, . . . , σN} (27)

We thus write σ = bvec{Σ} to denote the conversion of Σ into a
single column. We also write Σ = bvec{σ} to recover the original
block matrix form of the column vector σ. We further define the
block Kronecker product of two block matrices A and B, which is
denoted by A � B. Its kl-block is defined as

[A�B]k� =

�
��

Ak�⊗B11 ··· Ak�⊗B1N

...
. . .

...
Ak�⊗BN1 ··· Ak�⊗BNN

�
�� (28)

for k, � = 1, . . . , N . The block vector operator (27) and the block
Kronecker product (28) are related via [5]:

bvec{AΣB} = (B � AT )σ (29)

We now use these notations to evaluate the required data moments
in (22)–(23), namely,

Ev∗iUiDΣDU∗
i vi and EU∗

iUiDΣDU∗
iUi (30)

The first term in (30) can be verified to be

Ev∗iUiDΣDU∗
i vi = Tr{ΛvEUiDΣDU∗

i } (31)

where Λv > 0 is a diagonal matrix given by

Λv = {σ2
v,1, σ

2
v,2, . . . , σ

2
v,N}

To arrive at (31), first note that the k� entry ofEUiDΣDU∗
i is given

by

[EUiDΣDU∗
i ]k� =

�
0, for k �=�

μ2
kTr(ΛkΣkk) = μ2

kλT
k σkk, for k=�

where λk = vec{Λk} and σk� = vec{Σk�}. Hence, we may write
(31) as

Ev∗iU
∗
i DΣDUivi = bT σ (32)

with b = bvec{RvD2Λ}, Rv = Λv � IM and σ = bvec{Σ}.
The fourth order term in (30) is challenging, but it can be han-

dled by appealing to a Gaussian factorization theorem [8]. We start
by using (29) and write

bvec{G
∗

EU∗
i UiDΣDU∗

i UiG} =
�

G�G
∗T

�
bvec{EU∗

iUiDΣDU∗
iUi}

Now considering that U∗
iUi and D are block diagonal and defining

the quantity A = EU∗
iUiΣU

∗
iUi we have

bvec{G
∗

EU∗
i UiDΣDU∗

i UiG} =
�

G�G
∗T
	
(D�D) bvec{A}

=
�

G�G
∗T
	
(D�D)Aσ (33)

where A = diag{A1,A2, . . . ,AN} with

A� = diag



Λ1 ⊗ Λ�, . . . , λ�λ
T
� + γΛ� ⊗ Λ�, . . . , ΛN ⊗ Λ�

�

and σ = Σ . The intermediate steps in (33) were omitted for space
considerations.

Grouping the results and substituting into (22) yields
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E‖ψi‖2
σ = E‖ψi−1‖2

Fσ + bT σ (34)

F =
�

G�G
∗T

��
I−(I�ΛD)−(ΛD�I)+(D�D)A

�
σ (35)

3.3. Steady-State Performance

When the network is operating in steady-state, we get from (34)

E‖ψ∞‖2

(I−F)σ
= bT σ, as i → ∞ (36)

To calculate the global MSD and the EMSE we need to evaluate the
weighted norms

E‖ψ∞‖2
I (MSD) and E‖ψ∞‖2

Λ (EMSE) (37)

which are equivalent to E‖ψ∞‖2
q and E‖ψ∞‖2

λ, by using vector-
ization notation [4, 8]. Thus the global quantities MSD and EMSE
define two underlying linear systems in (36):

�
I − F

�
ση = q and

�
I − F

�
σζ = λ (38)

solving (38) for ση and σζ and substituting the results back into
(36) yields

η =
1

N
bT �I − F

�−1
q (MSD) (39)

ζ =
1

N
bT �I − F

�−1
λ (EMSE) (40)

3.4. Local Node Performance

Wemay also retrieve the individual node steady-state quantities from
the global quantity E‖ψi‖2

σ . To do so, we define the following spa-
tial filtering matrices whose purpose is to extract the local quantities
from the global expressions:

Jq,k = diag{0(k−1)M , IM , 0(N−k)M} (MSD) (41)
Jλ,k = diag{0(k−1)M , Λk, 0(N−k)M} (EMSE) (42)

where Λk is the diagonal matrix with the eigenvalues corresponding
to node k and 0L is a block of L × L zeros. It is possible to extract
local node performance by exploiting the degree of freedom in se-
lecting the weighting matrices σ in (36). To begin with, note that the
local mean-square performance of node k is defined as

ηk = E‖ψ(∞)

k ‖2 and ζk = E‖ψ(∞)

k ‖2
λk

(43)

in terms of the local stationary vectorsψ(∞)

k and where λk = vec{Λk}.
Now, inspecting the global steady-state quantities (14) and (15) and
considering the block diagonal structure of Λ, we get

ηk = E‖ψ∞‖2
Jq,k

and ζk = E‖ψ∞‖2
Jλ,k

Thus we select the σ in (36) as the solution to the (local) linear sys-
tems of equations

�
I − F

�
ση = bvec{Jq,k} (MSD) (44)

�
I − F

�
σζ = bvec{Jλ,k} (EMSE) (45)

so that

ηk = bT �I − F
�−1

bvec{Jq,k} (MSD) (46)

and

ζk = bT �I − F
�−1

bvec{Jλ,k} (EMSE) (47)

4. SIMULATIONS AND CONCLUDING REMARKS

We run a simulation example to illustrate the efficiency of the diffu-
sion protocol as compared with no cooperation, as well as to validate
the analysis. For simplicity, a relatively small network has been se-
lected, only to illustrate the algorithm. However, networks with arbi-
trary size have been tested. In this example, the signals are Gaussian
and follow a first order Markov process [1, 4], i.e., The regressors
are generated as

uk(i) = αkuk(i − 1) +
�

σ2
u,k(1 − α2

k) · zk(i) (48)

where σ2
u,k is the node regressor variance, αk is the correlation index

and zk(i) is a realization of a local white noise process with σ2
z,k =

1, independent from other nodes as well. The network has N = 8
nodes and the local adaptive filters have order M = 4. Figures 3
and 4 depict the network topology as well as its statistical profile,
respectively.
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Fig. 3. Network topology.
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Fig. 4. Network statistics for Example 1.

The background noise was set to σ2
v,k = 10−3. One can see

in Figs. 5 and 6 that the network operating under the cooperative
diffusion protocol presents a global improvement in performance, as
compared to the non-cooperative case. The curves also show that the

139



10−3 10−2

−75

−70

−65

−60

−55

−50

μ

G
lo

ba
l  

 M
S

D
   

(d
B

)
Global steady−state

Diffusion − theory
Diffusion − sim
No coop

Fig. 5. Global MSD.
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Fig. 6. Global EMSE.

analytical models match well the simulations, especially for dimin-
ishing step-sizes.

Figures 7 and 8 present the network performance at the indi-
vidual nodes. Note how the individual nodes perform better when
driven by the cooperative protocol presented in this work. The match
between theory and simulations is also quite good.

The analysis provided here can be extended to treat the transient
performance as well as more general settings, such as adaptive net-
works operating under more sophisticated learning rules, observing
non-Gaussian data.
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