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ABSTRACT
In the Mars rover missions the signals transmitted back
to Earth travel under low SNR conditions in highly non-
stationary channels [1, 2]. During the entry, descent and
landing phase (EDL), the spacecraft high dynamics yields
severe Doppler effects. We propose a robust and low com-
plexity scheme to estimate and track carrier frequency from
the received signals at the Earth end. The method employs
a hierarchical arrangement of convex linear prediction cells
that is dynamically adapted to respond to the channel con-
ditions. The adaptive combination is able to outperform the
best individual estimator in the set, leading to a universal
scheme for frequency estimation and tracking. In order to
compensate the lag error effect, we explore an efficient for-
ward and backward aggregation scheme that improves con-
siderably the frequency RMS error as compared to the orig-
inal method [3].
Index Terms–Adaptive filters, frequency estimation,

combination of filters, Mars exploration.

1. INTRODUCTION
In space missions to Mars, the most critical period for com-
munications is the entry, descent and landing phase (EDL)
[1, 2]. During this phase, a complex sequence of events
takes place, and health and status signals are sent back in
real time to Earth through the direct-to-earth (DTE) chan-
nel. In order to support spacecraft-to-earth communica-
tions, we recently developed a low complexity carrier fre-
quency estimation and tracking technique [3] that is able
to operate under low SNR and highly non-stationary condi-
tions, common to the adverse EDL scenario. In this work
we design more efficient convex estimators and explore a
method to mitigate bias errors in the frequency estimates.

2. EDL COMMUNICATIONS
Due to the EDL events, the signals travel through the DTE
channel experiencing a combination of severe Doppler shift,
time-varying gain and noise. These effects make the recov-
ery of the data from the received signal a challenging task.
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The EDL events are flagged into the transmitted signal
s(t), which is a 256-MFSK signal whose nominal carrier
frequency is f 0c = 8.4 GHz (X-band). At the Earth end,
the received signal x(t) is comprised of a distorted signal
component r(t) disturbed by noise v(t), as illustrated in Fig.
1. A detailed description of the DTE channel and signals
generation can be found in [2].
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Fig. 1. Direct-to-Earth communications.

In order to recover the MFSK data, we need a reli-
able estimate of the carrier frequency, whose nominal com-
ponent f 0c is shifted by a strong Doppler component f (t)
caused by the spacecraft high dynamics [1]:

fc(t) = f 0c + f (t) (1)

Figure 2 illustrates a typical Doppler profile experienced by
the landers of the Opportunity and Spirit missions. The ac-
celeration peak and the parachute deployment represent the
most challenging EDL epochs for frequency estimation.
Due to the nature of the problem, it is reasonable to as-

sume that there is no embedded data and that the signal is
down-converted and sampled upon reception, so that the re-
ceived signal can be modeled as [2]:

x(i) = e jωi+ v(i) (2)

where ω is the discrete time-varying Doppler component
and v(i) arises from an ergodic white noise process with
variance σ2v . Our objective is to estimate and track ω from
measurements {x(i)}.
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Fig. 2. Doppler profile during EDL for the Opportunity and
Spirit Mars missions (reduced bandwidth).

3. FREQUENCY ESTIMATION VIA ADAPTIVE
LINEAR PREDICTION

It is well known that for signal models of the form (2), the
Maximum-Likelihood (ML) technique can be effective [4],
[5]. This is the core technique proposed in [1, 2]. However,
in the general non-stationary case, ML requires a multidi-
mensional search that can be computationally prohibitive.
One alternative for estimation and frequency tracking is

to formulate a linear prediction problem [5]–[12]. In this
approach, a linear predictor, generally an FIR structure, de-
scribed by

x̂(i) =
M

∑
k=1
c(k)x(i− k) (3)

is designed to minimize the estimation error

e(i) = x(i)− x̂(i) (4)

according to some criterion, for example, in the least (mean)
squares sense. With the signal model (2), the optimal least
mean-squares predictor coefficients c(k) are given by [13]:

co =
1

σ2v +M
col{e jω ,e j2ω , . . . ,e jMω} (5)

This formulation is related to the Maximum Entropy
Method of spectral analysis, as well as AR process mod-
eling [7, 12]. The prediction-error filter Q(z), defined by

Q(z) = 1−
M

∑
k=1
c(k)z−k (6)

is related to the input signal power spectral density Sx(e jω)
via

Sx(e jω) =
K

|Q(e jω)|2 (7)

for a scaling factor K. The model (2) implies that the
spectrum of x(i) will be comprised primarily of a single
lobe peak, corresponding to the sinusoidal data component.
From (7), the closest root of Q(z) to the unit circle is re-
sponsible for the peak, and its phase is an estimate of the
Doppler frequency f (i) [9, 11, 12].

A useful approach is to employ adaptive filters to effi-
ciently design Q(z). In this work, predictors from the affine
projection family [13] are tested, with a particular empha-
sis on NLMS, due to its robustness, simplicity and reported
efficiency [3]:

ci = ci−1+ μ
x∗i−1

‖xi−1‖2+ ε
(
x(i)− xi−1ci−1

)
(8)

where

xi−1 = [x(i−1) x(i−2) · · · x(i−M+1)] (9)

At each time i, the adaptive predictor presents the
prediction-error filter Qi(z) to a root solver, which finds the
closest root to the unit circle, ro = ρoe jθo . An estimate of
the unknown Doppler frequency f (i) in Hertz is then found
from

f̂ (i) =
θo
2π

·Fs (Hz) (10)

where Fs is the sampling frequency. However, the position
of the roots of Qi(z) tends to be sensitive to perturbation
in the filter coefficients, caused by low SNR and gradient
noise.
One technique to reduce the noise effect is proposed in

[5], where a reduced rank least-squares (RRLS) FIR tracker
is presented, inspired by the work in [7]. For comparison
purposes, we implemented a forward RRLS predictor, i.e., a
predictor that uses past samples to predict the current state,
with a forgetting factor 0� α < 1 to cope with channel
dynamics.
Figure 3 compares the NLMS and forward RRLS so-

lution for different design parameters at SNR = 14dB−
Hz(−6dB). In the top row, left plot, one can see that despite
the small filter order (M = 5), the NLMS presents good per-
formance, maintaining the lock status throughout the EDL
phase. However, a slight change in the design parameters
leads to considerable degradation in performance, as shown
in the right plot. The bottom row shows the forward RRLS.
Following [5], we employed M = 18. The left plot shows
the algorithm response for a typical choice of the forget-
ting factor, α = 0.996 [13]. One can see that the lock is
lost in the region of peak acceleration. In the right plot, the
RRLS algorithm was equipped with a faster forgetting fac-
tor, λ = 0.9, improving the lock ability, but the presence
of spikes due to low SNR became dominant. As the for-
getting factor λ approaches unity, the performance severely
degrades and the LS-based algorithm is unable to react to
the changing channel.
Figure 3 also shows the robustness of the NLMS predic-

tor: even for a small order (M = 5), the NLMS algorithm is
able to outperform the RRLS solution, and at an inexpensive
computational cost.
As Fig. 4 shows, the RRLS solution can be improved

further by fine tuning the forgetting factor, in this case α =
0.98. Nevertheless, increasing the NLMS order slightly, i.e.,
M = 8, with μ = 0.075, also improves further the NLMS
response; thus outperforming the RRLS solution in both ex-
amples. Note that this was achieved with small predictor
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Fig. 3. Sensitivity of linear prediction methods.

orders,M = 5 andM = 8, representing an inexpensive com-
putational cost, when compared to the RRLS approach.
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Fig. 4. Comparison: NLMS versus forward RRLS.

4. COMBINATION PREDICTION SCHEME
As indicated by Figs. 3 and 4, both NLMS and RRLS
are sensitive to the design parameters. The procedure we
present now applies to both NLMS and RRLS. However we
focus on the NLMS algorithm.
In [3], we employed a convex mixture of multiple indi-

vidual predictors to overcome the design sensitivity of the
root configuration with respect to the predictor parameters.
Normalized LMS predictors with orders Mk and step-sizes
μk were organized into a single combination layer so that the
individual predictors are independent. The single layer con-
figurations were able to perform as well as the best individ-
ual predictor [3, 14]. However, when the number of filters

L is increased, the extra gradient noise introduced by the
combiners may compromise the overall performance. To
combat this effect, we explore here a hierarchical arrange-
ment of simple L = 2 convex cells (L2-cell)– see Fig. 5,
that operate using one combiner λ only [3]. The combiner
coefficient at time i is computed as

λ (i) =
1

1+
∣∣e − a(i−1)

2
∣∣2 (11)

where a is a complex quantity that is adapted as [14]

a(i) = a(i−1)−μa
[
∇a|e(i)|2

]∗
a=a(i−1) (12)

and e(i) = x(i)− x̂(i), with x̂(i) = xi−1ci−1, is the global
prediction error defined in terms of

ci−1 = λ (i)cu,i−1 + (1−λ (i))c�,i−1 (13)

It follows that, for the output layer, [3]:

a(i) = a(i−1)+μae(i)
(
x̂u(i)− x̂�(i)

)∗λ (i)
(
1−λ (i)

)
(14)

For the input layer, the upper and lower cell errors are given
by eu(i) = x(i)− x̂u(i) and e�(i) = x(i)− x̂�(i), where x̂u(i) =
xu,i−1 and x̂�(i) = x�,i−1, and they are defined in terms of

cu,i−1 = λu(i)c1,i−1 + (1−λu(i))c2,i−1 (upper) (15)
c�,i−1 = λ�(i)c3,i−1 + (1−λ�(i))c4,i−1 (lower) (16)

The two L2-cells in the input layer adopt a similar combin-
ing function:

λu(i) =
1

1+
∣∣e − au(i−1)

2
∣∣2 and λ�(i) =

1

1+
∣∣e − a�(i−1)

2
∣∣2

with learning rules

au(i) = au(i−1)+ μaeu(i)
(
x̂1(i)− x̂2(i)

)∗λu(i)
(
1−λu(i)

)
a�(i) = a�(i−1)+ μae�(i)

(
x̂3(i)− x̂4(i)

)∗λ�(i)
(
1−λ�(i)

)
Note that the regressors xu,i−1 and x�,i−1 have the same order
as c2 and c4, respectively. Whenever necessary, the regres-
sors are filled out with zeros to match the dimensions in the
equations [3]. In addition, the combiners λ , λu and λ� are
time-smoothed over their past Nham values via a Hamming
half-window, generating λ , λu and λ�. More recent samples
are emphasized, so that the window peak is at the current
sample. The window coefficients are normalized to sum up
to unity. This procedure helps combat the extra gradient
noise introduced by the learning rules a, au and a�.
In Fig. 6 we run a simulation with low SNR (12dB−Hz,

or −8dB) to illustrate the superior design of the hierar-
chical arrangement, as compared to the original L2-cells
or the individual NLMS predictors. For this example, 10
experiments were performed with μ1 = μ2 = 0.075 and
μ3 = μ4 = 0.11 for the individual predictors and μa = 0.4
for the learning rules. The left plot shows the evolution of λ ,
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λu and λ�. Note how they are adjusted to properly select the
best predictor. In the region of peak acceleration, the com-
biners correctly tend to assign larger weights to the smaller
order predictors, since they can react faster to the channel.
In periods of lower dynamics, they commute to the larger
order predictors in order to decrease the mean square error.
This effect is emphasized for a larger step-size μa. The right
plot depicts the frequency root mean squared (RMS) error
of all the predictors in the system. All the L2-cells’ outputs
outperform their (input) individual predictors. The RMS er-
ror is defined in terms of the nominal Doppler profile f (i)
(refer to Fig. 2) and an estimate of interest f̂ (i):

RMS=

√
1
N

N

∑
i=1

| f (i)− f̂ (i)|2

5. TRACKING LOCK CONTROL

The low SNR effects in the frequency estimates are wors-
ened by the stochastic gradient disturbances introduced by
the predictors (8) as well as the adaptive combiners rule

DERIVATIVE
CONTROL

UNIVERSAL
ERROR

PREDICTOR
ROOT

SOLVER

Fig. 7. The combination scheme with smoothing and deriv-
ative control.

(12). This leads to spikes in the estimated frequency that are
not related to the actual Doppler frequency. The lock con-
trol attempts to enforce continuity of frequency, reflecting
the natural behavior of the underlying physical process. The
original scheme has been improved by employing a convex
Hamming smoother over the derivatives buffer [3], which
keeps track of the most recent “good” derivative samples,
and also over consecutive predictors ci−1 (Qi(z)). When-
ever a jump is detected, continuity is enforced:

f̄ (i) =
{
f̂ (i), if |δ f̂ (i)| ≤ THR
f̂ (i−1)+δ f (i), if |δ f̂ (i)| > THR (17)

where δ f = f̂ (i)− f̂ (i−1), and δ f is the spike-free deriv-
ative obtained from the temporal hamming smoother.

6. LAG-ERROR COMPENSATION

The estimates delivered by the ALPs will be generally bi-
ased due to the root solver operation [5]. The effects of
the low SNR conditions are worsened if the NLMS step-
size is large, since the gradient noise is directly amplified
by that. As a result, the step-size is required to be small
(μ ≈ 0.1), otherwise the spurious frequency spikes become
severely dominant. On the other hand, a small step-size has
the counter-effect of decreasing the ability of the filter to re-
spond to the process dynamics, thus increasing the lag error
(bias). In other words, in the non-stationary scenario, the
estimates delivered by the ALPs will be biased not only due
to the root solver operation, but also as a result of the learn-
ing latency experienced by the adaptive filters [13]. This
effect can be compensated by exploring the learning latency
of the adaptive predictors, as explained next.
When performing forward prediction, the adaptive filter

suffers from a latency effect, which causes the forward fre-
quency estimate f to always fall behind the true value, gen-
erating a causal lag error – solid (red) line in Fig. 8, which
represents the forward operation, from point A to point B.
Now, considering an off-line processing scenario, if a back-
ward prediction is performed, from point B towards point A,
the latency effect will again cause the backward estimate f b
to fall “behind” the true frequency value. However, due to
the virtual “flip” in the time processing, the lag will now be
anti-causal with respect to the original time axis, and also to
the previous forward estimates, as illustrated by the dashed
(blue) curve in Fig. 8. By simply performing a time aver-
age of both f and f b estimates, the bias error can be greatly
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combatted. The idea can be extended to a general mapping

f nl = g
(
f , f b

)
(18)

for a properly chosen function g(·). For instance, g(·) could
be a median filter to combat also the spurious frequency
spikes.

Convex 
Predictor
Forward

Convex 
Predictor
Backward

Fig. 9. The global scheme with lag-error compensation.
The forward and backward predictors are implementations
of the scheme in Fig. 7.

In Figure 10, we run a simulation for a wide range of
SNR, and compare the performance of the original L2-cell
scheme, with the entire system proposed (Figs. 9 and 7).
The set of predictors employed is Mk = [9,13,17,21], with
μk = 0.11. The improvement in performance is expressive,
especially for large SNR.

7. CONCLUDING REMARKS

We are currently developing methods that efficiently extract
the frequency content from the predictor coefficients, lead-
ing to substantial improvement in performance, especially
at low SNR. In addition, signal pre-conditioning techniques
to enhance the signal and improve performance are also be-
ing tested. More sophisticated and more robust lock en-
forcement techniques are currently being developed.
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