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ABSTRACT

Combination approaches provide a useful way to improve

adaptive filter performance. In this paper, we study the

tracking performance of an adaptive convex combination

of two transversal filters. The individual filters are inde-

pendently adapted using their own error signals, while the

combination is adapted to minimize the error of the overall

structure. We show the universality of the approach with

respect to the component filters, i.e., that the overall filter

is able to track changes at least as well as the best compo-

nent filter. Using energy conservation arguments, we then

specialize the results to a combination of two LMS filters.

1. INTRODUCTION

Combination approaches can be used to achieve improved

adaptive filter performance [1, 2, 3, 4]. In this paper we shall

study the following adaptive convex combination scheme,

which obtains the output of the overall filter as – see Fig. 1

[5, 6, 7]:

y(n) = λ(n)y1(n) + [1 − λ(n)]y2(n) (1)

where y1(n) and y2(n) are the outputs of two transversal

filters at time n, i.e., yi(n) = w
T

i
(n)u(n), i = 1, 2, with

w
T

i
(n) being the weight vectors characterizing the compo-

nent filters and u(n) their common regressor vector. More-

over, λ(n) is a mixing scalar parameter that lies between 0

and 1. The idea is that if λ(n) is assigned appropriate val-

ues at each iteration, then the above combination would ex-

tract the best properties of the individual filters w1(n) and

w2(n).
We shall consider the case in which both component fil-

ters are independently adapted, using their own design rules.
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Fig. 1. Adaptive convex combination of two transversal fil-

ters. Each component is adapted using its own rules and

errors, while the mixing parameter, λ(n), is chosen to min-

imize the quadratic error of the overall filter.

Thus, for general transversal schemes we will assume that

wi(n + 1) = fi [wi(n),u(n), d(n), p
i
(n)] , i = 1, 2 (2)

where d(n) stands for the desired signal, p
i
(n) is a state

vector, and fi[·] refers to the adaptation function. For sim-

plicity, we shall assume in the following that both w1(n)
and w2(n) have length M , so that the overall filter can also

be thought of as a transversal filter with weight vector:

w(n) = λ(n)w1(n) + [1 − λ(n)]w2(n) (3)

For the adaptation of the mixing parameter λ(n) we

shall use a gradient descent method to minimize the quadratic

error of the overall filter, namely, e2(n) = [d(n) − y(n)]
2
.

However, instead of directly modifying λ(n), we adapt a

variable a(n) that defines λ(n) via a sigmoidal function as

λ(n) = sgm[a(n)] =
1

1 + e−a(n)

The update equation for a(n) is given by

a(n + 1) = a(n) −
µa

2

∂e2(n)

∂a(n)
(4)

= a(n) + µae(n) [y1(n) − y2(n)] λ(n) [1 − λ(n)]
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The benefits of employing the sigmoidal activation function

are twofold. First, it serves to keep λ(n) within the desired

range [0,1]. Second, as seen from (4), the adaptation rule

of a(n) reduces both the stochastic gradient noise and the

adaptation speed near λ(n) = 1 and λ(n) = 0 when the

combination is expected to perform close to one of its com-

ponent filters without degradation. Still, note that the update

of a(n) in (4) stops whenever λ(n) is too close to the limit

values of 0 or 1. To circumvent this problem, we shall re-

strict the values of a(n) to lie inside a symmetric interval

[−a+, a+], which limits the permissible range of λ(n) to

[1 − λ+, λ+], where λ+ = sgm(a+) is a constant close to

1. In this way, a minimum level of adaption is always guar-

anteed.

In [7] we analyzed the stationary performance of the

above combination scheme, concluding that y(n) is nearly

universal with respect to its components [8], i.e., it can per-

form as close as desired to the best component filter. In

this paper we extend this result to non-stationary environ-

ments and illustrate the performance of a convex combina-

tion of two LMS filters when the optimal solution is subject

to changes at different speeds.

2. NON-STATIONARY DATA MODEL AND

NOTATION

In the sequel we adopt the following assumptions:

• d(n) and u(n) are related via a linear regression model

d(n) = w0(n)T
u(n) + e0(n) (5)

for some unknown weight vector w0(n) of length M

and where e0(n) is an independent and identically

distributed (i.i.d.) noise, independent of u(m) for any

n and m, and with variance σ2
0 .

• The initial conditions w1(0), w2(0) and a(0) are in-

dependent of {u(n), d(n), e0(n)} for all n.

• w0(n) varies according to the random walk model

w0(n + 1) = w0(n) + q(n) (6)

where q(n) is an i.i.d. vector, independent of {u(m),
d(m), e0(m)}, for all m < n, and of the initial con-

ditions w0(0), w1(0), w2(0) and a(0).

• E{u(n)} = E{q(n)} = 0, E{d(n)} = E{e0(n)} =
0, E{u(n)uT (n)} = R, and E{q(n)qT (n)} = Q.

Unlike other studies in the adaptive filtering literature,

we shall not assume that {u(n)} is a sequence of in-

dependent regressors.

It is also convenient to introduce some notation and ad-

ditional variables:

• We define the weight error vector of a transversal fil-

ter as the difference between the optimal solution and

the filter weights. Thus we define

εi(n) = w0(n) − wi(n), i = 1, 2

for the component filters, and

ε(n) = w0(n) − w(n)

for their combination.

• A priori errors:

ea,i(n) = ε
T

i
(n)u(n), i = 1, 2

ea(n) = ε
T (n)u(n)

• A posteriori errors:

ep,i(n) = [w0(n) − wi(n + 1)]T u(n), i = 1, 2

ep(n) = [w0(n) − w(n + 1)]T u(n)

To measure filter performance it is customary to use the ex-
cess mean-square error (EMSE), which is defined as the
excess over the minimum mean-square error that can be
achieved by a filter of length M in steady-state, namely σ2

0 .
It can be easily seen that e(n) = ea(n) + e0(n), so that the
EMSE of the filters (isolated and combined) can be calcu-
lated as:

Jex,i(∞) = lim
n→∞

E{e
2

a,i
(n)}, i = 1, 2 (individual) (7)

Jex(∞) = lim
n→∞

E{e
2

a
(n)} (combination) (8)

During the analysis, it will be useful to refer to an additional

variable that measures the steady-state correlation between

the a priori errors of the elements of the combination, i.e.,

Jex,12(∞) = lim
n→∞

E{ea,1(n)ea,2(n)} (9)

We shall refer to this variable as the cross-EMSE of the

component filters. From its definition, and from Cauchy-

Schwartz inequality, it follows that Jex,12(∞) cannot be si-

multaneously higher than the individual EMSEs of filters

w1(n) and w2(n), i.e., Jex,1(∞) and Jex,2(∞).

3. UNIVERSALITY OF THE COMBINATION

SCHEME

In [7, 9] we studied the steady-state performance of the

adaptive combination form (1), concluding that it is nearly

universal, in the sense that its stationary EMSE is as close

as desired to the best component filter, w1(n) or w2(n),
for increasing a+. Furthermore, when the cross-EMSE of

the component filters is low enough, the combination was

shown to outperform both components. To be more specific,

depending on the EMSEs and cross-EMSE of the compo-

nent filters, and following the arguments in [7, 9], the fol-

lowing three cases can occur:
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• Case I: Jex,1(∞) ≤ Jex,12(∞) ≤ Jex,2(∞). In this

case, we obtained that the stationary value of a(n), as

n goes to infinity, is essentially a(∞) = a+ a.s. A

consequence of this result is that

Jex(∞) ≈ Jex,1(∞) (10)

with the approximation being as accurate as desired

for increasing values of a+. That is, the combination

scheme performs like its best component filter in this

case.

• Case II: Jex,1(∞) ≥ Jex,12(∞) ≥ Jex,2(∞). Apply-

ing parallel arguments to those in the previous case,

we concluded that a(∞) = −a+ a.s. and

Jex(∞) ≈ Jex,2(∞) (11)

Again, the behavior of the overall filter is as good as

its best element.

• Case III: Jex,12(∞) < Jex,i(∞), i = 1, 2. When the

cross-EMSE is lower than the EMSEs of both individ-

ual filters, a stationary value of the mixing parameter

λ(n) is approximately characterized by

λ̄(∞) =

[

∆J2

∆J1 + ∆J2

]λ
+

1−λ+

(12)

where we have introduced the differences

∆Ji = Jex,i(∞) − Jex,12(∞), i = 1, 2 (13)

For λ̄(∞) = λ+ and λ̄(∞) = 1 − λ+, the two first

cases show us that the performance of the combina-

tion is that of its best component. For intermediate

values of λ̄(∞), the EMSE of the overall filter can be

expressed as

Jex(∞) = Jex,12(∞) +
∆J1∆J2

∆J1 + ∆J2
(14)

so that, since 0 < 1 − λ+ < λ̄(∞) < λ+ < 1, the

following bounds hold:

Jex(∞) = Jex,12(∞) + λ̄(∞)∆J1 < Jex,1(∞)

Jex(∞) = Jex,12(∞) + [1 − λ̄(∞)]∆J2 < Jex,2(∞)

i.e.,

Jex(∞) < min {Jex,1(∞), Jex,2(∞)} (15)

Since our arguments in [7, 9] relied solely on the a priori er-

rors of the filters, and these definitions do not change when

analyzing tracking operation, the conclusions about the uni-

versality of the mixture hold unaltered for a tracking sce-

nario, as well as for the three cases mentioned above.

The analysis did not assume any particular form for the

update function fi[·], and it consequently applies to the com-

bination of general adaptive filters (2). To illustrate the

overall filter tracking performance for a particular update of

w1(n) and w2(n), it is enough to derive expressions for the

associated EMSEs and cross-EMSE. We will do so in the

following section for a convex combination of LMS filters.

4. COMBINATION OF LMS FILTERS WITH

DIFFERENT STEP-SIZES

In this section we study the non-stationary performance of

an adaptive convex combination of two LMS filters (CLMS),

which only differ in their step-sizes. Designing criteria for

hard switching the step-size of an LMS filter (in a variable

step-size implementation) is generally challenging; in this

sense, CLMS could be thought of as an effective method

for (softly) discriminating between the best of the µ1 and

µ2 step-sizes.

To begin with, note that when analyzing the tracking

properties of LMS filters it is customary to study the influ-

ence of the step-size on the performance of the filter for a

fixed covariance matrix Q. However, our goal here is to

show that CLMS is able to improve over the tracking ca-

pabilities of its components and, consequently, we will ana-

lyze the EMSE of the filters for varying Tr(Q) and for given

µ1 and µ2. Without loss of generality, we will assume that

µ1 > µ2 so that the first filter adapts faster.

Using the energy conservation approach of [10, Ch. 7],

it can be shown that the tracking EMSEs of the LMS com-

ponents are given by [10, Eq. (7.5.9)]:

Jex,i(∞) =
µiσ

2
0Tr(R) + µ−1

i
Tr(Q)

2 − µiTr(R)
; µi <

2

Tr(R)

(16)

As it is known, the EMSE expression consists of two terms.

The first term is the EMSE corresponding to a stationary

environment (and it increases with µi), while the second

term is inversely proportional to µi and is related to the

tracking capabilities of the filter. Consequently, it can be

shown [9] that (16) achieves a minimum over the interval

0 < µi < 2/Tr(R) at the following optimal step-size:

µopt =

√

Tr(Q)

σ2
0Tr(R)

+
(Tr(Q))2

4σ4
0

−

Tr(Q)

2σ2
0

(17)

In the following, it will be useful to employ an alternative

figure of merit to measure filter performance in tracking sit-
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uations. We define the Normalized Square Deviation (NSD)

of a filter as the ratio of its EMSE to the theoretical EMSE

of an LMS filter with optimal step-size µopt (for each value

of Tr(Q)). Thus, for the components of the CLMS filter we

set

NSDi(∞) = Jex,i(∞)/Jex,opt(∞), i = 1, 2 (18)

Similarly, the NSDs of the combined scheme, and the cross-

NSD between the component filters will be defined as

NSD(∞) = Jex(∞)/Jex,opt(∞) (19)

NSD12(∞) = Jex,12(∞)/Jex,opt(∞) (20)

Next, we need to obtain an expression for Jex,12(∞) in the

non-stationary case. Our starting point is the following re-

lation from [10, Ch. 7], which applies to LMS updates,

[w0(n) − wi(n + 1)] +
u(n)

‖u(n)‖2
ea,i(n) =

εi(n) +
u(n)

‖u(n)‖2
ep,i(n), i = 1, 2 (21)

Multiplying the transpose of (21) by (21) itself, for i = 1
and i = 2, respectively, and after cancelling terms, we get

[w0(n) − w1(n + 1)]T [w0(n) − w2(n + 1)]+

ea,1(n)ea,2(n)

‖u(n)‖2
= ε

T

1 (n)ε2(n) +
ep,1(n)ep,2(n)

‖u(n)‖2
(22)

To simplify this expression, we use w0(n) = w0(n + 1) −
q(n) to write

E{[w0(n) − w1(n + 1)]T [w0(n) − w2(n + 1)]} =

E{ε
T

1 (n + 1)ε2(n + 1)} + Tr(Q)−

E{[ε1(n + 1) + ε2(n + 1)]
T

q(n)} (23)

Now, note that

εi(n + 1) = w0(0) +
n

∑

j=0

q(j) − w
T

i
(n + 1)

But since q(n) is independent of w0(0) by assumption, and

q(n) is also independent of w
T

i
(n + 1) as a consequence of

q(n) being i.i.d. and independent of {u(m), d(m)},m ≤

n, we can simplify (23) to

E{[w0(n) − w1(n + 1)]T [w0(n) − w2(n + 1)]} =

E{ε
T

1 (n + 1)ε2(n + 1)} − Tr(Q) (24)

Using this result, and the fact that in steady state

E{ε
T

1 (n + 1)ε2(n + 1)} = E{ε
T

1 (n)ε2(n)}

we get from (22) that

E

{

ea,1(n)ea,2(n)

‖u(n)‖2

}

= E

{

ep,1(n)ep,2(n)

‖u(n)‖2

}

+ Tr(Q)

(25)

as n goes to infinity.

To proceed further, we need to specialize this result for

w1(n) and w2(n). From [10, Eq. (6.3.3)],

ep,i(n) = ea,i(n) − µi‖u(n)‖2ei(n), i = 1, 2 (26)

and ei(n) = ea,i(n) + e0(n), we arrive after some manipu-

lations at

(µ1 + µ2)Jex,12(∞) =

Tr(Q) + µ1µ2

[

E{‖u(n)‖2ea,1(n)ea,2(n)} + σ2
0Tr(R)

]

(27)

Finally, application of the separation principle (viz., that

‖u(n)‖2 is independent of ea,i(n) in steady-state) allows

us to rearrange terms and to get

Jex,12(∞) =
µ12σ

2
0Tr(R) + 2Tr(Q)/(µ1 + µ2)

2 − µ12Tr(R)
(28)

As discussed in Section 3, the performance of the CLMS

filter depends on the signs of ∆Ji, i = 1, 2. So, to study

CLMS performance we need to analyze the relations among

Jex,1(∞), Jex,2(∞) and Jex,12(∞) for any value of Tr(Q)
in the non-stationary case. In order to do this, let us consider

first a small step-size approximation for (16), (17) and (28),

namely

Jex,i(∞) ≈
µiσ

2
0Tr(R) + µ−1

i
Tr(Q)

2
, i = 1, 2 (29)

µopt ≈

√

Tr(Q)

σ2
0Tr(R)

(30)

Jex,12(∞) ≈
µ12σ

2
0Tr(R) + 2Tr(Q)/(µ1 + µ2)

2
(31)

Then, subtracting (31) from (29), and defining r = µ1/µ2,

it is straightforward to verify that

∆J1 =
r − 1

r + 1
·
µ1σ2

0
Tr(R) − µ−1

1
Tr(Q)

2

�
< 0, for Tr(Q) > q1

> 0, for Tr(Q) < q1

(32)

∆J2 =
1 − r

r + 1
·
µ2σ2

0
Tr(R) − µ

−1

2
Tr(Q)

2

�
> 0, for Tr(Q) > q2

< 0, for Tr(Q) < q2

(33)

where we have defined1

qi = µ2
i
σ2

0Tr(R) (34)

Thus, we find that, depending on the value of Tr(Q), all

three cases described in Section 3 can occur – see Table I:

1Note that under the small step-size approximation, q1 (q2) is the value

of Tr(Q) for which µ1 (µ2) is the optimal step-size (see Eq. (30)).
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NSD(∞)

Tr(Q) > q1 ≈ NSD1(∞)
q1 > Tr(Q) > q2 < min{NSD1(∞), NSD2(∞)}

Tr(Q) < q2 ≈ NSD2(∞)

Table 1. CLMS normalized square deviation as a function

of Tr(Q).

• If Tr(Q) > q1, we have Jex,1(∞) ≤ Jex,12(∞) ≤

Jex,2(∞) (or, equivalently, NSD1(∞) ≤ NSD12(∞)
≤ NSD2(∞)), so we are in Case I, and the combina-

tion performs like the µ1-LMS.

• Just the opposite occurs for Tr(Q) < q2, with Jex(∞)
≈ Jex,2(∞).

• Finally, when q2 < Tr(Q) < q1, we have that both

∆J1 and ∆J2 are greater than 0, i.e., (15) applies,

and the combination outperforms both components.

Figures 2(a) and (b) illustrate the above theoretical con-

clusions. We have depicted the theoretical tracking val-

ues for the NSDs of two LMS filters with µ1 = 0.1 and

µ2 = 0.01, for their cross-NSD, and for the NSD achieved

by their adaptive convex combination with a+ = 4, for dif-

ferent values of Tr(Q). Additional settings were Tr(R) = 1
and σ2

0 = 0.01. We can see that the CLMS scheme offers

improved tracking performance, not only because it inherits

the best tracking properties of each LMS, but also because

it performs better than either for certain rates of variations,

as can be seen in Figure 2(a) for q2 < Tr(Q) < q1.

We have carried out simulations for an example where

the initial optimal solution (M = 7) was formed with in-

dependent random values between −1 and 1. The regressor

u(n) is obtained from a process u(n) as

u
T (n) = [u(n), u(n − 1), . . . , u(n − 6)]

where u(n) is colored Gaussian noise with input power. Ad-

ditive i.i.d. noise e0(n) with variance σ2
0 = 0.01 was added

to form the desired signal. Finally, the entries of q(n) were

taken as independent Gaussian values with equal variances.

As for the settings for the CLMS filter, we have used step-

sizes µ1 = 0.1 and µ2 = 0.01 for the components, and

µa = 100 and a+ = 4 to adapt the combination. Fig-

ure 3 shows a close match between the theoretical and esti-

mated values for the residual NSD of the CLMS filter, and

the cross-NSD of the component filters for most values of

Tr(Q). All results have been averaged over 20000 samples

after filter convergence, and over 50 independent runs.
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Fig. 2. (a) Theoretical normalized mean-square deviation

of two LMS filters with steps µ1 = 0.1 and µ2 = 0.01 as a

function of the trace of the covariance matrix of q(n). Their

cross-NSD is also depicted using a solid line, as well as it

is the NSD of their adaptive combination. (b) Theoretical

steady-state value for the mixing parameter.

5. CONCLUSION

Combination approaches can help improve adaptive filter

performance. In this paper we have analyzed the tracking

behavior of one such approach, showing that it performs as

close as desired to the best of its components, and, possibly,

better than any of them. These results have been illustrated

by studying the tracking performance of a combination of

two LMS filters with different step-sizes in a non-stationary

environment.

6. REFERENCES

[1] P. Anderson, “Adaptive forgetting in recursive identifi-

cation through multiple models,” Intl. J. Control, vol.

42, pp. 1175–1193, 1985.

[2] M. Niedz̀wiecki, “Multiple-model approach to finite

memory adaptive filtering,” IEEE Trans. on Signal

Proc., vol. 40, pp. 470–473, Feb. 1992.



114

10
−9

10
−7

10
−5

10
−3

10
−1

−5

0

5

10

15

20

25

Tr(Q)

N
S

D
[d

B
]

Theoretical

Simulation

NSD(∞)

NSD12(∞)

Fig. 3. Steady-state theoretical and estimated cross-NSD of

two LMS filters with µ1 = 0.1 and µ2 = 0.01, and NSD for

the resulting CLMS combination.

[3] S. S. Kozat and A. C. Singer, “Multi-stage adaptive sig-

nal processing algorithms,” in Proc. IEEE Sensor Array

and Multichannel Signal Proc. Workshop, Cambridge,

MA, pp. 380–384, Mar. 2000.

[4] V. Vovk, “Competitive on-line statistics,” Intl. Stat.

Rev., vol. 69, pp. 213–248, 2001.

[5] J. Arenas-García, V. Gómez-Verdejo, M. Martínez-

Ramón, and A. R. Figueiras-Vidal, “Separate-variable

adaptive combination of LMS adaptive filters for plant

identification,” in Proc. 13th IEEE Intl. Workshop on

Neural Networks for Signal Proc., Toulouse, France,

pp. 239–248, Sep. 2003.

[6] J. Arenas-García, M. Martínez-Ramón, V. Gómez-

Verdejo, and A. R. Figueiras-Vidal, “Multiple plant

identifier via adaptive LMS convex combination,” in

Proc. IEEE Intl. Symp. on Intel. Signal Proc., Budapest,

Hungary, pp. 137–142, Sep. 2003.

[7] J. Arenas-García, A. R. Figueiras-Vidal, and

A. H. Sayed, “Steady-state performance of con-

vex combinations of adaptive filters,” in Proc. ICASSP,

vol. IV, Philadelphia, PA, pp. 33-36, Mar. 2005.

[8] N. Merhav and M. Feder, “Universal prediction,” IEEE

Trans. on Inf. Theory, vol. 44, pp. 2124–2147, 1998.

[9] J. Arenas-García, A. R. Figueiras-Vidal, and

A. H. Sayed, “Mean-square performance of a

convex combination of two adaptive filters,” to appear

in IEEE Trans. on Signal Proc., 2006.

[10] A. H. Sayed, Fundamentals of Adaptive Filtering, Wi-

ley, NY, 2003.




