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ABSTRACT

We provide a time-domain analysis of the robustness and stability performance of Gauss-Newton recursive
methods that are often used in identification and control. Several free parameters are included in the filter
description while combining the covariance update with the weight-vector update; the exponentially weighted
recursive-least-squares (RLS) algorithm being an important special case. One of the contributions of this work
is to show that by properly selecting the free parameters; the resulting filter can be shown to impose certain
bounds on the error quantities, thus resulting in desirable robustness and stability properties. We also show that
an intrinsic feedback structure, mapping the noise sequence and the initial weight guess to the apriori estimation
errors and the final weight estimate, can be associated with such schemes. The feedback configuration is motivated
via energy arguments and is shown to consist of two major blocks: a time-variant lossless (i.e., energy preserving)
feedforward path and a time-variant feedback path.

Keywords: Adaptive Gauss-Newton filters, feedback connection, Iz —stability, small gain theorem, contraction mapping.

1 INTRODUCTION

This paper provides a time-domain feedback analysis of the class of Gauss-Newton recursive schemes, which
have been employed in several areas of identification, control, signal processing, and communications (e.g.,' ).
These are recursive estimators that are based on gradient-descent ideas and involve two update relations: one
updates the weight estimate, while the other updates the inverse of the sample covariance matrix. In this paper, we
include several free parameters into the filter description while combining the covariance update with the weight-
vector update. The parameters allow for a reasonable degree of freedom in setting up a filter configuration, and
one of the contributions of this work is to show that by properly selecting the free parameters, the resulting
filter can be shown to impose certain bounds on the error quantities. These bounds are further shown to result
in desirable robustness and stability properties. In particular, we derive several new local and global passivity
relations that are shown to explain the robust behaviour of this class algorithms.

We also establish that an intrinsic feedback structure, mapping the noise sequence and the initial weight guess

*This material is based on work supported by the National Science Foundation under Award No. MIP-9409319. Any opinions,
findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation. The work of M. Rupp is also supported by a scholarship from DAAD (German Academic
Exchange Service) as well as the scientifical division of NATO (Wissenschaftsausschufi der NATO).



to the apriori estimation errors and the final weight estimate, can be associated with such schemes. The feedback
configuration is motivated via energy arguments and is shown here to consist of two major blocks: a time-variant
lossless (i.e., energy preserving) feedforward path and a time-variant feedback path.

It is then shown that the feedback configuration lends itself rather immediately to stability analysis via a so-
called small gain theorem, which is a standard tool in system theory (e.g.,°). 1t provides contractivity conditions
that are shown to guarantee the ly—stability of the algorithm, with further implications on the convergence
behaviour of the estimator. This is demonstrated by studying the energy flow through the feedback configuration
and by exploiting the lossless nature of the feedforward path.

We shall use small boldface letters to denote vectors and capital boldface letters to denote matrices. Also,
the symbol “x” will denote Hermitian conjugation (complex conjugation for scalars). The symbol I will denote
the identity matrix of appropriate dimensions, and the boldface letter 0 will denote either a zero vector or a
zero matrix. The notation ||x||3 will denote the squared Euclidean norm of a column (or row) vector x, e.g.,
[|x]|3 = x*x . Also, given a positive definite matrix A, A > 0, a square-root factor will be defined as any matrix,
say A2 such that A = (A'/?)(A'/?)*. Such square-root factors are not unique. They can be made unique,
e.g., by insisting that the factors be Hermitian or that they be triangular (with positive diagonal elements).
In most applications, the triangular form is preferred. For convenience, we shall also write (Al/z)* = A*/?

(AY2)=1 = A=Y/ and (A-1/?) = A=*/2,

2 THE GAUSS-NEWTON RECURSIVE METHOD

There is an abundant literature on the analysis and design of Gauss-Newton methods, especially in the area
of parametric system identification (see, e.g.,2%7). Here, we only wish to briefly review this class of algorithms
before proceeding into a closer analysis of their behaviour.

We consider a collection of noisy measurements {d(i)}¥;, which are further assumed to arise from a linear
model of the form
d(t) = u;w + v(7). (1)
Here v(i) denotes the measurement noise or disturbance and u; denotes a row input vector. The column vector w
consists of unknown parameters that we wish to estimate. In this paper we shall focus on the following so-called
Gauss-Newton recursive method.

ALGORITHM 1 (GAUSS-NEWTON PROCEDURE). Given measurements {d(i)}},, an initial guess w_1, and a

positive-definite matriz Iy, recursive estimates of the weight vector w are obtained as follows:
wi = wWioi u(i) Pal (d(i) - wiw1), @)

where P; satisfies the Riccati equation update

1 P;,_jujuwP;_,
P, = — [P, —iotlMiTiot

() » P =1, (3)

%(% +w;P;_juf
and {A(7), p(i), B(9)} are given positive scalar time-variant coefficients, with A(i) < 1.

Note that, for the sake of generality and for later purposes, we have included in the statement of the algorithm
three coefficients {A(¢), u(7), 5(¢)}. The effect of these coefficients on the performance of the algorithm will be

studied in later sections. Note also that by applying the matrix inversion formula (e.g.,®) to (3) we obtain that
the inverse of P; satisfies the simple time-update

P;l = A6 P+ 8() uju,. (4)



This also establishes that P; is guaranteed to be positive-definite for A(7), 8(7) > 0 since Iy > 0.

2.1 The RLS Algorithm

An important special case of (2) is the so-called Recursive-Least-Squares (RLS) algorithm (see, e.g.,%%), which
corresponds to the choices (i) = u(i) = 1 and A(i) = A = cte. In this case, the Riccati recursion (3) reduces to

P, — Al <Pi—1 B Pi—1ufuz’Pi—1>

A+ uiPi_luz‘
which also implies that

Pl = Pl—iluj
A+ uiPi_lu;‘
Using this last equality in (2) leads to the update equation
Pi_lu;‘

i = Wit —————— (d(i) —wiwi_1),
w w 1+)\+uiPi_1uj( (7)) —u;wi—1)

which is the standard form of the RLS algorithm.

2.2 Error Signals

The difference [d(¢) — u;w;_1] in (2) will be denoted by €,(¢) and will be referred to as the output estimation
error. The following error measures will also be useful for our later analysis: w; will denote the difference

between the true weight w and its estimate w;, w; Swo w;, and e,(7) will denote the apriori estimation error,

eq(?) 2 w;w;_1. It then follows from the update equation (2) that the weight-error vector w;_; satisfies the

recursive equation:

V~VZ' = VNVZ'_l — /L(i)PZ’u?éa(i) . (5)
It is also straightforward to verify that the apriori estimation error, e,(i), and the output estimation error,
€4(1), differ by the disturbance v(%), i.e., €4(7) = €4(7) + v(i). We further define the aposteriori estimation error,

ep(2) 2 w;w;, and note that if we multiply (5) by u; from the left we obtain the following relation (used later in
(19)) between e, (%), e4(4), and v(7),

ep(i) = [1— u(iyuPau | ea(i) - pu(iyuiPoua; v(i). (6)

3 A TIME-DOMAIN ANALYSIS

We now pursue a closer analysis of the Gauss-Newton recursion (2) in order to highlight an important feedback
structure that is implied by the algorithm. This structure will play an important role in our discussions and will
serve as a basis for the robustness analysis provided herein. For this purpose, we invoke the time-domain update

1
recursion (5), multiply by P, 2 from the left, and compute the squared norm (i.e., energies) of both sides of the
resulting expression, i.e.,
1 L
WiPTWi = [P PwWio1 — ()P ufel(i)l]; )
= Wi P Wisy — pu(i)ea(1)E5(0) — p(i)eq (i)ea () + i (JuiPuf [€a (i)



If we now replace €,4(%) by €,(%) = eq(7) + v(i) and use the fact that
(@)’ = lea(d) + v(DI = eali)™ (1) + v(i)el (i) + lea(D)]” + [0(D)”
we conclude that the following equality always holds,
WPy 4 (i) lea (DI + (@) (1= p(DuiPiuf) |ea(i)* = Wi_ P7 Wiy + (i) [o(i)]” - (7)
Substituting recursion (4) for PZ-_1 in the right-hand side, the last equality can be rewritten as

WIPT W+ (u(i) — A) lea () + 1) (1= p(ipaPrud)|Ea(i)® = AW PEYWict + (i) o@D . (8)

This is an important equality that involves “energy” terms. In loose terms, it tells us how the weighted “energies”
of the error signals w; and e, (7) relate to the weighted energies of the noise v(i) and the weight error w;_;. The
implications of this observation will be detailed throughout our discussions, starting with the next section.

3.1 A Local Apriori-Based Passivity Relation

Expression (8) allows us to establish that the following error bounds are always satisfied for the Gauss-Newton

recursion (2) — in the statement of the Lemma, we employ the quantity fi(¢) 2 (u;Pyuf)~t.

LEMMA 3.1 (A LocAL PassiviTy RELATION). Consider the Gauss-Newton recursion (2). It always holds
that
1~ . . : <1 for 0< u(i)< p(id)
wiPilwi-i— 1) — B4 eaz2 = ) 7 ’
i) = B ol [ E1 for 0 <D< o)

MW P+ u@DOF | 51 for (i) > pli)

Such relations also arise in the case of instantaneous-gradient-based algorithms (i.e., algorithms that avoid the
propagation of Riccati variables P;), as detailed in.1°

The first two bounds in the above lemma admit an interesting interpretation that highlights a robustness
property of the Gauss-Newton recursion (2). To clarify this, we assume that §(i) < u(¢) in order to guarantee
(u(d) — B(4)) > 0 and, hence, the factor (u(i) — 5(4)) |ea(i)|2 can be regarded as an energy term. In this case, we
can interpret the first two bounds in the lemma as stating that no matter what the value of the noise component
v(i) is, and no matter how far the estimate w;_; is from the true vector w, the sum of the weighted energies of
the resulting errors, viz.,

WP Wi+ (u(i) = B(0)) lea(D)]”

will always be smaller than or equal to the sum of the weighted energies of the starting errors (or disturbances),

MW P Winy + (i) [o(i)]

3.2 A Global Contraction Mapping

The relations of Lemma 3.1 are local conclusions but similar results also hold over intervals of time. Indeed,
note that if we assume p(7) < fi(%) for all 7 in the interval 0 < ¢ < N, then the following inequality holds for every
time instant in the interval,

(() = B lea(@)” < MW P Wiy — Wi PT W + u(i) [0(0)]
Summing over ¢ we conclude that

N N
WP W+ Y (D) = BN o (i) < APMWE PIIWoy 4 Y p@AF M e(@)?, (10)

1=0 i=0



which establishes a passivity relation over the interval 0 < ¢ < N. Here, we have used the notation Al =

1—; A(k). Alternatively, if we denote by ex(w_1,v(-)) the difference between the left- and the right-hand sides
of (10),

en(w_1,v(")) 2 (11)
N N
{v*vz‘vP;v*vN + > (i) = BE)AIHLN |ea<z‘)|2} - {A[‘*N]v*v*_lP:iv*v_l + me““vmw(nf},

=0

then we also conclude from the argument prior to (10) that we always have, for any w_; and v(-),
ex(w_1,0()) <0, (12)

as long as p(?) < a(é). If we further have §(i) < p(?) then we can interpret the above result as establishing the
existence of a contractive mapping from the signals

{\/m /)\['+17N]'U(~), )‘[O’N]Hal/ZVNV_1} (13)

to the signals
(VO = BOWATH e, (), P 5} (19

The quantities in (13) involve the disturbances, i.e., noise and initial uncertainty in the guess for w. The
quantities in (14), on the other hand, involve the resulting estimation errors e,(-) and the final weight-error wy.
Consequently, the above statement establishes the following interesting fact: the Gauss-Newton algorithm (2),
under the assumption 3(¢) < u(i) < f(i), always guarantees that the (weighted) error energy due the initial
disturbances will not be magnified.

LEMMA 3.2 (A GroBAL RELATION). If p(i) < (i) over 0 < i < N, then the Gauss-Newton algorithm (2)
always guarantees en(w_1,v(-)) <0 for any w_y1 and v(-). If we further have B(i) < p(i) < f(i), then this also
establishes the existence of a contraction mapping from (13) to (14).

As a special case, assume A(7) = p(i) = B(¢) = 1 (which corresponds to an RLS problem in the absence

of exponential weighting). Then the above conclusion implies that the mapping from {v(~),H51/2v~v_1} to

{PJ_Vl/z\INVN} is always a contraction. That is, Wi Py'wy < W 15 'Ww_; + Zf\;o [v(@)|?.

3.3 A Local Aposteriori-Based Passivity Relation

Note that the error bounds derived in Lemma 3.1 are in terms of the apriori estimation error e,(i). But other
bounds can be derived as well in terms of the aposteriori error e,(i) (and, in fact, combinations thereof). It
follows from (6) and (7) that the apriori and aposteriori error-energies are related via the expression

A (0) (Wi PT N — Wiy P W) = ey ()2 = Jea(DI?
If we substitute the recursion (4) for P; we obtain
(1= B@OE (1)) leaDI = lep (DI = A~1(0) (WP Wo; = A)Wi_, Py wi_1)
This relation suggests the following bound in terms of the aposteriori-estimation error:

V(i)W Py Wi + =20 e (i)

v(D)A(E) Wi P Wit + (i) [v(i)]” ~




for p(é) < f(7) and where we have defined
N a L= p@)pt ()
v(i) = —— = (16)
O ON
This local relation can also be used to derive a global bound that is valid over an interval of time. Following the

same argument prior to (10), we can sum over N terms and obtain

wiyPy WN+EZ O%AMUV e (I <1 (17)
ALNI* TIG Wy 4 30 p(i)y = ()AEFNT [u(@))* T

4 THE FEEDBACK STRUCTURE

Before proceeding to a discussion of the feedback structure alluded to earlier, we shall first establish the
following useful fact.

LEmMma 4.1 (A LoweEr Bounp oN [i(i)). Consider the Gauss-Newton algorithm (2) with the free positive
parameters {\(7), u(i), B(i)}. Define (i) as before, ji(i) = (w;P;uf)~L. It always holds, for nonzero vectors u;,

that
fi(@) > B(i).

Proof: Introduce the notation f(ili — 1) = (uZPi_lu;‘)_l. Then, we can write

__ . 1 (uiPi_lu*)z 1

1 * * 2

p () = Pu; = —= | wPioiuf — = — — .
¥ A() Py | B0 MDA 1)

In other words, f(i) = 5(7) + A(#)p(i]i — 1), where the term A(¢)u(i]i — 1) is strictly positive since P;—; > 0.

We now show that the bounds in Lemma 3.1 can be described via an alternative form that will lead us to an
interesting feedback structure. To clarify this, we first show how to rewrite the Gauss-Newton recursion (2) in an
alternative convenient form. We rewrite (6) as

) = —M eq(? —Mvi
eoli) = (1= 20 ) eali) - Kot (19

and use it to re-express the update equation (2) in the following form:

w;, = w1+ u()Pule (i) + p(i)P; ufv(z
Wit + (P (i) + i Pyt ol
= Ww;_1+ ﬂ(i)Piurea( ) +P; il [/L( ) (

)
) ARl - P i)

) — (a(i) — p(i)ea ()

—a(2)ep(7)
That is,
wi = Wit + a(i)Pruea(i) = e ()] 2 wiss + p()Prujlea() + o). (19)
This shows that the weight-update equation (2) can be rewritten in terms of a new step-size parameter (i) and
a modified “noise” term o(7) = —e,(¢). This should be compared with (2), which corresponds to

w; = w;_1 + u()Pyujeq (i) + v(7)].



If we now apply arguments similar to those prior to (9) to (19), we readily conclude that the following equality
holds for all p(¢) and v(¢),

WP Wi 4 (1) — B(0)) [ea(D)]”

AW i Wic + i) ey ()]
Recall that we have shown earlier that (i) > £(i). Hence, the above relation establishes that the map from
{\/WPZ»__%IVNVZ'_l, \//Tz)ﬁ(z)} to {PZ-_%VNVZ', (i) — B(i)eq (i)}, denoted by T, is always lossless, i.e., it preserves

energy. The overall mapping from the original disturbance /fi(-)v(-) to the resulting apriori estimation error

(20)

H(-) — B(-)eq(+) can then be expressed in terms of a feedback structure as shown in Figure 1. The feedback loop

consists of a gain factor that is equal to (1 — p(2)/2(3))/+/1 — B(7)/f(i). Also,

a2 = L0 - (120 st gea(i. (21)

ﬂ%(z) /](Z)
A3(i)g
A%(Z)P;%lfvz_l P;%Wz
73| = pu(i) — B(7) ea(i)
MNe
lu‘
IO I P10
[ u(i)] [1 u(i)]

Figure 1: A time-variant lossless mapping with gain feedback.

It is also easily seen that the lossless mapping 7; is given by the following relation:

(7) - SIE <)]: 1 [ﬂ%%fﬂf »L, o I:/\%(i)Pi__%l\Tvi_l].
P, *w; P 2 [1-a()Poutw] PZ A3() —a?()P7u; A3 (i) (i)

T;

We collect the results of this section into a lemma.

LEMMA 4.2 (FEEDBACK REPRESENTATION). Consider the Gauss-Newton recursion (2) and (4). It always
holds, for any u(t), that

Wi P Wi + (a(1) — B()) lea (D)
A()w;_ P 11Wz 1+ (7) |ep (i )|

where =1(i) = w;P;u}. That is, the map 7T; is always lossless. Moreover, this map leads to the feedback structure
with a lossless forward path and a gain feedback loop as shown in Figure 1.




5 [,—STABILITY AND THE SMALL GAIN THEOREM

The feedback configuration of Figure 1 lends itself rather immediately to stability analysis, as we now explain.
It follows from the equality in Lemma 4.2 that for every time instant ¢, and for any pu(%), we have

(B(8) = () lea(DI” = MW/ Py wimt — Wi PT Wi + (i) [o(d)] - (22)

This allows us to conclude that the system in Figure 1 is lz—stable i.e., it maps a bounded energy sequence

{VE() v(-)} to a bounded energy sequence {+/f( ) €q(-)} in a sense precised in (26) below. In fact, we
shall also conclude that the same result holds even 1f we replace A(-) by p(-). Such a result would be desuable

because it will then allow us to conclude the convergence of e4(+) to zero.
For this purpose, assume we run the Gauss-Newton recursion (2) from time ¢ = 0 up to time N. If we compute
the sum of both sides of the above equality (22) we obtain,

N N
SN (i) = B(0)) Jea (i) = XONW PZiwoy — waPR W + Y0 AN i) [u(i) 2

i=0

which also implies that (by ignoring the term Wi Py Wx)

SNl - A feaDF < A P + 3 A o)

i=0
Consequently,
N N
Z)\[z+1N( () 6()”6(1 2 < \/)\ONW P 1W 1+ ZA2+1N )l ()|2 (23)
i=0 i=0

But it follows from (21), and from the triangular inequality for norms, that

2

p@)lea(d* -

Z)\[HLN][L(Z') |17(i)|2 < Z)\ i+1,N]H i)| ()2 + Z/\[i+1,N] ‘1 - %

We thus conclude that

S oA - B D S (NN P | S aE

p@)lea(D* - (24)

Define

It then follows that

S AN = B ea (D < (/AN Py + () E BN ()o@

ZW“’N](/’L(Z') = B(@)lea(@)]* -



If (1 — A(N)) > 0 we conclude from the last inequality that

\l Z/\[HLN](;](i) —B()) |ea(d)]* < ﬁ(m \/A[OVN]V’E/'_lpz%VNV_l + ’y(N)\l Z)\[ZH N o(i)]2 ]

(26)
which establishes the desired l;—stability of the system.

The condition (1 — A(N)) > 0 is equivalent to requiring A(N) < 1. This can be viewed as a manifestation of
the so-called small gain theorem in system analysis.>® In simple terms, the theorem states that the {,—stability
of a feedback configuration (that includes Figure 1 as a special case) requires that the product of the norms of the
feedforward and the feedback operators be strictly bounded by one. Here, the feedforward map has (2—induced)
norm equal to one (due to its losslessness) while the 2—induced norm of the feedback map is A(N). Note also
that for A(N) < 1 we clearly need that, for all ¢,

0<ﬂ(i)<u(i)<1+ 1—%) (27)

THEOREM 5.1 (la—STABILITY). Consider the Gauss-Newton recursion (2) and define A(N) and v(N) as in
(25) and also

If (27) holds then the map from

AN o), VAPRIPTHeL} 0 (/NGO - A) ea))
is ly—stable in the sense of (26). Moreover, if 3(i) < u(i)

(YNNI o), VAPNPZ W) to {3/ NN - () ea())

(i.e., with fi(-) replaced by p(-)) is also la—stable in the following sense:

N
\//\ONW lel_i_,yl/Z \IZ)\ZHN ()|2]
i=0

(28)
Proof: The proof of the first bound was provided prior to the statement of the theorem. As for the second
bound, we first note that (24) implies

then it also holds that the map from

— ~1/2
JZAUHMW) = B@) lea(i)* < %

\lZA[Z‘“’N](/L(Z’)—ﬁ(i))lea(i)l2 < \/A[Ole Poiw_y +9'/2(N JZAZHN o) 2

+A(N) Z ABFLNI (i) = B(i))lea(d)

Now (28) follows by noting that
SN ui) = Aol = S NHMEEZEL (i) - p0)lea(i)”
< ) Y NFN(aC) - Bi)eali)”



In fact, a stronger upper bound than (28) can be given when p(é) is further restricted to the interval 0 <
B(i) < p(i) < p(7). This follows from the arguments in Section 3.2.

LEMMA 5.2 (A TIGHTER BounD). Consider the Gauss-Newton recursion (2). If 0 < B(3) < p(i) < a(i) then
a tighter bound is the following:

N N
SN (u(i) - A0 fea(DE < | NN P 4 | AR [ (29)
i=0 i=0

The fact that the bound in (28) is valid even for p(é) in the interval (i) < p(?) < p(7) (1 +(1- ﬁ(z)/ﬂ(z))%) <

2[(i) suggests that a local bound, along the lines of (9), should also exist for this interval. In fact, this is also the
case as stated below — the proof is omitted for brevity.

LEMMA 5.3 (A FINER LocaL BounD). Consider the Gauss-Newton recursion (2). Then the following bounds
always hold:

~xp—1s . . (2
WP Wit pli) el for 0 < p(i) < (i),
Wi Powig + p(d) o(d)]

WiPT W p(i) ea() _ pld)
Wi PNy + () |o()P T 20(1) — p(i)

for (i) < u(i) < 2A(3)

6 ON CONVERGENCE AND ENERGY PROPAGATION

In order to further appreciate the significance of the bounds of Theorem 5.1, we now exhibit a convergence
result that follows as a consequence of the ls—stability property. Indeed, assume that the normalized noise
sequence {\/[ALFLN () v(-)} has finite energy, i.e., > 5o ALV u(i)|v(9)|> < oo. It then follows from (28)
that 3750 ALFLNI (i) — B(3))]eq(i)|> < oo (for B(i) < p(i)). This is true since, for any N, we always have 0 <
Y(N)<2, 0<%(N)<2 and 0<1—A(N)< 1. We therefore conclude that {\/ALFLN(u() = B(-)) ea()} is

a Cauchy sequence and, hence,

Tim /NN i) — (7)) eali) = 0. (30)

If a persistence of excitation condition is further imposed on the input vectors u;, then we can also conclude
convergence of the weight vector, i.e., lim;_.o, w; = w. Details will be provided elsewhere. But here, we would
like to note that more physical insights into the convergence behaviour of the Gauss-Newton recursion (2) can
be obtained by studying the energy flow through the feedback configuration of Figure 1, as shown in the next
section.

6.1 Energy propagation and convergence speed

The feedback structure, and the associated lossless block in the direct path, provide a helpful physical picture
for the energy flow through the system. To clarify this, let us for now ignore the measurement noise v(7) and
assume that we have noiseless measurements d(i) = u;w. The weight-error update equation (5) can then be easily
seen to collapse to

VNVZ- = [I — ,u(i)PZ'u;‘uZ-] VNVZ'_l, (31)



where the M x M coefficient matrix [I — p(7)P;uju,] is simply a rank one modification of the identity matrix.
It is known in the stochastic setting that for Gaussian processes,!! as well as for spherically invariant random
processes,!? the maximal speed of convergence for gradient-type algorithms is obtained for p(i) = p(i), i.e.,
for the so-called projection LMS algorithm. Gauss-Newton-type algorithms are known to uncorrelate the input
process, so that the convergence speed no longer depends on the excitation process.'®> We shall now argue that
this conclusion is consistent with the feedback configuration of Figure 1.

Indeed, for p(i) = f(i), the feedback loop is disconnected. This means that there is no energy flowing back
into the lower input of the lossless section from its lower output €4(-). To understand the implications of this fact,
let us study the energy flow through the system as time progresses. At time ¢ = —1, the initial energy fed into
the system is due to the initial guess w_; and is equal to vNV*_leVNV_l. We shall denote this energy by Ey,(—1).
Now, at any subsequent time instant ¢, the total energy entering the lossless system should be equal to the total
energy exiting the system, viz., A(i)Ey (i — 1) = Ey (i) + Ec(i), or, equivalently,

Ew(i) = Mi)Ew (i — 1) — E.(3), (32)

where we are denoting by E.(7) the energy of v/fi(i) — 5(4) eq(?) and by Ey (i) the energy of PZ-_%VNVZ',

E(i) = (a(i) — B@) w1 [*, By (i) £ WP i,
Expression (32) implies that, for A(¢) < 1, the weight-error energy is a non-increasing function of time, i.e.,
E,(i) < E,(i — 1) for all 4. Strict inequality is guaranteed if E.(¢) # 0. This is in general the case especially
when the input vectors u; are assumed persistently exciting. This means that they are rich enough so as to avoid
situations of the form w;w;_; = 0 (viz., u; orthogonal to w;_1). Under this condition, the weight-error energy
is guaranteed to decrease with time, thus tending to zero and we obtain w; — w. Note also that the so-called
forgetting factor A(7) plays an important role. The smaller the A(7) the faster is the convergence of the algorithm.

But what if p(i) # ()7 In this case, the feedback path is active and we now verify that the convergence
speed is affected (in fact, it becomes slower) since the rate of decrease in the energy of the weight-error vector is
now lowered. Indeed, for u(i) # fi(7), the feedback path is connected and, therefore, we always have part of the
output energy at e,(-) fed-back into the input of the lossless system. More precisely, if we let E3(i) denote the
energy term fi(#)|v(7)|?, then the following equality must hold (due to energy conservation):

A1) By (i — 1) + Eg(i) = Ey(i) + E.(i)

at any time instant . Also, the feedback loop implies that

since we are assuming a contractive feedback connection. Therefore,

1 — &
A() E (i) = M) Ew (i — 1) — 7(i) E(4),

— — %(%
7(%)

where we have defined the coefficient 7(¢) (compare with (32)). It is easy to verify that as long as u(¢) # f(¢) we
always have 0 < 7(¢) < 1. That is, 7(¢) is strictly less than one and the rate of decrease in the energy of w; is
lowered, thus confirming our earlier remark.

Eu(i) = Mi)Ey(i—1)— | 1

Finally, what if the measurement noise v(-) is nonzero? In a deterministic setting, the samples v(-) can
assume any values. In particular, we can envision a noise sequence that happens to assume the special value



v(i) = —eq(?). In this case, the update relation (5) collapses to w; = w;_; and, hence, w; = w_; for all time
instants ¢. This means that no improvements over the initial guess are obtained and, consequently, convergence
will never be attained if w_; # w. In other words, no sensible statements can be made about the convergence of
the algorithm if no restrictions are imposed on the noise sequence v(-). However, it is known, form theoretical as
well as experimental results for stochastic noise sequences, that the noise does not affect the rate of convergence
but rather the steady-state value. This is consistent with the feedback configuration of Figure 1 where it is clear
that the fine structure of the feedforward and the feedback paths are independent of the specific values of the
noise sequence; it only depends on {u(¢), A(%), 8(¢)} and u;.

7 CONCLUDING REMARKS

More variants of the Gauss-Newton type update occur if the underlying model is not a transversal model but
rather an IIR model. In this case, the update recursion is of filtered-error type, since it involves a filtered version
of the apriori error. It can be shown that such variants also admit a feedback structure of the form derived in
this paper, except that the feedback loop is now dynamic (i.e., not memoryless). The analysis of this paper can
also be shown to suggest a procedure for computing optimal step-sizes in order to guarantee stability and faster
convergence. These facts will be detailed elsewhere — though see'*™16 for related discussion and for connections
with results in H° —theory.
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