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Abstract—We consider a general information-sharing game
over adaptive networks with selfish agents, in which a diffusion
strategy is employed to estimate a common target parameter. The
benefit and cost of sharing information are embedded into the
individual utility functions. We formulate the interactions among
selfish agents as successive one-shot games and show that the
dominant strategy is for agents not to share information with each
other. In order to encourage cooperation among selfish agents,
we design a reputation scheme that enables agents to utilize
the historic summary of other agents’ past actions to predict
future returns that would result from being cooperative i.e., from
sharing information with other agents. Simulations illustrate the
benefits of the combined diffusion and reputation strategies for
learning over networks with selfish agents.

I. INTRODUCTION

Adaptive networks consist of agents that are linked together

by a topology and which are expected to cooperate through

in-network processing to estimate some parameters of interest.

Several distributed strategies exist to enable decentralized

processing among cooperating agents, such as the consensus

strategy (e.g., [1], [2]) and the diffusion strategy (e.g., [3]–

[5]). In most prior works, agents have been modeled as

cooperative players that participate willingly in the exchange

and processing of information even though this incurs a cost

for the agents. In this work, we study a broader class of

networks where agents can behave in a selfish manner. In this

case, agents would participate in the collaborative process and

share information with their neighbors only if the cooperation

is beneficial to them. For example, agents can weigh the cost

of sharing information against the expected improvement in

estimation accuracy and then decide on whether to cooperate

or not with their neighbors based on the outcome of their

evaluation. The interactions among selfish agents can be

formulated as successive one-shot games.

Our arguments show that if left unattended, the dominant

strategy for all selfish agents in each one-shot game is for

them not to participate in the sharing of information, which

leads to non-cooperating agents. This result follows from the

fact that the agents are not provided with incentives to share

information. One useful technique to avoid this inefficient

scenario is to associate a reputation measure with each agent
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(e.g., [6]–[8]). In this method, reputation scores are used

by the agents to assess the willingness of other agents to

cooperate; the scores are also used to punish non-cooperative

behavior. However, and different from conventional repeated

games, the benefit of sharing information over adaptive net-

works generally decreases with time. This is because, as the

estimation accuracy improves and, therefore, the benefit to

continue cooperating for estimation purposes falls below the

communication cost, the act of cooperating with other agents

becomes unattractive and inefficient. Conventional reputation

designs do not address this depreciation over time in the

value of information, which will be examined more closely

in our work. In addition, our formulation deals with a multi-

user learning/decision game process where the decisions by

the agents are coupled together in contrast to conventional

Markov decision processes that deal with policies for single-

user decision problems. For example, if multiple agents in the

network decide not to share information, then other agents

would end up learning this fact and may decide not to share

data as well.

We therefore focus on studying an information-sharing

game over adaptive networks, where agents are selfish and

seek to minimize their own cost functions; these functions

combine both the estimation accuracy and the communication

cost. The purpose of the agents is to estimate a common target

parameter. Following the randomly-paired protocol of [9],

agents will be randomly matched into pairs at the beginning of

each time interval. This situation could occur, for example, due

to an exogenous matcher or the mobility of the agents. Based

on some prior reference knowledge, each agent evaluates the

expected cost of actions and decides whether to share estimates

with the other agent. To motivate agents to cooperate with each

other, we formulate a reputation scoring mechanism to help

agents jointly assess the instantaneous benefit of depreciating

information and the transmission cost of sharing information.

A key contribution of the present work is that it studies

dynamic adaptive scenarios with continuous learning and does

not only focus on behavior at the equilibrium state.

Notation: We use lowercase letters to denote vectors and

scalars, uppercase letters for matrices, plain letters for deter-

ministic variables, and boldface letters for random variables.

All vectors in our treatment are column vectors, with the

exception of the regression vectors, uk,i.
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TABLE I: The one-shot game for information sharing.

ak(i) = 0 ak(i) = 1

aℓ(i) = 0
MSDℓ,i(ak(i) = 0|w̃ℓ,i−1)

MSDk,i(aℓ(i) = 0|w̃k,i−1)

MSDℓ,i(ak(i) = 1|w̃ℓ,i−1)

MSDk,i(aℓ(i) = 0|w̃k,i−1) + c

aℓ(i) = 1
MSDℓ,i(ak(i) = 0|w̃ℓ,i−1) + c

MSDk,i(aℓ(i) = 1|w̃k,i−1)

MSDℓ,i(ak(i) = 1|w̃ℓ,i−1) + c

MSDk,i(aℓ(i) = 1|w̃k,i−1) + c

II. NETWORK MODEL AND INFORMATION STRUCTURE

A. Reference Knowledge and Transmission Cost

Consider a network with N selfish agents. At each discrete

time i, pairs of agents randomly meet together to share infor-

mation, say, agents k and ℓ. We assume the agents share some

preliminary knowledge, denoted by Kk and Kℓ, which could

be exchanged at the time they are paired. Then, according to

this knowledge, agent k decides whether to share additional

information Ik,i with agent ℓ at time i, and vice-versa. Sharing

the information Ik,i with agent ℓ bears some transmission cost

for agent k, which is modeled as a positive coefficient c > 0
and assumed to be known by each agent.

B. Diffusion Strategy for Distributed Estimation

At each time instant i ≥ 0, each agent k in the network is

assumed to have access to a scalar measurement dk(i) ∈ C

and a 1×M regression vector uk,i ∈ C
1×M with covariance

matrix Ru,k , Eu∗k,iuk,i > 0. The data are assumed to be

related via the linear regression model:

dk(i) = uk,iw
o + vk(i) (1)

where wo ∈ C
M×1 is the common target vector to be

estimated and vk(i) ∈ C is measurement noise with variance

σ2
v,k. Agents update their estimates of wo based on their own

data dk(i) and uk,i, and on estimates from other neighboring

agents if available. We employ the adapt-then-combine (ATC)

diffusion strategy [3], [4] due to its enhanced performance

in comparison to other strategies, including consensus strate-

gies [10]. According to the diffusion implementation, agent k
computes its successive estimates for wo as follows:

ψk,i = wk,i−1 + µku
∗

k,i[dk(i)− uk,iwk,i−1] (2)

wk,i = αkψk,i + (1− αk)ψℓ,i (3)

where the parameter µk is a positive step-size factor, which is

assumed to be sufficiently small and common for all agents,

i.e., µk = µ≪ 1. In the first step (2), an intermediate estimate

ψk,i is determined by adapting the existing estimate wk,i−1

using local data. The second step (3) uses a non-negative

coefficient 0 ≤ αk ≤ 1 to combine the intermediate estimates

of agents k and ℓ. In the context of algorithm (2)-(3), the

information Ik,i and Iℓ,i to be shared are, respectively, the

intermediate estimates ψk,i and ψℓ,i. We assume the reference

knowledge Kk and Kℓ to be σ2
v,k and σ2

v,ℓ, respectively. We

note that if agent ℓ decides not to share estimates, then αk is

set to 1.

C. Combined Cost Function

We denote the action of agent k at time i by ak(i) where

ak(i) = 1 means “to share” and ak(i) = 0 means “not to

share”. We also denote the instantaneous utility (or combined

cost) functions of agents k and ℓ at time i by Jk,i and Jℓ,i,
respectively. These utilities are constructed as follows, where

each agent k jointly considers the estimation performance and

the transmission cost to define Jk,i (similarly, for agent ℓ) in

terms of the actions (ak,aℓ) by both agents:

Jk,i(ak(i),aℓ(i)|w̃k,i−1)

,





MSDk,i(aℓ(i) = 0|w̃k,i−1), if (0, 0)
MSDk,i(aℓ(i) = 1|w̃k,i−1), if (0, 1)
MSDk,i(aℓ(i) = 0|w̃k,i−1) + c, if (1, 0)
MSDk,i(aℓ(i) = 1|w̃k,i−1) + c, if (1, 1)

= MSDk,i(aℓ(i)|w̃k,i−1) + ak(i) · c (4)

where MSDk,i denotes the instantaneous mean-square-

deviation measure at time i conditioned on w̃k,i−1:

MSDk,i , E[‖w̃k,i‖
2|w̃k,i−1] (5)

in terms of the error vector w̃k,i , wo − wk,i. Moreover,

the notation MSDk,i(aℓ(i)|w̃k,i−1) is used to represent the

MSDk,i that results from choosing actions ak(i) and aℓ(i)
under estimation error w̃k,i−1.

Assume that every agent plays the information-sharing game

infinitely often. We consider that each agent k is foresighted

and aims to minimize its long-term cost, defined as

J∞k,i [ak(i)]

,

∞∑

t=i

δt−i
E[Jk,t(ak(t),aℓ(t)|w̃k,t−1)|w̃k,i−1,ak(i) = ak(i)]

where δ ∈ (0, 1) is a discount factor due to the probabil-

ity that agents could leave the network in the future, and

Jk,t(ak(t),aℓ(t)|w̃k,t−1) is defined in (4) for t ≥ i. The

expectation is taken over the random processes w̃k,t−1, ak(t)
and aℓ(t), conditioned on w̃k,i−1 and ak(i). Then, at each

time i, agent k would like to choose ak(i) = ak(i) to

minimize the long-term discounted cost:

min
ak(i)

J∞k,i [ak(i)] (6)

III. PARETO INEFFICIENCY IN ONE-SHOT

INFORMATION-SHARING GAMES

We now argue that, if left unattended, the dominant strategy

is for the agents not to share estimates. The root cause for such

non-cooperative behavior by the agents is due to their lack of

belief in the other agents’ actions.

A. Dominant Strategy

Minimizing the long-term discounted cost of agent k in (6)

requires the prediction of agent ℓ’s future actions, which is

unavailable. Therefore, agent k can only choose its action

to minimize the instantaneous combined cost (4) at every

time instant, and thus this behavior is modeled as a one-shot
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game. We remark that although the one-shot games are played

over time, this situation does not correspond to a repeated

game since the instantaneous combined cost function generally

changes with time due to the randomness in w̃k,t−1.

Table I summarizes the instant cost values for both agents

under their respective actions. It is straightforward to conclude

from the entries in the table that choosing action ak(i) = 0
is the dominant strategy for agent k regardless of the action

chosen by agent ℓ because its utility will be the smallest it

can be in that situation. Likewise, the dominant strategy for

agent ℓ is aℓ(i) = 0 regardless of the action chosen by agent

k. Therefore, the action profile (ak,aℓ) = (0, 0) is the unique

outcome as a dominant strategy equilibrium for the current

one-shot game. However, this resulting action profile may be

inefficient for the agents. For example, in the sequel we show

that if the agents share their weight estimates then, under

some conditions, the alternative action profile (1, 1) where

both agents cooperate leads to improved utility values for both

agents in comparison to the dominant strategy solution. That

is, we argue below that (1, 1) can be superior to (0, 0). In a

later section, we explain how to introduce a reputation scheme

to provide agents with incentives to share information in order

to select the solution (1, 1) whenever it is more efficient than

the solution (0, 0).

B. Pareto Optimal Action Profile

Agent k cannot evaluate its cost (4) directly since agent k
does not know ψℓ,i before receiving it from agent ℓ. Therefore,

ψℓ,i can be modeled by agent k as an additive perturbation of

wo, say,

ψℓ,i = wo + nℓ,i (7)

Then, steps (2) and (3) lead to the recursion

w̃k,i = αk(I − µu∗k,iuk,i)w̃k,i−1 − αkµu
∗

k,ivk(i)

− (1− αk)nℓ,i (8)

Assuming the processes {uk,i,vk(i),nℓ,i} are zero mean and

mutually independent, we arrive at

MSDk,i ≈ α2
kw̃

∗

k,i−1(I − 2µRu,k)w̃k,i−1

+ (1− αk)
2
E‖nℓ,i‖

2

, α2
kskk(i) + (1− αk)

2sℓ (9)

where we ignored terms that depend on µ2 due to µ≪ 1, and

skk(i) , w̃
∗

k,i−1(I − 2µRu,k)w̃k,i−1 ≥ 0 (10)

sℓ , E‖nℓ,i‖
2 > 0 (11)

Expression (9) is valid for both cases in which agent ℓ
cooperates or not; this information is controlled through the

choice of αk. To compute (9), agent k still needs to estimate

the variance of nℓ,i. Using the reference knowledge of σ2
v,ℓ,

one useful approximation is to note that if agent ℓ operates

independently of the other agents in the network and runs

an LMS filter on its own, then the variance of nℓ,i would

approach the following value in steady-state [11]:

sℓ ≈
µM

2
σ2
v,ℓ (12)

(NS,S)

(NS,NS)

(S,S) (S,NS)

(a) γk,i > 1 and γℓ,i > 1

(NS,S)

(NS,NS)

(S,S)

(S,NS)

(b) γk,i < 1 and γℓ,i < 1

Fig. 1: Illustration of the behavior of the combined costs in terms of the sizes
of the benefit-cost ratio parameters (“S” and “NS” refer to the actions “share”
and “do not share”, respectively).

If agent ℓ decides not to share ψℓ,i, then αk = 1 and

expression (9) leads to

MSDk,i(aℓ(i) = 0|w̃k,i−1) = skk(i) (13)

On the other hand, if agent ℓ is willing to share ψℓ,i with agent

k, i.e., aℓ(i) = 1, agent k can predict the resulting MSDk,i

based on the value of αk. For example, if one assumes that

uniform combination weights are used so that αk = 1/2, then

MSDk,i(aℓ(i) = 1|w̃k,i−1) =
skk(i) + sℓ

4
(14)

We define the estimation benefit that agent k obtains from a

cooperating agent ℓ as the improvement in MSD value and

denote it by

bk,i , MSDk,i(aℓ(i) = 0|w̃k,i−1)

−MSDk,i(aℓ(i) = 1|w̃k,i−1) (15)

We further introduce the benefit-cost ratio as the ratio of the

estimation benefit to the cost of communication:

γk,i ,
bk,i

c
(16)

Then, cost values corresponding to the action profile (1, 1) in

Table I will be smaller than the cost values corresponding to

the action profile (0, 0) if

γk,i > 1, γℓ,i > 1 (17)

For example, this situation would arise if the estimation

errors w̃k,i−1 and w̃ℓ,i−1 are large enough. In Fig. 1(a), we

illustrate schematically how the values of the utility functions

would compare to each other when (17) holds for the four

possibilities of action profiles. It is seen from this figure

that the action profile (1, 1) is Pareto optimal and that the

dominant strategy choice (0, 0) is inefficient and leads to

worse performance (which is a manifestation of the prisoner’s

dilemma problem in game theory [12]). On the other hand, if

the estimation errors w̃k,i−1 and w̃ℓ,i−1 are small enough to

ensure γk,i < 1 and γℓ,i < 1, then we are led to Figure 1(b),

where the action profile (0, 0) becomes Pareto optimal and

Pareto superior to (1, 1). It follows from these observations

that it would be advantageous if each selfish agent k could

adaptively adjust its actions to choose ak(i) = 1 whenever

γk,i is large and ak(i) = 0 whenever γk,i is small.

IV. ADAPTIVE REPUTATION DESIGN

One way to enable agents to assess the belief of other agents

is to associate a reputation score with each agent. Agents

that cooperate when it is beneficial are rewarded with higher

scores; agents that do not cooperate are penalized with lower

scores. It therefore becomes important to enable agents to look
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ahead and to assess how their long-term benefit and reputation

will depend on their actions.

Here, we assume the agents are bounded rational so that

each agent is regarded as an automaton that follows a pre-

determined strategy to select actions. Such games are called

“machine games” since agents behave like machines [12]. Let

us define the reputation parameter θℓk,i ∈ (0, 1) as a scalar

score summarizing the history of agent ℓ’s actions as viewed

by agent k. Similarly, we define θkℓ,i ∈ (0, 1). Being an

automaton, agent k uses the following recursive strategy to

take actions and to update reputations:

ak(i) = f(w̃k,i−1,θ
ℓ
k,i), θℓk,i+1 = τ(θℓk,i,aℓ(i)) (18)

where f is the action-choosing policy and τ is the reputation

update rule based on the action of agent ℓ. To proceed, we will

restrict our attention to threshold-based policies f(·) since they

require simple computations. We now motivate one particular

choice for τ(·) and f(·). We begin by designing the reputation

update rule and provide an intuitive interpretation in terms of

adaptive learning. Then, based on this rule, we analyze the

corresponding optimal action-choosing policy.

A. Reputation Update Rule

The reputation scores should be able to reflect the past

actions of agents and give more recent actions higher weights.

Therefore, we adopt the following form for the reputation

update rule:

θℓk,i+1 = rθℓk,i + (1− r)aℓ(i), 0 < r < 1 (19)

where r controls the dynamics of the reputation updates. The

value of θℓk,i+1 can be interpreted by agent k as a measure

of its belief in the willingness of agent ℓ to cooperate [8].

Update (19) admits an intuitive interpretation if we assume the

past actions are the result of realizations by an independent

and stationary Bernoulli random process with probability pℓ.
The probability pℓ can be estimated from a time window of

observations aℓ(i) from i = 1 to L as

p̂ℓ,L =
1

L

L∑

i=1

aℓ(i) (20)

or in a recursive form:

p̂ℓ,L+1 = L
L+1 p̂ℓ,L +

(
1− L

L+1

)
aℓ(L+ 1) (21)

If we use a sliding window of fixed size L+ 1 to adaptively

estimate pℓ, we can rewrite (21) for arbitrary time instants as:

p̂ℓ,i+1 = rp̂ℓ,i + (1− r)aℓ(i) (22)

where r , L/(L + 1). Observe that (22) has a form similar

to (19).

When agents use the reputation scores of their neighbors to

evaluate their willingness to share estimates, we observe that

the higher the values of these scores, the more likely it is that

the agents will share information. It is therefore justified to

assume that the probability of aℓ(t) = 1 is proportional to

θℓk,t and θkℓ,t and we assume that the following approximation

is used for agent k to predict agent ℓ’s future behavior:

P(aℓ(t) = 1) ≈ θℓk,t · θ
k
ℓ,t, t ≥ i (23)

It is clear that the reputation scheme encourages agent k to

keep its reputation score high to obtain rewarding cooperation

from other agents in the future.

B. Action-Choosing Policy

Under the reputation update rule (19), we next need to

analyze the optimal action-choosing policy f(·). To begin

with, it is clear that the solution of (6) satisfies

ak(i) =

{
1, if J∞k,i [ak(i) = 1] < J∞k,i [ak(i) = 0]

0, otherwise
(24)

Solving the minimization problem (6) therefore requires

that we find the condition for which J∞k,i [ak(i) = 1] <
J∞k,i [ak(i) = 0], which means conditions for the following

inequality to hold:

J∞k,i [ak(i) = 1]− J∞k,i [ak(i) = 0] =
∞∑

t=i

δt−i△Jk,t < 0 (25)

where

△Jk,t ,E[Jk,t(ak(t),aℓ(t)|w̃k,t−1)|w̃k,i−1,ak(i) = 1]−

E[Jk,t(ak(t),aℓ(t)|w̃k,t−1)|w̃k,i−1,ak(i) = 0]

From (4), we know that △Jk,i = c. Now, let us consider any

time t > i. Then,

△Jk,t =E[MSDk,t(aℓ(t)|w̃k,t−1)|w̃k,i−1,ak(i) = 1]−

E[MSDk,t(aℓ(t)|w̃k,t−1)|w̃k,i−1,ak(i) = 0]+

c ·
(
E[ak(t)|w̃k,i−1,ak(i) = 1]

− E[ak(t)|w̃k,i−1,ak(i) = 0]
)

(26)

Using (15) and (13), we have

E[MSDk,t(aℓ(t)|w̃k,t−1)|w̃k,i−1,ak(i) = j]

= E[skk(t)− bk,taℓ(t)|w̃k,i−1,ak(i) = j] (27)

where j = 0 or 1. The future estimation errors w̃k,t−1 are

highly dynamic due to the random matching of agents. One

useful approximation1 is to use the current values:

w̃k,t−1 ≈ w̃k,i−1, θℓk,t ≈ θ
ℓ
k,i (28)

Then, we apply (23) to (27) and obtain

E[MSDk,t(aℓ(t)|w̃k,t)|w̃k,i,ak(i) = j]

≈ skk(i)− bk,iθ
ℓ
k,i · E[θ

k
ℓ,t|w̃k,i,ak(i) = j] (29)

Therefore, the only parameter varying with time t is the

reputation θkℓ,t. An important observation from the physical

interpretation of θkℓ,t is that given (28), agent k expects that

agent ℓ holding higher θkℓ,t will have more probability to

share estimates, and then in return, agent k will have more

willingness to share estimates back, and vice-versa. Thus,

under assumption (28), agent k choosing ak(i) = 1 introduces

a positive outcome for the future actions ak(t) = 1 since θkℓ,t
increases, i.e., agent k expects that choosing ak(i) = 1 will

give ak(t) = 1. On the other hand, selecting ak(i) = 0 intro-

duces a negative outcome for agent k to select ak(t) = 0 since

θkℓ,t decreases, i.e., agent k expects that choosing ak(i) = 0
will give ak(t) = 0. Based on this argument, it is reasonable to

1Such stationary approximations are common in the literature of learning
game theory [12].
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Fig. 2: Learning curves for various reputation factors r.

predict the future actions ak(t) ≈ ak(i). Let θ
k(1)
ℓ,t and θ

k(0)
ℓ,t

denote the future reputations given ak(i) = 1 and ak(i) = 0,

respectively. Then,

E[MSDk,t(aℓ(t)|w̃k,t−1)|w̃k,i,ak(i) = j]

≈ skk(i)− bk,iθ
ℓ
k,iθ

k(j)
ℓ,t (30)

Therefore, (26) can be rewritten as

△Jk,t ≈ −bk,iθ
ℓ
k,i(θ

k(1)
ℓ,t − θ

k(0)
ℓ,t ) + c (31)

Since ak(t) ≈ ak(i), we use (19) to write:

θ
k(1)
ℓ,t − θ

k(0)
ℓ,t = θkℓ,ir

t−i + (1− r)

t−i−1∑

q=0

rq − θkℓ,ir
t−i

= 1− rt−i (32)

Then,

△Jk,t ≈ c− bk,iθ
ℓ
k,i(1− rt−i) (33)

Using (33) and the fact △Jk,i = c, agent k chooses action

ak(i) = 1 if the benefit-cost ratio γk,i is larger than a

threshold:

J∞k,i(ak(i) = 1) < J∞k,i(ak(i) = 0)⇔ γk,i >
1−rδ

δ(1−r)θℓ
k,i

(34)

Therefore, the action-choosing policy f(·) becomes

ak(i) =

{
1, if γk,i >

1−rδ
δ(1−r)θℓ

k,i

0, otherwise
(35)

C. Instantaneous Approximations

In (35), the benefit-cost ratio bk,i requires knowledge of

Ru,k and w̃k,i−1 for real-time implementations. One common

way to instantaneously approximate Ru,k is to use Ru,k ≈
u∗k,iu

∗

k,i [11]. For w̃k,i−1, we use the following equation to

recursively approximate wo in a moving average sense:

ŵo
k,i = (1− νk)ŵ

o
k,i−1 + νkψk,i (36)

where νk < 1 is a positive forgetting factor, and then w̃k,i−1

is approximated by w̃k,i−1 ≈ ŵ
o
k,i −wk,i−1.

V. SIMULATION RESULTS

The network has 10 agents which are randomly paired at

each time instant. The length of wo is M = 30 and we

randomly choose its entries and normalize them to satisfy

‖wo‖ = 1. The regressor {uk,i} is zero-mean and Ru,k is

diagonal with entries uniformly generated between [0, 10].
The background noise vk(i) is temporally white and spatially

independent Gaussian distributed with zero-mean and σ2
v,k

uniformly selected between [−10, 0] (dB). We set the step-

size to µ = 0.005, the discounted parameter to δ = 0.99, and

the transmission cost to c = 0.1. All reputation scores are

set to 1 at time i = 0. Each agent k uses the combination

coefficient αk = 1/2 when the shared estimates are available.

In Fig. 2, the average combined costs and cooperating ratios

over all agents are simulated. We compare the behavior of

selfish agents using our reputation scheme to the behavior

of selfish agents without incentives to cooperate and to the

behavior of agents that are fully cooperative all the time. In the

latter case, the cost of communication adds to the overall cost

and continuous sharing of information can therefore degrade

performance from this perspective. In Fig. 2(a), the benefit of

sharing information is observed in terms of the convergence

rate. Our reputation design not only encourages the selfish

agents to cooperate, but also enables them to adaptively choose

to not cooperate when the benefit of sharing information

depreciates (which starts at around time i = 100) as shown

in Fig. 2(b). We also observe that a larger r facilitates the

willingness to cooperate.
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