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Abstract—The least-mean squares algorithm is non-robust
against impulsive noise. Incorporating an error nonlinearity into
the update equation is one useful way to mitigate the effects of
impulsive noise. This work develops an adaptive structure that
parametrically estimates the optimal error-nonlinearity jointly
with the parameter of interest, thus obviating the need for a priori
knowledge of the noise probability density function. The superior
performance of the algorithm is established both analytically and
experimentally.

I. INTRODUCTION

We consider the problem of adaptive estimation of an
unknown deterministic parameter when the measurements are
corrupted by impulsive noise. An impulsive noise process
can be described as one whose realizations contain sparse,
random samples of amplitude considerably larger than nomi-
nally accounted for, and, hence, the process is best modeled
by heavy-tailed distributions [1], [2]. As far as the popular
least-mean squares (LMS) algorithm [3] is concerned, the
presence of impulsive noise in the measurements degrades the
adaptive filter’s performance, in terms of stability and steady-
state behavior [4]. Several LMS-type algorithms have been
developed that are robust against impulsive noise [5]–[8]. A
recurrent feature in these algorithms is that their updates are
nonlinear functions of the error signal. The problem of optimal
nonlinearity design was addressed in [9], [10] and some
references therein. Optimal design techniques, however, are
hampered by their prerequisite of exact knowledge of the noise
probability density function (pdf), which is rarely available in
practice. It is therefore the aim of this work to develop an
adaptive filtering algorithm that parametrically estimates the
optimal error-nonlinearity jointly with the parameter of interest
for improved mean stability and steady-state performance in
impulsive noise environments.

II. ROBUST ADAPTIVE FILTERING

The goal is to adaptively estimate an unknown determin-
istic real-valued M × 1 parameter wo from available data
{d (i), ui} for i ≥ 0. The data are related to wo via the linear
regression model:

d (i) = uiw
o + v (i) (1)

where the {d (i)} are real-valued scalar measurements, and the
{ui} are real-valued row regression vectors of size M . Both
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measurements arise from realizations of jointly wide-sense
stationary zero-mean random processes {d (i) ,ui}, where the
boldface font notation is used to denote random variables. The
regressors have covariance matrix Ru = EuT

i ui > 0, where
E denotes expectation. The noise-process {v (i)} is a real-
valued zero-mean white process with variance σ2

v . The random
variables ui and v (j) are assumed to be independent for all
i and j.

The LMS filter is a stochastic gradient algorithm based on
minimizing the mean-square error (MSE) cost function:

J (w) , E (d (i)− uiw)
2
. (2)

With the output error defined as e (i) , d (i) − uiwi−1, the
LMS recursion reads

wi = wi−1 + µuTi e (i) , i ≥ 0 (3)

where (·)T denotes transposition, and µ is a positive step-size
parameter chosen to ensure stability.

In robust adaptive filtering [6]–[8], the cost function (2) is
modified to

JM (w) , Eρ (d (i)− uiw) (4)

where ρ (x) is some bounded and continuous M -estimate func-
tion, which ensures qualitative robustness [11]. Assuming ρ (x)
is differentiable, the steepest-descent recursion that attempts
to minimize (4), subject to a suitable choice of the initial
condition, takes the form:

wi = wi−1 − µ
(

∇wJ
M (wi−1)

)T
. (5)

By forgoing the expectation, and with ψ (x) , dρ(x)
dx

referred
to as the score function, the resulting stochastic instantaneous
approximation of (5) is

wi = wi−1 + µuTi ψ (e (i)) . (6)

The LMS recursion (3) is recovered when ρ (x) = x2

2 . It was
shown in [9] that the optimal score function that minimizes
the steady-state MSE is

ψopt
1 (x) = −

f ′
v
(x)

fv (x)
(7)

where fv (x) is the noise pdf, and g′ (x) ,
dg(x)
dx

. In this
case, the LMS algorithm is MSE-optimal when {v (i)} is
Gaussian, with the 1

σ2
v

proportionality constant absorbed into

the step-size parameter, µ. However, the LMS algorithm is
suboptimal when the noise is non-Gaussian [3], [12]. Yet,
in order to design the filter optimally, the noise pdf must
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be known exactly, which does not always hold in practice.
Under less restrictive assumptions, the authors in [10] derived
an optimal score function that holds over a wider range of
adaptation and not only at steady-state, leading to the choice:

ψopt
2,i (x) = −

f ′
e(i) (x)

f
e(i) (x)

(8)

in terms of the pdf of the error signal, e (i). This function is

more intuitive in an adaptive setting, and reduces to ψopt
1 (x)

at steady-state.
In [13] and [14], in the context of offline robust estimation,

the optimal score function ψopt
2,i (e (i)) is approximated by a

function, ϕ (e (i)), that is a linear combination of preselected
basis score functions:

ϕ (e (i)) , ΦT
i αi (9)

where αi , (αi (1) , . . . , αi (B))
T

is the vector of combination

weights, and Φi , (φ1 (e (i)) , . . . , φB (e (i)))
T

is the vector
of basis score functions evaluated at the output error. The
vector αi is chosen to minimize the MSE between the true
and approximate score functions:

αopt
i , argmin

αi

E
(

ϕ (e (i))− ψopt
2,i (e (i))

)2
. (10)

In the online adaptive context pertinent to this article, it is
imperative to compute αi adaptively and jointly with wi. This
is treated in Subsection II-A, where in the process of deriving
the adaptive update for αi we shall exploit the condition

E
[

φb (x)ψ
opt
2,i (x)

]

= E [φ′b (x)] , (11)

which follows from the assumption

lim
x→±∞

φb (x) fe(i) (x) = 0. (12)

We consider herein B basis score functions that arise
from zero-mean Gaussian pdfs with distinct variances, i.e., we
select:

φb
(

x;σ2
b

)

=
x

σ2
b

, b ∈ {1, . . . , B} . (13)

Let

s , Φ′
i =

(

1

σ2
1

, . . . ,
1

σ2
B

)T

. (14)

The selection of
{

σ2
b

}

is addressed in Subsection II-B. Re-
placing ψ (x) in (6) by its approximation (9), and using (13)
and (14), the recursion now reads

wi = wi−1 + µ
(

αT
i s

)

uTi e (i) . (15)

This recursion is one of LMS with variable step-size (VSS-

LMS), with µ (i) , µ
(

αT
i s

)

. Several VSS-LMS variants have
been developed in the literature in order to improve the tradeoff
between misadjustment and convergence rate compared to
LMS [15]–[18]. Here, on the other hand, we shall design the
variable step-size with the intent of enhancing the robustness
of the LMS filter against impulsive noise.

Some remarks are in order before proceeding with the
development of the robust algorithm, which we refer to hence-

forth as RLMS. First, since µ (i) , µ
(

αT
i s

)

is constrained to
be positive, the entries of αi must be positive. Moreover, the
authors of [14] imposed a convexity constraint on the entries
of αi in the offline estimation context, illustrating performance
gains. We shall consider a similar convexity constraint on the
entries of αi.

A. Joint Parameter Adaptation

In this section, we apply a technique from [19] to solve
(10) adaptively, subject to the aforementioned constraints on

αi. Let Ω+ ,
{

α ∈ R
B
+|α

T
1 = 1

}

where R
B
+ is the set of

B × 1 vectors on the set of non-negative real numbers R+,
and 1 is the all-one B× 1 vector. We seek the solution of the
following convex optimization problem:

min
α∈Ω+

E
(

ΦT
i α− ψopt

2,i (e (i))
)2
. (16)

We would like to transform (16) in such a way that eliminates
the constraints. First, we suppress the non-negativity constraint
on the entries of α and later appropriately transform the

solution to accommodate this requirement. Hence, let Ω ,
{

α ∈ R
B |αT

1 = 1
}

. Next, we introduce the projection PΩ

from R
B onto Ω:

PΩ (β) =

(

IB −
11

T

B

)

β +
1

B
, ∀β ∈ R

B

where IB is the identity matrix of size B. Every α ∈ Ω
can be represented as α = PΩ (β) for some β ∈ R

B .
We are therefore motivated to introduce the unconstrained
optimization problem:

min
β
E
(

ΦT
i PΩ (β)− ψopt

2,i (e (i))
)2
. (17)

With

P , IB −
11

T

B
, S , ssT ,

and using (13), the steepest-descent recursion that solves (17)
is of the form:
{

βi = βi−1 − 2γ(i)P
{

E
[

e2(i)
]

SPΩ(βi−1)− s
}

αi = PΩ(βi)
(18)

where we have appealed to (11); and γ (i) is a non-negative
step-size sequence, the computation of which is discussed
further ahead. Note that if β−1 is chosen from Ω, then it
is ensured that βi ∈ Ω for all i. The recursion in (18) then
becomes

αi = αi−1 − 2γ (i)P
{

E
[

e2 (i)
]

Sαi−1 − s
}

, α−1 ∈ Ω. (19)

At each time index i, E
[

e2 (i)
]

in (19) may be estimated by
means of the following smoothing operation:

E
[

e2 (i)
]

≈ σ̂2
e (i) = νσ̂2

e (i− 1) + (1− ν) e2 (i) (20)

with ν ∈ (0, 1) and usually close to 1. In this case, we can
replace (19) by

αi = αi−1 − 2γ (i)P
[

σ̂2
e (i)Sαi−1 − s

]

, α−1 ∈ Ω. (21)

We are now in a position to incorporate the non-negativity
constraint on the entries of αi at each iteration. One way to
accomplish this task is to start from an initial condition α−1 ∈
Ω+ and construct the step-size sequence in (21) as follows:

γ (i) , γ
min {αi−1 (b) |1 ≤ b ≤ B}

‖2P [σ̂2
e (i)Sαi−1 − s]‖∞ + ǫ

(22)

where γ ∈ (0, 1) and ǫ > 0 are constants, with the latter chosen
very small to prevent division by zero; and ‖.‖∞ denotes the
maximum absolute entry of its vector argument. Using the
αi from (21), we can then compute the step-size as µ (i) =
µ
(

αT
i s

)

in the update (15) for wi.
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B. The RLMS Algorithm

1) Initializations: w−1, µ, ν, io, B, αio−1 ∈ Ω+, P , γ
2) Estimation of s:

a) For a few iterations until some time index io,
run the regular LMS algorithm (3) and the
smoothing operation (20) to estimate σ̂2

e (i),
i.e., for each time index 0 ≤ i < io, compute:






e (i) = d (i)− uiwi−1

wi = wi−1 + µuTi e (i)
σ̂2
e (i) = νσ̂2

e (i− 1) + (1− ν) e2 (i)

b) Select the entries of the vector s = col
{

1
σ2
b

}

as the inverse of B equi-spaced points on
the interval σ̂2

e (io − 1) [Imin, Imax], for some
positive scalars Imin and Imax, forming ŝ and

the matrix Ŝ = ŝŝT .

3) For subsequent time instants i ≥ io, compute:










































e (i) = d (i)− uiwi−1

σ̂2
e (i) = νσ̂2

e (i− 1) + (1− ν) e2 (i)

δi = 2P
[

σ̂2
e (i) Ŝαi−1 − ŝ

]

γ (i) = γmin{αi−1(b),1≤b≤B}
‖δi‖

∞
+ǫ

αi = αi−1 − γ (i) δi
µ (i) = µ

(

αT
i ŝ

)

wi = wi−1 + µ (i)uTi e (i)

III. PERFORMANCE ANALYSIS

In this section, we analyze briefly the mean convergence
behavior and steady-state performance of the RLMS algorithm
under the data model introduced in Section II. Moreover, the
variable s is treated as a deterministic quantity for analytical

tractability. Let w̃i , wo −wi.

A. Mean Stability

We make the following additional assumptions:

(A1) The regressors, ui, are independently and identically
distributed (i.i.d.), which implies that ui and w̃i−1 are
independent of each other.

(A2) The variables ui and w̃i−1 are also independent of
αi.

Both assumptions are reasonable near steady-state and for
small step-size parameter, µ [3], [15]. Subtracting both sides
of (15) from wo and referring to (1), we get

w̃i =
[

IM − µ (i)uT
i ui

]

w̃i−1 − µ (i)uT
i v (i) , (23)

which, under expectation, gives

Ew̃i = {IM − E [µ (i)]Ru}Ew̃i−1. (24)

Let {λm}, m ∈ {1, . . . ,M}, denote the eigenvalues of Ru.
From [3] and [20], one sufficient condition for the asymptotic
unbiasedness of (23), i.e., limi→∞Ew̃i = 0 irrespective of the
initial condition, w−1, is for there to exist a time index i∗ and
a number 0 < a < 1, such that |1− E [µ (i)]λm| ≤ a < 1,

for all i > i∗ and all m ∈ {1, . . . ,M}. This translates into the
requirement:

1− a

λmin

≤ E [µ (i)] ≤
1 + a

λmax

(25)

where λmin and λmax denote the minimum and maximum
eigenvalues of Ru, respectively. For example, if Ru = σ2

uIM ,
then this condition requires selecting µ small enough to ensure
1−a
σ2
u

≤ E [µ (i)] ≤ 1+a
σ2
u

. An alternative approximate argument

to deduce asymptotic unbiasedness is to assume that, as
i → ∞, the recursion (21) for αi approaches a fixed point
ᾱ, which would need to satisfy σ̂2

eSᾱ = s, where σ̂2
e denotes

the steady-state variance of e (i). It follows that ᾱ satisfies
sT ᾱ = 1

σ̂2
e

. If we adopt the approximation that µ
(

αT
i s

)

→ µ
σ̂2
e

,

as i→ ∞, then recursion (23) can be approximated in the limit
by

w̃i = w̃i−1 =

[

IM −
µ

σ̂2
e

uT
i ui

]

w̃i−1 −
µ

σ̂2
e

uT
i v (i) , (26)

so that we may replace (24) by the following approximate
mean recursion in the limit

Ew̃i =

(

IM −
µ

σ̂2
e

Ru

)

Ew̃i−1, i→ ∞. (27)

From this relation we conclude that sufficiently small step-
sizes µ ensure asymptotic mean stability such as selecting µ

to satisfy µ <
2σ̂2

e

λmax
.

B. Steady-State Performance

From model (1), it holds that e (i) = uiw̃i−1 + v (i) =
ea (i) + v (i), where ea (i) is the a priori estimation error.
Under the data model assumptions in Section II, it holds that

E
[

e2 (i)
]

= E
[

e2a (i)
]

+ σ2
v . Let MSE , limi→∞E

[

e2 (i)
]

,

and EMSE , limi→∞E
[

e2a (i)
]

, yielding MSE = EMSE +
σ2
v , where EMSE stands for excess mean-square error. We

replace (A1) and (A2) by the following generally weaker
assumptions, which are required to hold only at steady-state
as i→ ∞:

(A1∗) ‖ui‖
2

is asymptotically independent of αi and ea (i).

(A2∗) αi is asymptotically independent of e (i).

These assumptions are reasonable under small µ, and the
second assumption more so when ν is close to 1 [3], [15].
Let ζRLMS denote the EMSE of RLMS. Following the energy
conservation framework of [3], the following variance relation
holds at steady-state:

µE
[

(

sTαi

)2
‖ui‖

2
e2 (i)

]

= 2E
[(

sTαi

)

ea (i) e (i)
]

.

(28)
Under (A1∗) and (A2∗), expression (28) reduces to

µTr (Ru)
(

ζRLMS + σ2
v

)

lim
i→∞

E
(

sTαi

)2

= 2ζRLMS lim
i→∞

E
(

sTαi

)

. (29)

It remains to approximate the first- and second-order moments
of

(

sTαi

)

at steady-state. First, note that limi→∞ σ̂2
e (i) ≈

limi→∞E
[

e2 (i)
]

= ζRLMS + σ2
v , so that limi→∞ σ̂2

e (i) ≈
σ2
v for small step-size µ. We hereby introduce the following

assumption:
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(A3∗) γ (i), σ̂2
e (i) and αi−1 are asymptotically mutually

independent.

From (21) and under (A3∗), it follows that

lim
i→∞

E
(

sTαi

)

≈
1

σ2
v

, lim
i→∞

E
(

sTαi

)2
≈

1

σ4
v

. (30)

Substituting into (29) yields

ζRLMS ≈
µTr (Ru)

2− µTr(Ru)
σ2
v

. (31)

It is well-known that the EMSE of the traditional LMS
algorithm is approximated by [3]:

ζLMS ≈
µσ2

v Tr (Ru)

2− µTr (Ru)
. (32)

Comparing (31) and (32), it is obvious that under small step-
size µ, the RLMS algorithm is less sensitive to the noise
variance. Had we instead used the approximation E

(

sTαi

)

→
ζRLMS +σ2

v , then (31) and (32) would be replaced by ζRLMS ≈
µTr(Ru)/2 and ζLMS ≈ µσ2

v Tr(Ru)/2. Note that the expres-
sion for ζRLMS in this case does not depend on σ2

v .
Another performance metric of interest is the mean-square

deviation (MSD), defined as MSD , limi→∞E ‖w̃i‖
2
. It

was shown in [21], in the context of LMS filters with error
nonlinearities, that for long enough filters, the MSD can be
approximated by

MSD ≈
Mζ

Tr (Ru)
(33)

where ζ denotes the EMSE of the filter.

IV. SIMULATIONS

We compare the transient and steady-state performance of
the LMS and RLMS algorithms, and verify expressions (31)
through (33) for the EMSE and MSD. We consider a system
identification setup, where the aim is to estimate a randomly
initialized unit-norm wo of size M = 3. The regressors
{ui} are i.i.d. zero-mean Gaussian vectors with covariance
σ2
uIM . The noise samples {v (i)} are drawn independently of

the regressors and are i.i.d. according to an ε-contaminated
Gaussian mixture model with pdf

fv (v) = (1− ε)N
(

0, σ̄2
v

)

+ εN
(

0, κσ̄2
v

)

where σ̄2
v is the nominal noise variance, ε is the contamination

ratio, and κ ≫ 1. The signal-to-noise ratio (SNR) is defined

as the ratio
σ2
u

σ̄2
v

, while the effective noise variance is given by

σ2
v = (1− ε) σ̄2

v + εκσ̄2
v , with σ̄2

v set to 1 throughout. We
consider the case with two basis score functions, i.e., B = 2.
The initial estimate for wo is set to w−1 = 0. For the RLMS
algorithm, the second stage following LMS is triggered at time
index io = 100. For the smoothing operation (20), ν is set to
0.9 and σ̂2

e (−1) to 0. For the estimation of s, we set Imin and
Imax to 1 and 10, respectively. The initial estimate of α, αio−1,
is set to 1

B
1. The step-size parameters, µ and γ, are both set

to 0.01 unless mentioned otherwise. All simulation results are
obtained by averaging over 1000 experiments.

The transient MSD and EMSE for LMS and RLMS are
compared at SNR = 10 dB in the presence of uncontaminated
Gaussian noise (ε = 0) in Fig. 1, and in the presence of
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Fig. 1. Simulated MSD and EMSE learning curves (solid lines) and
theoretical steady-state MSD and EMSE (dashed lines) for LMS (black) and
RLMS (red) algorithms at SNR = 10 dB under uncontaminated Gaussian
noise (ε = 0).
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Fig. 2. Simulated MSD and EMSE learning curves (solid lines) and
theoretical steady-state MSD and EMSE (dashed lines) for LMS (black) and
RLMS (red) algorithms at SNR = 10 dB under Gaussian mixture noise, with
ε = 0.1 and κ = 10.

Gaussian mixture noise, with ε = 0.1 and κ = 10, in Fig. 2.
Also plotted are the theoretical steady-state MSD and EMSE.
Both algorithms exhibit the same performance under nominal
conditions, albeit at the expense of additional complexity in
the case of RLMS. However, RLMS exhibits a performance
gain of about 3 dB when the noise deviates from Gaussianity.

In Fig. 3, LMS and RLMS are compared in terms of steady-
state EMSE for increasing ε while κ = 10, at SNR = 10 dB.
The simulated steady-state values are obtained by averaging
100 samples after convergence. It is evident that RLMS is
insensitive to increasingly impulsive noise.

In Fig. 4, the SNR performance of the algorithms is
compared in terms of their steady-state EMSE, with ε = 0.1
and κ = 10. RLMS exhibits an SNR gain of about 2 dB.

Finally, in Fig. 5, the algorithms are compared in terms of
steady-state EMSE for increasing µ, at SNR = 5 dB with
ε = 0.1 and κ = 10. The parameter γ is set equal to µ
throughout. RLMS displays the same superiority with respect
to mean stability.
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