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ABSTRACT

We study the problem of distributed detection, where a set of nodes

are required to decide between two hypotheses based on their mea-

surements. We seek fully distributed implementations, where all

nodes make individual decisions by communicating with their im-

mediate neighbors, and no fusion center is necessary. This scheme

provides the network with more flexibility, saves energy for commu-

nication and networking resources. Our distributed detection algo-

rithm is based on a previously proposed distributed estimation algo-

rithm. We establish the connection between the detection and es-

timation problems, propose a distributed detection algorithm, and

analyze the performance of the algorithm in terms of its probabili-

ties of detection and false alarm. We also provide simulation results

comparing with other cooperation schemes.

1. INTRODUCTION

We study the problem of distributed detection, where a set of nodes

are required to decide between two hypotheses based on their mea-

surements of some physical process. We seek fully distributed im-

plementations, where all nodes make individual decisions by com-

municating with their immediate neighbors only, and no fusion cen-

ter is necessary. This scheme provides the network with more flex-

ibility and is more efficient in terms of communication power and

networking resources [1]. Thus, every node in the network will reach

a decision. Moreover, our proposed detection algorithm is adaptive,

in the sense that at every time instant, every node obtains a new mea-

surement, and uses it to obtain a new decision based on the measure-

ments up to that time instant. This makes our algorithm attractive for

distributed real-time implementations, since there is no need to wait

until a number of measurements are obtained, and more importantly,

the algorithm allows tracking of changes in the unknown parameter.

Distributed detection schemes have been proposed before in the

literature. The so-called “decentralized” detection schemes require

communicating the measurements to a fusion center for processing

[2]-[4]. More recently, detection schemes based on average consen-

sus have been proposed, which avoid the use of a fusion center, and

where every node in the network makes an individual decision [5]-

[8]. Consensus-based schemes assume that all the nodes take a set of

measurements, and subsequently run an iterative algorithm to reach

consensus. Thus, these algorithms employ two time-scales: one to

take the measurements and another to run the consensus algorithm,

making them different from our proposed approach.

This material was based on work supported in part by the National Sci-
ence Foundation under awards ECS-0601266 and ECS-0725441.
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Fig. 1. Distributed detection scheme.

The proposed distributed detection algorithm is based on our

prior work on distributed estimation. Diffusion-based estimation so-

lutions, where nodes communicate with their neighbors in an isotropic

manner have been proposed in the context of distributed adaptive

filtering, including diffusion LMS [9][10] and diffusion RLS [11].

In this work, we employ the connection between Neyman-Pearson

detection and minimum-variance estimation for linear systems in

Gaussian noise in order to formulate the detection problem in terms

of an estimation problem. Then, we use our previously proposed dif-

fusion RLS algorithm [11] to implement the diffusion-based detec-

tion algorithm. We provide performance analysis in terms of prob-

abilities of detection and false alarm, and provide simulation results

comparing with other techniques, such as the centralized solution

and the case where nodes do not cooperate.

2. THE DETECTION PROBLEM

2.1. Data model

Consider a set of N nodes distributed over some region. We say that

two nodes are connected if they can communicate directly with each

other. Every node is always connected to itself. The set of nodes

connected to node k is called the neighborhood of node k, and is

denoted by Nk. The number of neighbors of node k including itself

is called the degree of node k and is denoted by nk. At every time

instant i, every node k takes a scalar measurement dk(i) of some

random process dk(i), which is related to an unknown vector wo of

size M as follows:

dk(i) = uk,iw
o + vk(i) (1)
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where uk,i is a known deterministic row vector of sizeM , and vk(i)
is a scalar zero-mean WSS complex circular Gaussian random pro-

cess, uncorrelated in time and space, i.e.,

E vk(i)vl(j) = δklδijσ
2
vk

The operator E denotes expectation, and δkl is the Kronecker delta.

The objective is for every node in the network to distinguish

between two hypothesesH0 andH1, where:

wo =

{

0 underH0

w1 underH1

Thus, underH0, the observations only contain noise, whereas under

H1, the observations contain a signal component.

We collect the data for all nodes k = 1, . . . , N and for all time

instants j = 0, . . . , i up to time i as follows:

di = col{d1(i), . . . ,dN (i),d1(i− 1), . . . ,dN (i− 1),

. . . ,d1(0), . . . ,dN (0)} ((i+ 1)N × 1)

Ui = col{u1,i, . . . , uN,i, u1,i−1, . . . , uN,i−1,

. . . , u1,0, . . . , uN,0} ((i+ 1)N ×M)

vi = col{v1(i), . . . , vN (i), v1(i− 1), . . . , vN (i− 1),

. . . , v1(0), . . . , vN (0)} ((i+ 1)N × 1)

where the col operator stacks its arguments column-wise. Thus,

model (1) can be rewritten as

di = Uiw
o + vi (2)

Notice that vi ∼ CN (0, Rv,i), where Rv,i = Eviv
∗
i is a diagonal

matrix, and ∗ denotes complex conjugate transposition. Thus, under

H0, di ∼ CN (0, Rv,i), whereas underH1, di ∼ CN (Uiw1, Rv,i).

2.2. Neyman-Pearson detection

According to the Neyman-Pearson (NP) criterion, the detector that

maximizes the probability of detection Pd (i.e., the probability of

selectingH1 whenH1 is true) given a probability of false alarm Pf
(i.e., the probability of selectingH1 whenH0 is true) is [12]:

T i(di)
H0

≶
H1

γi

where

T i(di) , αiRe{w∗
1U∗

iR
−1
v,idi} (3)

and αi is any real, positive constant (the value of γi will typically

depend on the choice of αi). Noticing that

αiw
∗
1U

∗
iR

−1
v,idi ∼ CN (αiw

∗
1U

∗
iR

−1
v,iUiw

o, α2
iw

∗
1U

∗
iR

−1
v,iUiw1)

we have

T i(di) ∼

{

N (0, σ2
i ) underH0

N (µi, σ
2
i ) underH1

where

µi = αiw
∗
1U

∗
iR

−1
v,iUiw1 σ2

i = sα2
iw

∗
1U

∗
iR

−1
v,iUiw1

and s = 1 if the vector di is real, and s = 1/2 if it is complex.

The probabilities of false alarm and detection at time i are given,

respectively, by

Pf = Q
(

γi

σi

)

Pd = Q
(

γi−µi

σi

)

= Q
(

Q−1(Pf )−
µi

σi

) (4)

Note that given Pf , we can determine γi = σiQ
−1(Pf ), and also,

that Pd does not depend on the choice of αi, and therefore we are

free to choose this constant to our convenience.

2.3. Relation between NP detector and MVU estimator

Under the linear model assumption (2), and the statistical assump-

tions on the observation noise vi, we have that the minimum-variance-

unbiased (MVU) estimator of wo given di is given by [13]:

ŵ
mvu
i = (U∗

iR
−1
v,iUi)

−1U∗
iR

−1
v,idi (5)

Note that the MVU estimator is also the solution to the following

weighted least-squares problem:

ŵ
mvu
i = arg min

w
‖di −Uiw‖

2

R
−1

v,i

(6)

The error covariance matrix of the MVU estimator is

Rw̃mvu
i

= E w̃mvu
i w̃

mvu∗
i = (U∗

iR
−1
v,iUi)

−1

where w̃mvu
i = ŵmvu

i −w
o. Now, the optimal test statistic (3) can be

rewritten in terms of (5) as follows

T i(di) = αiRe{w∗
1U∗

iR
−1
v,iUiŵ

mvu
i } (7)

3. DISTRIBUTED DETECTION

3.1. Detection with incomplete data

Equation (7) is key for our development, since it indicates how we

can calculate the optimal NP test statistic T i from the MVU estima-

tor ŵmvu
i . Notice that in order to calculate (3) or (7), we need knowl-

edge of the data {dk(j), uk,j} for all nodes k and for all instants j
up to time i. Thus, a fusion center would collect all these measure-

ments coming from the different nodes, and compute the optimal NP

test statistic. This is the global solution to the problem.

In practice, it may be the case that a certain node only has access

to a subset of the data di, and therefore will obtain an estimate ofwo

which is not necessarily the global estimate. The question is how to

define a test statistic based on this new estimator, and what will be

the probabilities of detection and false alarm given this new statistic.

Thus, assume that every node k in the network has access to data

d̄k,i = Wk,idi Ūk,i = Wk,iUi R̄v,k,i = Wk,iRv,iW
∗
k,i

where Wk,i is some weighting matrix that determines what data is

obtained by node k at time i.
Assume now that at time i, node k has knowledge of an un-

biased, linear estimator of wo, and let us denote this estimator by

ŵk,i. Based on (7) we can define the following test statistic:

T k,i(d̄k,i) = αk,iRe{w∗
1Ū

∗
k,iR̄

−1
v,k,iŪk,iŵk,i} (8)

Thus, T k,i(d̄k,i) is also Gaussian, and distributed according to:

T k,i(d̄k,i) ∼

{

N (0, σ2
k,i) underH0

N (µk,i, σ
2
k,i) underH1

(9)

with

µk,i = αk,iw
∗
1Ū

∗
k,iR̄

−1
v,k,iŪk,iw1

σ2
k,i = sα2

k,iw
∗
1(Ū

∗
k,iR̄

−1
k,v,iŪk,i)Rw̃k,i

(Ū
∗
k,iR

−1
v,k,iŪk,i)w1

The probabilities of false alarm and detection for node k at time i can

be computed from (4) replacing {µi, σ
2
i }with the above {µk,i, σ

2
k,i}.
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3.2. The diffusion RLS algorithm

The diffusion RLS algorithm from [11] allows every node in the net-

work to estimate the parameter wo from a linear observation model

as in (1) by attempting to solve (6) in a distributed manner. The

nodes only need to communicate with their neighbors.

ConsiderN×N matricesA andC with non-negative real entries

al,k and cl,k, respectively, satisfying

al,k = cl,k = 0 if l 6∈ Nk 1
TA = 1

T

The diffusion RLS algorithm obtains for every node k, and for every

instant i, an estimate ŵk,i of wo. The algorithm is shown below for

convenience. Notice that nodes only need to communicate with their

neighbors their data {dk(i), uk,i} and vectors ψk,i of size M .

Diffusion RLS Algorithm [11]

Start with ŵk,−1 = 0 and Pk,−1 = Π−1 for every node k.

For every time instant i, repeat

Incremental update: for every node k, repeat

ψk,i = ŵk,i−1

Pk,i = λ−1Pk,i−1

for all l ∈ Nk

ψk,i ← ψk,i +
cl,kPk,iu

∗
l,i[dl(i)−ul,iψk,i]

σ2
vl

+cl,kul,iPk,iu
∗
l,i

Pk,i ← Pk,i −
cl,kPk,iu

∗
l,iul,iPk,i

σ2
vl

+cl,kul,iPk,iu
∗
l,i

end

Spatial update: for every node k, repeat

ŵk,i =
∑

l∈Nk
al,kψl,i

(10)

The algorithm assumes knowledge of the observation noise vari-

ances, σ2
vk

. When these variances are equal across all nodes, we can

set σ2
vk

= 1 in the diffusion RLS algorithm. The algorithm also uses

a forgetting factor λ, which enhances its tracking capabilities. If no

forgetting factor is needed, we can select λ = 1.

3.3. Diffusion-based detection algorithm

Based on (8), we can formulate a distributed detection algorithm

that uses the diffusion RLS algorithm (10) to compute ŵk,i. Let

λ = 1 and cl,k = 1/nk if l ∈ Nk. Since a node has access to data

{dl(i), ul,i} from its neighbors l ∈ Nk, we have

P−1
k,i = Π +

i
∑

j=0

∑

l∈Nk

u∗
l,jul,j

nkσ2
vl

= Π +
1

nk
Ū

∗
k,iR̄

−1
k,v,iŪk,i , Qk,i

Also notice that

Qk,i = Qk,i−1 +
∑

l∈Nk

u∗
l,iul,i

nkσ2
vl

Then, for the choice Π = 0 and αi = 1/[(i+ 1)nk], we can rewrite

(8) as

T k,i(d̄k,i) =
1

i+ 1
Re{w∗

1Qk,iŵk,i}

The proposed algorithm is shown in (12). It uses the diffusion RLS

algorithm (10) to compute ŵk,i, and then uses this estimate to com-

pute the test statistic Tk,i. It also computes the matrix Qk,i without

requiring matrix inversion, except initially to obtain Pk,i0−1.

Alg. (12) can be specialized to different cooperation schemes of

interest. In this work we consider four different cooperation schemes

based on the available data at every node: global, individual, local

Diffusion-based Detection Algorithm

Compute, for every node k,

Qk,i0−1 =

i0−1
∑

j=0

∑

l∈Nk

u∗
l,jul,j

nkσ2
vl

qk,i0−1 =

i0−1
∑

j=0

∑

l∈Nk

u∗
l,jdl(j)

nkσ2
vl

until a time instant i0−1 such thatQk,i0−1 becomes non-singular.

Then, start with ŵk,i0−1 = Q−1
k,i0−1qk,i0−1, Pk,i0−1 = Q−1

k,i0−1

and for every time instant i ≥ i0, repeat

Incremental update: for every node k, repeat

ψk,i = ŵk,i−1

Pk,i = λ−1Pk,i−1

Qk,i = λQk,i−1

for all l ∈ Nk

ψk,i ← ψk,i +
Pk,iu

∗
l,i[dl(i)−ul,iψk,i]

nkσ
2
vl

+ul,iPk,iu
∗
l,i

Pk,i ← Pk,i −
Pk,iu

∗
l,iul,iPk,i

nkσ
2
vl

+ul,iPk,iu
∗
l,i

Qk,i ← Qk,i +
u∗

l,iul,i

nkσ
2
vl

end

Spatial update: for every node k, repeat

ŵk,i =
∑

l∈Nk
al,kψl,i

Tk,i = 1
i+1

Re{w∗
1Qk,iŵk,i}

Decision: for every node k, repeat

Tk,i
H0

≶
H1

γk,i

(12)

and diffusion. The global solution corresponds to the case where all

nodes have access to all the data from the network, as in a a fully

connected or centralized solution. This is the best possible scenario.

The individual solution corresponds to the case where nodes do not

communicate with each other, and are isolated. This corresponds

to the worst possible scenario. In a local solution, nodes exchange

measurements with their neighbors, but do not perform a diffusion

step. Finally, in a diffusion solution (our proposed scheme), nodes

exchange measurements with their neighbors as in the local case,

but also exchange estimates and perform diffusion. Alg. (12) can

be specialized to each of these cases by appropriately selecting the

matrix A and the neighborhood of node k. The choices are summa-

rized in Table 1. One possible choice for A in the diffusion case is

the relative-degree rule [11]:

al,k =

{

nl
∑

l∈Nk
nl

if l ∈ Nk

0 otherwise
(11)

Scheme Choice ofNk in (12) Choice of A in (12)

Global {1, . . . , N} I
Individual {k} I
Local Nk I
Diffusion Nk A

Table 1. Choices of A andNk for different cooperation schemes.

In the following section we analyze the performance of Alg. (12)

in terms of its probabilities of detection and false alarm. The diffu-

sion RLS algorithm (10) was analyzed in [11] for the case where the

regressors uk,i are random. In this work we provide analysis for the

case where regressors are deterministic.
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4. PERFORMANCE ANALYSIS

4.1. Mean-performance

In this section we show that Alg. (12) is unbiased, i.e., E ŵk,i = wo

for all k and i. We start by rewriting (see [11]) for i ≥ i0:

ψk,i = Pk,i



P−1
k,i−1ŵk,i−1 +

∑

l∈Nk

1

nkσ2
vl

u∗
l,idl(i)





Taking expectation in the above expression when i = i0, we obtain

Eψk,i0 = Pk,i0
∑

l∈Nk

1

nkσ2
vl

u∗
l,i0ul,i0w

o

But since P−1
k,i0

= Qk,i0 =
∑

l∈Nk

1
nkσ

2
vl

u∗
l,i0
ul,i0 , we have

Eψk,i0 = wo

and therefore ψk,i0 is unbiased, and so is ŵk,i0 because of the con-

vexity of the coefficients al,k. For i > i0, assume ŵk,i−1 is unbi-

ased. Then, we have

Eψk,i = Pk,i



P−1
k,i−1w

o +
∑

l∈Nk

1

nkσ2
vl

u∗
l,iul,iw

o



 = wo

and ŵk,i is also unbiased. By induction, we conclude that ŵk,i is

unbiased for all i ≥ i0.

4.2. Mean-square performance

Now define the error quantities

ψ̃k,i = ψk,i − w
o

w̃k,i = ŵk,i − w
o

Then, for i ≥ i0 we have:

ψ̃k,i = Pk,i

[

P−1
k,i−1w̃k,i−1 +

∑

l∈Nk

1

nkσ2
vl

u∗
l,ivl(i)

]

and

w̃k,i =
∑

l∈Nk

al,kψ̃k,i

The above expression can be written more compactly as

w̃i = ATPi[P
−1
i−1w̃i−1 + CTU∗

i R
−1
v,ivi] (13)

where we defined the extended quantities

w̃i = col{w̃1,i, . . . , w̃N,i}

vi = col{v1(i), . . . , vN (i)}

A = A⊗ IM

C = C ⊗ IM

Pi = diag{P1,i, . . . , PN,i}

Ui = diag{u1,i, . . . , uN,i}

Rv,i = diag{σ2
v1 , . . . , σ

2
vN
}

From (13), we find that the covariance matrix of the error vector w̃i

is given by:

Rw̃i
= ATPi

[

P−1
i−1Rw̃i−1

P−1
i−1 + CTU∗

i R
−1
v,iUiC

]

PiA (14)

Note that Rw̃k,i
is given by the k-thM ×M diagonal block ofRw̃i

.

The initial condition is

Rw̃i0−1
= Pi0−1C

T

(

i0−1
∑

j=0

U∗
jR

−1
v,jUj

)

CPi0−1

4.3. Detection performance

We conclude that the test statistic of node k at time i, given by

T k,i = 1
i+1

Re{w∗
1Qk,iŵk,i} is distributed according to (9), with

µk,i = 1
i+1

w∗
1Qk,iw1

σ2
k,i = s

(i+1)2
w∗

1Qk,iRw̃k,i
Qk,iw1

(15)

The probabilities of false alarm and detection are given by:

Pf = Q
(

γk,i

σk,i

)

Pd = Q
(

γk,i−µk,i

σk,i

)

= Q
(

Q−1(Pf )−
µk,i

σk,i

) (16)

Notice that given Pf , we can compute γk,i = σk,iQ
−1(Pf ). We

summarize our results in the following lemma:

Lemma 1 For every node k and every time instant i, ŵk,i in Alg.

(12) is an unbiased estimator of wo, with covariance matrix given

by the k-th M ×M diagonal block of (14). The test statistic Tk,i in

Alg. (12) is distributed according to (9) with µk,i and σk,i given by

(15), and probabilities of false alarm and detection given by (16).

5. SIMULATIONS

In this section we provide simulation results for Alg. (12) and com-

pare with the global, individual and local cooperation schemes. We

use a network with N = 20 nodes and unknown complex vector

of size M = 5. The regressors were drawn according to a com-

plex Gaussian distribution, independent in time and space. The net-

work topology, noise variances and trace of regressor covariances

are shown in Fig. 2.
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5 10 15 20
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σ
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,
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T
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R
u

,
k
)

Node number kNode number k

Fig. 2. Network topology (top), noise variances σ2
v,k (bottom, left)

and trace of regressor covariances Tr(Ru,k) (bottom, right).

Figures 3 and 4 show the expectation and variance, respectively,

of the test statistic T k,i for node 1 and for different cooperation

schemes. We show the theoretical expressions from (15), and a sim-

ulation averaging over 200 experiments. It can be observed that the

theoretical curves agree with the simulation results. Also notice that

the individual algorithm starts at a later time than the rest. This is

because it requires a few more samples before the matrix Qk,i0−1

becomes invertible.

Fig. 5 shows the probability of mis-detection Pe = 1 − Pd for

different cooperation schemes, where for every node the threshold
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Fig. 4. Variance of T for node 1, simulation and theory.

γk,i is determined in such a way that its probability of false alarm is

Pf = 10−9. The probabilities were computed using the theoretical

expressions for the mean and variance of the test statistic as in (15),

and taking the maximum over all nodes at each time instant. We

observe that the diffusion-based solution considerably outperforms

the case where there is no cooperation, and it also outperforms the

local solution, showing that the diffusion step improves over using

local information only. As expected, the global scheme has better

performance than diffusion.

6. CONCLUSIONS

We proposed a distributed detection algorithm for a binary hypothe-

sis testing problem in Gaussian noise. Our algorithm exploits the

connection between detection and estimation theory and uses the

diffusion RLS distributed estimation algorithm. We provided perfor-

mance analysis and simulations showing that the diffusion algorithm

outperforms the cases where there is no cooperation and where only

local data is used.
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