
A DIFFUSION RLS SCHEME FOR DISTRIBUTED ESTIMATION OVER ADAPTIVE

NETWORKS

Federico S. Cattivelli Cassio G. Lopes Ali H. Sayed

Department of Electrical Engineering

University of California, Los Angeles, CA 90095

Emails: {fcattiv, cassio, sayed}@ee.ucla.edu

ABSTRACT

We consider the problem of distributed estimation in adaptive net-

works where a collection of nodes are required to estimate in a col-

laborative manner some parameter of interest from their measure-

ments. The centralized solution to the problem uses a fusion center,

thus requiring a large amount of energy for communication. We pro-

pose a diffusion recursive least-squares algorithm where nodes need

to communicate only with their closest neighbors. The algorithm has

no topology constraints, and requires no transmission or inversion of

matrices, therefore saving in communications and complexity. We

show that the algorithm is stable and analyze its performance com-

paring it to the centralized global solution.

1. INTRODUCTION

We consider the problem of distributed estimation where a collection

of nodes are required to estimate in a collaborative manner some

parameter of interest from their measurements. In the centralized

solution to the problem, measurements are transmitted to a central

fusion center for processing, and the resulting estimate is commu-

nicated back to the nodes. This approach enables the calculation

of the global solution, but has the disadvantage of requiring a large

amount of energy and communication [1]. An alternative approach is

the distributed solution, in which the nodes communicate only with

their closest neighbors and processing is done locally at every node,

thereby saving communications and network resources.

A distributed estimation approach should have the following de-

sirable features:

• Estimation performance: The nodes in the network should ob-

tain estimates that are close to the global solution.

• Energy awareness and complexity: The solution should mini-

mize communications and local processing at the nodes.

• Ad-hoc deployment: The system should be able to cope with

possibly dynamic configurations of the network.

Distributed estimation algorithms have been proposed to address

these issues to some extent. In [2, 3, 4], a distributed incremen-

tal RLS solution was proposed for obtaining the exact global least-

squares estimate. The algorithm requires the definition of a path

through the network, which may not be practical for large networks

or dynamic configurations. In [5], an isotropic diffusion algorithm

was proposed; it requires every node to transmit and invert a matrix

This material was based on work supported in part by the National Science Foun-

dation under awards ECS-0401188 and ECS-0601266.

at every iteration, which is prohibitive for large matrices or for low

complexity sensor nodes.

We propose a distributed diffusion algorithm based on RLS that

has performance close to the global solution and outperforms earlier

solutions; it also does not require transmission or inversion of ma-

trices, therefore saving in communications and computational com-

plexity. The algorithm has no topological constraints, and consti-

tutes a fully adaptive, recursive and distributed solution that is also

asymptotically unbiased and stable under the modeling assumptions

of Section 4.

2. THE ESTIMATION PROBLEM

2.1. Global Least-Squares Problem

Consider a set of N nodes spatially distributed over some region.

LetNk denote the closed neighborhood of node k (i.e., the set of all

neighbors of k including itself). The objective is to collectively esti-

mate an unknown deterministic column vector of lengthM , denoted

by wo, using least-squares estimation. At every time instant i, node

k obtains a measurement dk(i) that is related to the unknown vector

by

dk(i) = uk,iw
o + vk(i) (1)

where uk,i is a row vector of length M (the regressor of node k at

time i), and vk(i) is a zero-mean, spatially uncorrelated Gaussian

white noise process with variance σ2
vk

. At time i, we collect the

measurements and noise samples of all N nodes into vectors yi and

vi of length N , and the regressors into an N by M matrix Hi, as

follows:

yi = col{d1(i), ..., dN (i)} (N × 1)
Hi = col{u1,i, ..., uN,i} (N ×M)
vi = col{v1(i), ..., vN (i)} (N × 1)

Let v∗i denote the conjugate transpose of vector vi. The covariance

matrix of the noise vector is Rv = Eviv
∗
i = diag{σ2

v1
, ..., σ2

vN
}.

We collect the regressors, measurements and covariance matrices

from time 0 up to time i as follows:

Yi = col{yi, ..., y0}
Hi = col{Hi, ..., H0}
Vi = col{vi, ..., v0}

and letRv,i = EViV
∗
i .

The objective is to estimatewo by solving the following weighted,

regularized, least-squares problem:

min
w
||w − w̄||2Πi

+ ||Yi −Hiw||
2
Wi

(2)

1-4244-0955-1/07/$25.00 ©2007 IEEE.

The global solution, wi, is given by [6]

wi = w̄ + [Πi +H∗
iWiHi]

−1
H∗
iWi(Yi −Hiw̄) (3)

where Πi > 0 is a regularization matrix andWi ≥ 0 is a weighting

matrix. Both Πi andWi are Hermitian.

An exponentially weighted problem can be formulated by choos-

ingWi = R−1
v,iΛi and Πi = λi+1Π, with 0 < λ ≤ 1, Π > 0 and

Λi , diag{IN , λIN , ..., λ
iIN}

Usually, Π = δ−1IM where δ > 0 is large. For the choice w̄ = 0,

the estimation problem becomes:

wi = arg min
w

(
λi+1||w||2Π +

iX
j=0

λi−j
NX
l=1

|dl(j)− ul,jw|
2

σ2
vl

)
(4)

We refer to this problem as the global least-squares problem,

since at time i, the solution takes into account all measurements from

all nodes up to time i. This solution may be computed by using a

centralized approach, or the distributed incremental RLS algorithm

of [3, 4, 7].

2.2. Clustered Least-Squares Problem

We now develop distributed estimation schemes where nodes have

access to limited data, namely the data from the neighboring nodes.

When node k can only share measurements and regressors with its

neighbors, it can locally solve the following least-squares problem:

ψk,i = arg min
w

(
λi+1||w||2Π +

iX
j=0

λi−j
NX
l=1

Cl,k|dl(j)− ul,jw|
2

σ2
vl

)
(5)

for some choice of coefficients Cl,k such that Cl,k = 0 if l 6∈ Nk.

We also choose these coefficients such that
PN

k=1 Cl,k = 1, l =

1 . . . N , and
PN

l=1 Cl,k = 1, k = 1 . . . N , for reasons that will

become clearer later in this paper. Note that the nodes in the network

will generally have access to different data, so their estimates will

be solutions to different least-squares problems. Naturally, we want

these estimates to be close to the global least-squares solution of (4).

The coefficients Cl,k can be incorporated into the weighting ma-

trix of (2) by forming anN×N matrixC such that its {l, k} element

is Cl,k and replacingWi by:

Wk,i = R−1
v,iΛidiag{Ck, Ck, ..., Ck} (6)

with Ck , diag{Cek}, and ek being an N × 1 vector with a unity

entry in position k and zeros elsewhere.

Now, for every node k, we express its local estimate ψk,i as a

perturbation of wo, say for some error vectors zk,i.26664 ψ1,i

ψ2,i

...

ψN,i

37775 =

26664 IM
IM

...

IM

37775wo +

26664 z1,i
z2,i

...

zN,i

37775| {z }
zi

Note that this model holds exactly for any least-squares problem of

the form (2) when there is no regularization (Πi = 0), since in this

case ψk,i is given by

ψk,i = [H∗
iWk,iHi]

−1H∗
iWk,iYi

and Yi = Hiw
o + Vi by definition. Then it holds that

zk,i = [H∗
iWk,iHi]

−1H∗
iWk,iVi

and zk,i is zero-mean and Gaussian as well.

Given the local estimates ψk,i we may now pose the following

least-squares problem:

min
w

26664 ψ1,i

ψ2,i

...

ψN,i

37775− 26664 IM
IM

...

IM

37775w

2

W

(7)

If we assume that the individual solutions ψk,i are good approxima-

tions for the optimal solution wo, then we would expect the solution

of problem (7) to be closer to the optimal. For instance, for the

choice of weighting matrix

W =

264 H∗
iW1,iHi

. . .

H∗
iWN,iHi

375
we have that the solution of (7) is"

H∗
i

NX
k=1

Wk,i

!
Hi

#−1

H∗
i

NX
k=1

Wk,i

!
Yi (8)

For the choice of coefficients Cl,k such that C1 = 1, it follows thatP
k
Ck = IN . Thus Equation (8) becomes�

H∗
iR

−1
v,iΛiHi

�−1
H∗
iR

−1
v,iΛiYi

which is the solution of (4) (i.e., the global solution) when there is

no regularization.

This result leads to an estimation process in two steps. First,

every node solves a local least-squares problem using local data as

in (5), and second, the nodes communicate to solve problem (7). An

inconvenience of this approach is that in order to obtain the global

solution, the second step requires knowledge of the local estimate

of every other node, and also knowledge of the matrix W , which

depends on all regressors in the network.

However, we can modify this method to fit a diffusion estima-

tion scheme whereby nodes only share estimates with their neigh-

bors. To do so, consider the case where we choose the weighting

matrix W in (7) as a node-dependent diagonal matrix of the form

Wk = diag{A1,kI, ..., AN,kI}, where Al,k = 0 if l 6∈ Nk, andPN

l=1Al,k = 1, k = 1, . . . , N . Then, the solution to the least-

squares problem (7) takes the form:

wk,i =

NX
l=1

Al,kψl,i (9)

This means that the second step of the aforementioned method can

be simplified by a weighted average of local estimates.

This sequence of two least-squares problems represents an at-

tempt to solve the global least-squares problem in a distributed man-

ner. However, the method is not adaptive, since we first need to

calculate local estimates, and then average the results as in (9). We

can make the method adaptive if we perform both steps for every

measurement. That is, first aggregate the new data into the previous

estimate, and then combine estimates with neighbors. This proce-

dure, referred to as diffusion RLS, has good convergence properties

as is shown in Section 4.

3. THE DIFFUSION RLS ALGORITHM

We therefore propose a diffusion RLS algorithm to collectively esti-

mate wo from individual measurements in two steps:

1. At time i, the nodes communicate their measurements dk(i)
and regressors uk,i with their closest neighbors, and use this

data to update their local estimates using RLS iterations (via

incremental update). The resulting pre-estimates are named

ψk,i from (5).

2. The nodes communicate their local pre-estimates with their

closest neighbors and perform a weighted average as in (9) to

obtain the final estimate wk,i (via spatial update).

3

1

2

4

3

1

2

4

Incremental update Spatial update

- Exchange local data

d1(i), u1,i

d2(i), u2,i

d3(i), u3,i

d4(i), u4,i

- Iterate RLS with local data

- Exchange estimates

ψ1,i

ψ2,i

ψ3,i

ψ4,i

- Calculate weighted average:

w1,i =
P
Al,1ψl,i

Fig. 1. Diffusion RLS algorithm at node 1. Incremental update:

all neighboring nodes exchange measurements and regressors and

compute ψk,i. Spatial update: neighboring nodes exchange ψk,i and

perform a weighted average to obtain wk,i

The algorithm, shown schematically in Figure 1, is described by

Equations (10) below. Start by selecting N × N matrices A and C
with non-negative entries such that Al,k = Cl,k = 0 if l 6∈ Nk,

1
∗A = 1

∗, 1∗C = 1
∗ and C1 = 1. The algorithm is given by the

following equations

Diffusion RLS Algorithm

Start with wk,−1 = 0 and Pk,−1 = Π−1 for each node k.

For every time instant i, repeat

Incremental update: for every node k, repeat

ψk,i = wk,i−1

Pk,i = λ−1Pk,i−1

for all l ∈ Nk

ψk,i ← ψk,i +
Cl,kPk,iu

∗

l,i[dl(i)−ul,iψk,i]

σ2
vl

+Cl,kul,iPk,iu
∗

l,i

Pk,i ← Pk,i −
Cl,kPk,iu

∗

l,iul,iPk,i

σ2
vl

+Cl,kul,iPk,iu
∗

l,i

end

Spatial update: for every node k, repeat

wk,i =
P
l∈Nk

Al,kψl,i

(10)

Note that the algorithm requires no matrix inversion, and nodes

only need to know the estimates ψk,i, measurements dk(i) and re-

gressors uk,i of their neighbors. Thus, every node needs to com-

municate a total of 2M + 1 scalars to neighboring nodes, compared

with (M2 + 3M)/2 scalars if the matrices Pk,i were to be shared

instead.

4. ANALYSIS

In this section we show that the algorithm (10) is asymptotically

unbiased in the mean and that it converges in the mean-square er-

ror sense under some simplifying assumptions. We also provide an

expression for the steady-state mean-square deviation (MSD) and

compare to the global least-squares solution.

4.1. Data model

We will make the following assumption on the regressors.

Assumption 1 The regressors uk,i are zero-mean, and independent

in time. Moreover, the covariance matrix Ruk
,Eu∗

k,iuk,i is invari-

ant over time.

From (10) we know that

P−1
k,i = λP−1

k,i−1 +

NX
l=1

Cl,k
σ2
vl

u∗
l,iul,i (11)

= λi+1Π +
iX

j=0

λi−j
NX
l=1

Cl,k
σ2
vl

u∗
l,jul,j

We are interested in the steady-state behavior of the matrix Pk,i. As

i → ∞, and for 0 < λ < 1, the steady state mean value of P−1
k,i is

given by

lim
i→∞

EP−1
k,i =

1

1− λ

NX
l=1

Cl,k
σ2
vl

Rul
, P−1

k (12)

In order to make the performance analysis tractable, we introduce

the following ergodicity assumption.

Assumption 2 ∃i0 such that for all i > i0, P
−1
k,i can be replaced by

EP−1
k,i = P−1

k

Assumption 2 states that the time average of a sequence of random

variables can be replaced by its expected value. This is a common

assumption in the analysis of the performance of RLS (see for exam-

ple [6]), and yields good results in practice as is shown by simulation

in Section 5.

Furthermore, to prove mean-square convergence we will replace

the random matrix Pk,i by Pk. We will also need the following

assumption.

Assumption 3 The covariance matrix Ruk
= Eu∗

k,iuk,i and the

noise variance σ2
vk

are the same at every node, i.e., Ru1
= ... =

RuN
, Ru and σ2

v1
= ... = σ2

vN
, σ2

v .

4.2. Mean performance

Combining Equations (1), (10) and (11), we have the following rela-

tion for the local estimate:

P−1
l,i ψl,i = λP−1

l,i−1wl,i−1 +

NX
m=1

Cm,l
σ2
vm

u∗
m,idm(i)

= λP−1
l,i−1wl,i−1 +

NX
m=1

Cm,l
σ2
vm

u∗
m,i[um,iw

o + vm(i)]

= λP−1
l,i−1w̃l,i−1 + P−1

l,i w
o +

NX
m=1

Cm,l
σ2
vm

u∗
m,ivm(i)

It then follows that the error vector w̃k,i , wk,i − w
o is given by

w̃k,i =
PN

l=1Al,k[ψl,i − w
o]

=
PN

l=1Al,kPl,i
h
λP−1

l,i−1w̃l,i−1 +
PN

m=1

Cm,l

σ2
vm

u∗
m,ivm(i)

i
(13)

Taking expectations of both sides yields the following result:

E{w̃k,i} = λE

(
NX
l=1

Al,kPl,iP
−1
l,i−1w̃l,i−1

)
Using assumption 2 and noting that P−1

k,i becomes independent of

i for i > i0, and grouping the vectors w̃k,i into a matrix W̃i =
row{w̃1,i, ..., w̃N,i}, we have for large enough i:

E{W̃i} = λE{W̃i−1}A

= λi−i0E{W̃i0}A
i−i0

Assuming that all elements of E{W̃i0} are bounded in absolute value

by some constant 0 ≤ a < ∞, and since all elements of Ai are

between zero and one, we have that every element of E{W̃i}must be

bounded in absolute value by λi−i0Na. Thus, for 0 < λ < 1, every

element of E{W̃i} converges to zero as i→∞, and the estimator is

asymptotically unbiased.

4.3. Mean-square performance

We now show that the algorithm converges in the mean-square sense,

i.e., limi→∞ E||w̃k,i||
2 < ∞. To show mean-square convergence

we use assumptions 1, 2 and 3.

From assumption 3, Pk becomes independent of the node k, and

we can define:

P−1
, P−1

k =
1

1− λ

Ru
σ2
vl

From equation (13) and assumption 2 we have:

w̃k,i = λ
NX
l=1

Al,kw̃l,i−1 + P
NX
l=1

Al,k

NX
m=1

Cm,l
σ2
vm

u∗
m,ivm(i)

= λW̃i−1Aek + PH∗
i R

−1
v diag(vi)CAek

(14)

Again grouping the error vectors w̃k,i into a matrix W̃i we have:

W̃i = λW̃i−1A+ PH∗
i R

−1
v diag(vi)CA

= W̃i0(λA)i−i0 + P
iX

j=i0+1

H∗
jR

−1
v diag(vj)CA(λA)i−j

For node k we have:

w̃k,i = W̃i0(λA)i−i0ek+P
iX

j=i0+1

H∗
j diag[CA(λA)i−jek]R

−1
v vj

Now define B , Ai−i0 , and the mean-square deviation is

E||w̃k,i||
2 = λ2(i−i0)E

������PN

l=1Bl,kw̃l,i0

������2 +

ETr
h
P2

σ2
v

Pi

j=i0+1H
∗
j diag[CA(λA)i−jek]

2Hj
i

= λ2(i−i0)E

������PN

l=1Bl,kw̃l,i0

������2 +

(1− λ)2σ2
vTr(R−1

u)
Pi

j=i0+1 ||CA(λA)i−jek||
2

Since the matrix B has positive entries between 0 and 1, the first

term of equation (15) can be ignored for large i, and we are left with

the right term in steady state. Thus, the MSD of the diffusion RLS

algorithm is:

MSDdiff
k , E||w̃k,∞||

2 = (1− λ)2σ2
vTr(R−1

u)Sk,k (15)

where Sk,k is the (k, k) element of the matrix S defined by

S = lim
i→∞

iX
j=0

λ2j(A∗)j+1C∗CAj+1
(16)

This result can be simplified for the caseA = A∗ = C. Again using

the fact that powers of A have positive elements between 0 and 1,

we can conclude that the steady state MSD is given by:

MSD
diff
k = (1− λ)2σ2

vTr(R−1
u)e∗kA

4[I − λ2A2]−1ek (17)

The steady state MSD of the global solution can be found by

choosing A = (1/N)11∗ in equation (17) and noting that A is

idempotent, so that A[I − λ2A]−1 = A/(1− λ2) to give:

MSDglobal = 1−λ
1+λ

σ2

v

N
Tr(R−1

u) (18)

This is a known result for the MSD of RLS with λ close to 1 [6].

We summarize the results of this section in the following Lemma

Lemma 1 Under assumptions 1, 2 and 3, the diffusion RLS algo-

rithm of (10) is asymptotically unbiased and its mean-square devia-

tion is given by (15).

5. SIMULATIONS

We now show simulations of the performance of the diffusion RLS

algorithm of (10), and compare it to other algorithms such as the

distributed RLS (dRLS) of [2] and the space-time diffusion (STD)

of [5].

The measurements were generated according to equation (1),

and the regressors uk,i were chosen Gaussian iid. The network had a

total of N = 20 nodes, the size of the unknown vector was M = 5,

and the noise was Gaussian with variance 0.2 for every node. To

simulate the STD of [5], Metropolis weights were used, defined as:

Cl,k =

8<: 1/max{degl, degk} l ∈ Nk, l 6= k
1−

P
l6=k Cl,k l = k

0 otherwise

(19)

where degk represents the degree of node k (i.e., the cardinality of

its closed neighborhood). For diffusion RLS, Metropolis weights

were used for C, and A was chosen such that Al,k is proportional to

the degree of node l and normalizing such that 1∗A = 1
∗. Since

STD does not account for the forgetting factor λ, we set λ = 1 for

diffusion RLS in these simulations.

Figure 2 shows the performance of the different algorithms in

terms of the MSD as a function of the number of measurements

per node, averaged over 100 experiments. The curve labeled “Lo-

cal” corresponds to the local least-squares estimates where nodes can

only access measurements and regressors of their closest neighbors.

Also shown are the curves for diffusion RLS (diffRLS) of equation

(10), STD of [5] and dRLS of [2]. We can see that diffusion RLS im-

proves the performance considerably compared to the local estimate,

and also has advantages over STD.

Figure 3 shows the MSD of different algorithms as a function

of the number of scalars communicated per node. We also observe

that diffusion RLS has important improvements over STD. That is,

in order to obtain a fixed MSD, diffusion RLS requires less commu-

nications (measured in terms of scalars transmitted) than STD, and

the performance in this sense is close to that of dRLS.

In Figure 4 we compare the theoretical results derived in Section

4.3 for the steady state MSD of diffusion RLS given by Equation

(15) and the global solution given by Equation (18), using a value of

λ = 0.9. We can see that in both cases, the simulated steady state

MSD agrees well with the theoretical results.

The algorithms were also compared using different data models,

where the time independence and identically distributed assumptions

were dropped. Figure 5 shows the performance of the algorithms

when the noise variances were different for every node (between 0.1

and 0.2), and the regressors were chosen to have shift structure, the

elements of uk,i forming a Markov process with different coeffi-

cients for every node. Again a value of λ = 1 was used. We did not

observe a significant degradation of performance by using different

data models.

6. CONCLUSIONS

We have addressed the problem of distributed estimation in sensor

networks. We have proposed a diffusion RLS algorithm that obtains

good performance without having to transmit or invert matrices, has

no topology constraints, and is robust to link failure. We have shown

mean and mean-squared convergence under ergodicity assumptions

and derived expressions for the steady state mean-squared deviation

that agree with the simulation results. We also simulated the filter

under some general conditions, always observing good performance.

Thus, diffusion RLS is a promising alternative in adaptive networks

where good performance, low complexity and low communications

are required.

7. REFERENCES

[1] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “Instrumenting the
world with wireless sensor networks,” in Proc. ICASSP, Salt Lake City,
UT, May 2001, pp. 2033–2036 vol.4.

[2] C. G. Lopes and A. H. Sayed, “Distributed processing over adaptive
networks,” in Proc. of the Adaptive Sensor Array Processing (ASAP)

Workshop, Cambridge, MA, June 2006.

[3] A. H. Sayed and C. G. Lopes, “Distributed recursive least-squares strate-
gies over adaptive networks,” in Proc. 40th Asilomar Conference on

Signals, Systems and Computers, Pacific Grove, CA, October 2006.

[4] A. H. Sayed and C. G. Lopes, “Adaptive processing over distributed
networks,” to appear in IEICE Transactions, 2007.

[5] L. Xiao, S. Boyd, and S. Lall, “A space-time diffusion scheme for peer-
to-peer least-squares estimation,” in Proc IPSN, Nashville, TN, April
2006, pp. 168–176.

[6] A. H. Sayed, Fundamentals of Adaptive Filtering, Wiley, NJ, 2003.

[7] C. G. Lopes and A. H. Sayed, “Incremental adaptive strategies over dis-
tributed networks,” to appear in IEEE Transactions on Signal Processing,
2007.

Local

STD [5]

dRLS [2]

diffRLS (10)

403020

10

10

5

0

0

-5

-10

-15

-20

-25

-30

-35

M
S

D
(d

B
)

Number of measurements per node

Fig. 2. MSD curves of different algorithms, λ = 1.

STD [5]

dRLS [2]

diffRLS (10)

20015010050

10

5

0

-5

-10

-15

-20

-25
M

S
D

(d
B

)

Number of scalars communicated per node

Fig. 3. MSD curves of different algorithms as a function of number

of scalars communicated per node, λ = 1.

15 25 35

dRLS [2]

diffRLS- Theor. SS MSD (15)

diffRLS (10)

dRLS- Theor. SS MSD (18)

40302010

5

5

0

0

-5

-10

-15

-20

-25

-30

M
S

D
(d

B
)

Number of measurements per node

Fig. 4. Theoretical and simulated MSD curves, λ = 0.9.

Local

STD [5]

dRLS [2]

diffRLS (10)

403020

10

10

5

0

0

-5

-10

-15

-20

-25

-30

M
S

D
(d

B
)

Number of measurements per node

Fig. 5. MSD curves of different algorithms, λ = 1.

