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ABSTRACT 
Key to the design of human-machine gesture interface 
applications is the ability of the machine to quickly and 
efficiently identify and track the hand movements of its user. In a 
wearable computer system equipped with head-mounted cameras, 
this task is extremely difficult due to the uncertain camera motion 
caused by the user's head movement, the user standing still then 
randomly walking, and the user's hand or pointing finger abruptly 
changing directions at variable speeds. This paper presents a 
tracking methodology based on a robust state-space estimation 
algorithm, which attempts to control the influence of uncertain 
environment conditions on the system's performance by adapting 
the tracking model to compensate for the uncertainties inherent in 
the data. Our system tracks a user's pointing gesture from a single 
head mounted camera, to allow the user to encircle an object of 
interest, thereby coarsely segmenting the object. The snapshot of 
the object is then passed to a recognition engine for identification, 
and retrieval of any pre-stored information regarding the object. A 
comparison of our robust tracker against a plain Kalman tracker 
showed a 15% improvement in the estimated position error, and 
exhibited a faster response time. 

Categories and Subject Descriptors 
Gesture Interfaces, Kalman Filter Tracking, Robust Estimation. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Robust Estimation, Gesture Interfaces, Kalman Filter Tracking. 

1. INTRODUCTION 
A recent computing trend is wearable computing for the design of 
intelligent assistants to provide location-aware information access 
that can help users more efficiently accomplish their tasks. Thus 
imagine a user driving by a hotel or a restaurant while on a 
foreign trip. By pointing at either establishment, the machine 

would be able to convey to the driver recommendations about the 
hotel or the restaurant menu and opening hours [10]. In another 
scenario, while working on a digital desktop system [1],[9], the 
user's fingertip could be made to act as a mouse and used to 
'point to', 'click1 and 'drag' virtual objects. Computing and sensing 
in such environments must be reliable, persistent (always remains 
on), easy to interact with, transparent (user does not know it is 
there) and configured to support different needs and complexities. 
The success of such systems will rely heavily upon the ability to 
visually track and recognize the user’s hand and pointing gestures 
in real-time. 
 
A number of vision-based pointing gesture tracking algorithms 
has been proposed in the literature. These algorithms extract color 
segmentations, 3D stereo segmentations, and shape information 
from the machine's camera view in order to identify the user's 
hand and fingertip position. The algorithms, however, are 
complex and computationally intensive, and tend to slow down 
the response of the machine to a great extent. Some recent 
computer vision approaches for tracking applications speed up 
their computation time by reducing the image search area into a 
smaller window centered around the last known position of the 
moving object [1], [10]. The main drawback of these methods is 
that when the object moves faster than the frame capture rate, the 
object will move out of the window range forcing the algorithm to 
reset the image search area to the full view in order to recover the 
position of the object. The repeated reduction and expansion of 
the image search area slows down the system performance 
considerably. Some tracking solutions have attempted an 
improvement by gradually varying the search window's size 
according to the moving object speed [1]. The faster the object 
moves, the larger the search window becomes. Therefore, if the 
object is moving fast, the search window is large and the 
computation time for the vision algorithm increases. More 
advanced systems, such as in [5],[9], use state-space estimation 
techniques to center the smaller search window around a future 
predicted position of the user's fingertip, rather than around its 
current position. In this way, as the moving object speed 
increases, the predicted window position will accompany the 
speeding object keeping it inside the window's view sight. The 
window size thus remains small and centered around the object of 
interest regardless of its speed. This in turn keeps the memory 
allocations at a minimum, thus improving the system's response 
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time. However, if the object abruptly changes its movement 
patterns (which introduces modeling uncertainties), then such 
systems tend to break down, and the user's hand is quickly lost 
from their search window view. Our robust estimation algorithm 
[3] is designed to model data uncertainties, such as those created 
by the user's random egomotion, and is thus more effective in 
keeping the user's hand inside the small search window, thereby 
speeding up the system's response time. 

Frame #  2  to  nFrame #  2  to  n

 

2. ROBUST FINGERTIP TRACKER 
We have designed at HRL a wearable computer system called 
“Snap&Tell”, see [6], which enables a user to specify, segment, 
and recognize objects of interest, such as landmarks, by simply 
pointing at and encircling them with the user's fingertip. The  
“Snap&Tell” system accepts input from a color pencil camera, 
and segments the input video stream based on color. The color 
segmented image is then fed into a skin/non-skin discrimination 
algorithm to detect skin tones and extract the user's hand. Once 
the hand is extracted, shape and curvature analysis is used to 
determine the coordinate position of the fingertip.  
 
To perform the tracking of the fingertip position in real-time, a 
robust state-space tracker is used to predict the future user's 
fingertip position. The predicted position coordinates are then 
used to center a small image search window around the expected 
fingertip position occurring in the next video frame. Accurate 
prediction of the fingertip region of interest speeds up the 
response time of the system; making it more memory and 
computationally efficient. At the conclusion of the pointing 
gesture, the algorithm determines if an object has been selected by 
the user, and extracts it from the scene by cropping the region of 
interest. The segmented object is then classified, and any pre-
stored information associated with the object is made available to 
the user. A system block diagram for “Snap&Tell” is shown in 
Figure 1. 
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Figure 1. Block diagram for the "Snap&Tell" wearable 
computer interface. 

2.1 Skin/Non-Skin Color Segmentation 
To determine the skin-like regions in the current frame, we first 
perform a color segmentation based on the fast and robust mean 
shift algorithm [2]. By using the mean shift algorithm the number 
of dominant colors can be determined automatically, unlike the k-
means clustering method where the initial number of classes must 
be chosen. Here, the intensity distribution of each color 
component in the current frame is viewed as a probability density 
function. The mean shift vector is the difference between the 
mean of the probability function on a local area and the center of 
this region. Mathematically, the mean shift vector associated with 
a region  centered on xS r xr  can be written as: 

                   

∫
∫

∈

∈→ −
=

x

x

Sy

Sy

ydyp

ydxyyp
x

r

r

r

r

rr

rrrr
r

)(

))((
)(V                            (1) 

where )(⋅p is the probability density function. As shown in (1), 
the mean shift vector is proportional to the gradient of the 
probability density )( xp r

∇ at the point it is computed, and 

reciprocal to the probability density )( xp r
, such that 
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where c is a constant. Since the mean shift vector is along the 
direction of the probability density function maximum, we can 
exploit this property to find the actual location of the density 
maximum by searching for the mode of the density. One 
dominant color can be located by moving search windows in the 
color space using the mean shift vector iteratively. After 
removing all color inside the converged search window, one can 
repeat the mean shift algorithm again to locate the second 
dominant color. This process is repeated several times to identify 
a few major dominant colors which segment the image into like-
color regions. The dominant colors of the current frame are used 
as the initial guess of dominant colors in the next frame, thus 
speeding up the computational time  (adjacent frames are usually 
similar). After segmenting the current frame into homogeneous 
regions, we determine whether each region is skin-like by 
considering the mean hue and saturation values and geometric 
properties of the region. This region-based skin detection 
procedure is more robust to varying illumination conditions than 
pixel-based approaches [4],[11]. 
 

2.2 Shape Analysis 
Once the skin-like regions have been segmented out, we clean up 
this image by applying morphological  operations to minimize the 
number of artifacts being picked up as having skin-like color 
properties. Then the user's hand orientation with respect to the x-
axis (i.e. pointing direction) is derived using central 2nd order 
moments, and the fingertip position is determined as the point of 
maximum curvature along the contour of the hand. 
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2.3 Robust State-Space Fingertip Tracking 
To achieve computational efficiency, memory savings and real-
time tracking, a robust state-space estimation algorithm is used to 
reduce the search area to a smaller search window centered 
around predictions of the fingertip position. The need for robust 
methods arises from the desire to control the influence of 
uncertain environment conditions on system performance 
including, for example, the effect of random variations in object 
speed and motion characteristics. A first step towards this 
objective is to formulate a robust state-space model that describes 
the user's fingertip motion in the presence of uncertain 
environments. Thus let T denote the frame capture rate for the 
wearable computer system (for our system 1/15 seconds/frame). 
Let also { αx,i , αy,i } denote the fingertip accelerations along the x 
and y directions (measured in pixels per second2), and let { vx,i , 
vy,i } denote the speeds along these same directions during the ith 
frame (measured in pixels/second). Then one could approximate 
the present fingertip position in the ith  frame { xi , yi } in terms of 
the previous frame fingertip pixel coordinates { xi-1 , yi-1 } and the 
pixel-shift per frame estimated  by  {

2,
2

11
TT ii −− αv } such as, 
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2
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These equations motivate the following state-space model with 
state vector si and measurement vector zi.  
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where the process noise ui and the measurement noise vi are 
assumed to be uncorrelated, with zero-mean white gaussian 
distributions and corresponding covariance matrices Q and R. The 
entries of these covariance matrices are chosen for optimality by 
testing the whiteness of the resulting innovations process of the 
Kalman filter (following the method of [7]). Our chosen values 
for R and Q meet a 95% confidence whiteness test [3].  In 
addition, the measurement vector zi consists of the centered pixel 
coordinates that are provided by the vision algorithm locating the 
fingertip position. These coordinates can therefore be regarded as 
noisy measurements of the actual pixel coordinates { xi, yi }. By 
using the assumed state-space mode (7)-(9), one can then proceed 
to employ a variety of estimation techniques to 'clean' zi from 
measurement noise and to predict future movements of the {xi, yi}  
fingertip coordinates. One such technique is the Kalman filter, 
which provides the optimal linear least-mean-squares (l.l.m.s.) 
estimate of the state variable given prior measurements. 
 
The Kalman filtering formulation, however, assumes that the 
underlying model parameters {F,G,H,R,Q} are accurate. When 
this assumption is violated, the performance of the filter can 
deteriorate and one is therefore motivated to consider robust 
variants; robust in the sense that they attempt to limit, in certain 
ways, the effect of model uncertainties on the overall filter 
performance. One way to model uncertainties is to treat the given 
parameters {F,G} as nominal values and to assume that the actual 
values lie within a certain set around them. Thus, consider 
replacing (8) with a robust state-space model, such as 

                    iiiii uGGsFFs )()(1 δδ +++=+               (17) 

 where the perturbations in {F,G} are modeled as  

                       [ ] [ ]gfiii EEMGF ∆=δδ                   (18) 

for some matrices {M, Ef, Eg,} and for an arbitrary contraction  ∆i,  
|| ∆i || ≤  1. For generality, one could allow the quantities {M, Ef,, 
Eg} to vary with time as well. This is useful in the case when our 
model changes dramatically in a particular time instance, such as 
when the user starts walking or moves his/her head abruptly. The 
model (18) allows the designer to restrict the sources of 
uncertainties to a certain range space (defined by the matrix M), 
and to assign different levels of distortion by selecting the entries 
of {Ef,, Eg,} appropriately, see [3],[8]. For the wearable computer 
system, there are several sources of uncertainties that may 
interfere with the accuracy of the assumed state-space model. The 
uncertainties can be due to the camera moving along with the 
user's head motion, changes in lighting conditions, the 
background and object moving independently from each other, or 
to the user's pointing finger abruptly changing directions at 
variable speeds and accelerations. All these factors changing 
constantly in time create different conditions of uncertainties. The 
authors are currently investigating more complex adaptive models 
for modeling the uncertainties associated with tracking humans 
for surveillance, monitoring and interfacing applications.  
 

Let Π0  be a chosen positive definite weighting matrix. Usually 

Π0   is chosen as the variance matrix of ,  Π0s 0  = E . }{ 00
Tss
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Let  stand for an estimate of . Then the following equations 

describe a robust algorithm for determining  (for details see 
[8]): 
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The estimates { , }, and the predicted fingertip coordinates 

for each frame, can be obtained by recursively iterating between 

steps 2 and 3. Note that for the case when , steps 2 & 3 are 
reduced to the standard time and measurement update Kalman 
equations. Moreover, P

iŝ iis |ˆ

0=
∧

iλ

i and Pi|i will have the interpretation of 
error covariance matrices, 
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3. EXPERIMENTAL RESULTS 
Our choice for the state matrix F gives higher weight to the 
previous fingertip coordinates, while downplaying the estimates 
for acceleration and velocity. This model is fairly reasonable in 
situations when the user is standing still and pointing at an object, 
where the velocity is constant and acceleration is nonexistent. 
However, when the user is actively moving, uncertainties arise 
mainly in the acceleration and velocity models. Empirical 
evidence suggests the following choices for {M, Ef, Eg}, which 
account for the velocity and acceleration instabilities in a 
wearable system: 
 

          [ ]TM 125.0125.25.025.05.05.0=  

        [ ]9.09.03.03.000=gE  

          [ ]221100=fE                                       

 
We applied this perturbation model along with our robust 
estimation algorithm to the task of tracking a typical fingertip 
trajectory of a user encircling an object of interest. We display a 
single frame of the results in Figure 2.  
 
 
 Full camera view Reduced search window

 
 
 
 
 

Figure 2. Successfully tracked fingertip using a robust state-
space Kalman tracker. 
 
Here we can see that our robust tracker accurately predicts the 
fingertip position, since the reduced search window is centered 

 4



 

around the previously predicted fingertip coordinates, which 
nearly overlaps the actual present fingertip position. The search 
window size was chosen to be at least twice the size of the 
maximum estimation errors in the x and y directions, of our robust 
tracker previously applied to a training sequence representative of 
a typical pointing finger trajectory. Therefore, the more accurate 
the tracker is, the smaller the search window needed, and the 
faster the overall system response time will be. In this particular 
simulation, the response time of our overall system was 68% 
faster than the response obtained by a system that uses a full 
camera view to track the user's fingertip, and 23% faster when 
compared with systems such as [1] and [10] that use a small 
search window centered around the previous fingertip position 
(rather than the predicted future position). Furthermore, a 
comparison of the MSE results between the plain Kalman tracker, 
as in [5], and the robust Kalman tracker [3], showed over 15% 
improvement in the estimation error and response time using the 
robust tracker. These performance results are encouraging and 
merit future exploration. Figure 3 shows the fingertip tracking 
results over a sequence of frames, where the last frame shows the 
fingertip track and the extracted object of interest. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Real-time fingertip tracking using our robust 
tracker.  

                                          

4. CONCLUDING REMARKS 
The authors are currently investigating more complex adaptive 
models for modeling the uncertainties associated with user’s head 
motion, walking, and changes in lighting conditions. One example 
is when the user starts walking while pointing at an object of 
interest. In this scenario, the uncertainties iFδ  and iGδ  would 
have larger values than when the user is standing still. Therefore, 
when our system would detect constant movement in the camera 
view (hinting walking motion), we would switch our robust 
tracker’s perturbation model to the “walking” uncertainty model. 
Another situation is when the user moves his head abruptly, 
changing the camera view away from the user’s hand and object 
of interest. At this point, our system would detect a complete 

change in background and it would switch our tracker to 

prediction without measurement updates (i.e., ) , until 
the camera view becomes stable again. Then we would return to 
our robust tracker with the “user-standing still” uncertainty 
model, and resume tracking the user’s fingertip. In addition, we 
are exploring the use of this method towards robust tracking of 
people for purposes of surveillance and scene monitoring. 

iii sFs
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