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ABSTRACT

This paper develops a framework for the mean-square
analysis of adaptive filters with general data nonlinear-
ities. The approach relies on energy conservation ar-
guments and is carried out without restrictions on the
input color or statistics. Among other results, the pa-
per characterizes the learning behavior of adaptive fil-
ters with diagonal matrix nonlinearities. It also pro-
vides closed form expressions for the steady-state per-
formance, and necessary and sufficient conditions for
mean-square stability. This study encompasses earlier
results and addresses some open issues. A companion
article studies the case of adaptive filters with error non-
linearities.

1. INTRODUCTION

Adaptive filters are, by design, time-variant and nonlin-
ear systems that adapt to variations in signal statistics
and that learn from their interactions with the environ-
ment. The success of their learning mechanism can be
measured in terms of how fast they adapt to changes in
the signal characteristics and how well they can learn
given sufficient time.

There have been extensive works in the literature
on the performance of adaptive filters with many inge-
nious results and approaches (e.g., [1]-[9]). However,
it is generally observed that most of these works study
individual algorithms separately. This is because differ-
ent adaptive schemes have different nonlinear update
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equations, and the particularities of each case tend to
require different arguments and assumptions.

In this paper and the companion paper [10], we pro-
vide a unified approach to the mean-square analysis of
adaptive filtering algorithms. The approach is based on
studying the energy flow through each iteration of an
adaptive filter, and it relies on a fundamental energy
conservation relation (8) that holds for a large class of
adaptive filters. The unweighted version of this rela-
tion was originally developed in [11]-[12] in the context
of robustness analysis of adaptive filters within a de-
terministic framework. It has since then been used in
[13, 14] as a convenient tool for studying the steady-
state performance of adaptive filters.

2. DATA MODEL AND ALGORITHMS

Consider noisy measurements {d(i)} that arise from the
system identification model

d(1) = w;w’ + v(i) (1)

where w? is an unknown column vector of size M that
we wish to estimate, v(i¢) accounts for measurement
noise and modeling errors, and u; denotes a row input
(regressor) vector. In this paper and the companion
paper [10] we study adaptive filters of the form

wip1 = w; + pfle())|Hwlu], i >0 (2)
where w; is an estimate for w® at iteration ¢, y is the

step-size, f[e(%)] is a generic error nonlinearity, H[u;] is
a generic data nonlinearity, and

e(i) = d(i) —ww; = ww® —ww; +v(@) (3)

is the estimation error. We confine our attention here to
updates that are linear in the error, i.e., we set f[e(i)] =
e(i), while [10] studies the dual problem of linear data
updates (for which H[u;] = I).



3. PRELIMINARIES: DEFINITIONS AND
NOTATION

Mean square analysis of (2)-(3) is best carried out in
terms of the normalized regressor U; = u;H [u;] and
the following error quantities:

- A,

w; =W —w;
N A -
(z)=u,-2wi

N A -
(Z) = uiEwiH

weight-error vector
weighted a priori error

weighted a posteriori error.

where X is a weighting matrix. We reserve special nota-

tion for the case B = I : e, (i) = el (i) and e, (i) = el ().

The defining relations (2)-(3) can now be rewritten in
terms of these quantities as

Wi = Wi — pfle@)]a; (4)
e(i) = eq(i)+ (i) (5)

We will also find it convenient to introduce the fol-
lowing notation for the weighted sum of squares:

l@il|% 2 @ Sw;

For one reason, this notation is convenient because it
enables us to transform many operations on w; into
operations on the norm subscript, as demonstrated by
the following properties:

1) Superposition.
ar |33, + azll@ill3;, = l|l@il2 5, 0,5,
2) Polarization.
(WB1®;) (W) = [ @335, 7,5,  (6)
3) Independence. If @; and u; are independent,

E I:”’l'l’i||221u;,1"ui22] =E [||ﬁ’i||§]1E[uiTu,-]22]

4) Linear transformation. ||A1'1),||2E = ”ﬂ’i”ilTEA
5) Blindness to asymmetry.
_ _ _ 2
ils = il = 4] 03 a

6) Notational convention. ||111,-||3ec(21) = ||7."uz||221

With the above notation and definitions at hand,
we can easily derive a relation between the energies of

{W;, Wit1, eg: (1), eg: (1)} To this end, premultiply both
sides of (4) by u; H[u;]X to get

w Hw| Wi = wH[w]|S®; — pfe()]uHu)Ta]

Using the defining expressions for 4;, eg), e,(,'), and solv-
ing for pfle(:)], we get

. eHE(,') efz(z’)
wIle®l = fig, ~ T @)

We now use (7) to eliminate uf[e(7)] from (4) and com-
pute the ¥-weighted norm of both sides of the resulting
expression to get

1
i1 1% = ‘w - (0 - ) w
5 >
We can equivalently write after some algebra
L eERel eS|
lwivills + TR S w5 + T (8)

No assumptions or approximations were used to derive
this energy relation, which applies to any adaptation
algorithm of the form (2)-(3). Relation (8) will be the
starting point for much of the subsequent discussion of
this paper and of the companion paper [10].

Remark. This relation plays a role similar to Snell’s
law in physics, which governs the propagation of a ray
from one medium to another with different refraction
indices. To see this, consider for simplicity the case
¥ =TI and H(u;) = I. Let {6;,0;11} denote the angles
between the regressor u; and the weight-error vectors
{@;,®W;+1}- Then (8) reduces to

[[w:]” sin*(6:) = |31l sin® (Os41)

which suggests that {||@;||, ||®@;:+1]|} play the role of re-
fraction indices and u; plays the role of an incident ray.

4. ADAPTIVE FILTERS WITH DATA
NONLINEARITIES

In the remainder of this paper, we concentrate on adap-
tive filters with updates that are nonlinear in the data
only, i.e. we set f[e(i)] = e(7). Table 1 lists some com-
mon examples of data nonlinearities. The dual case
when the update is nonlinear in the error but linear in
the data is considered in the second part of this work
[10].

In our analysis the following assumptions are
needed:

AN The noise v(2) is i.i.d. and independent of the input.

AT The sequence of regressors {u;} is independent with
zero mean and autocorrelation matrix R.



[ ALcORITHM | DATA NONLINEARITIES H[u] |
LMS I
NLMS !
3
e-NLMS —t =T
(€+|)|ui” (wipg)
. . sgn(uiy sgn(u;
Sign regressor d1ag< T )
Variable step diag(p1, 2, .- - 5 4ar)
Power normalized diag (p1(7),p2(3), ... ,pm (7))
LMS pe(i+1) = Bpi (i) + (1 — B)uy,|?

Notice that we impose no restriction on the input color
or statistics.

To perform mean-square analysis, we start with (7),
which in the linear error case f[e(i)] = (%) reads

es (i) = el (i) — pe()|[wl -

Substituting this expression into the energy relation (8)
leads to

@i41]13; = ll@ill3; — 2uel> ()e(@) + p2[wil15e2G) (9)

By incorporating (5) and assumption AN, (9) becomes
under expectation

B[l l}] = B [l:%] - 208 [ef > (i)ea(®)] 10)
+2E (2@l ]+ 1202 [wi)

Using the weighted-norm properties, we can rewrite the
estimation error expectations in (10) as some weighted
norms of w; :

2eq(i)eB (i) = (11)

(12)

_ 2
”wi”ug"mE-i-Eﬁ}"ui

il
il i)

egHﬁz’”%} 221“

Substituting (11)-(12) into (10) and using assumption
Al yields

E [l %] = E [llail] + w°E

_ 2
Nwill
E|y; IIuiIIEW

1 (103l 15 S| + 1202 [l

or, more compactly,

E[lwiil}] = B [loilyy] + w202E [ml}]  (13)
where
¥ =% - u3E[u]u] - E[u]w] =
+ Bl mlku]  (19)

This recursion represents a linear relation between the
elements of ¥ and ¥'. This can be further clarified by
applying the vec operation to both sides of (14)

vec(E') = vec(Z) — pvec(ZE [ﬁ’fui}) — pvec(E [u’fﬁi] 3)
+u’vec(Eluj |[ W5 us)) (15)

and using the Kronecker product notation to write

wee (35 (5w = (B[] oTu)o (16
vec (E [u]w;| ) = (In®E [ufw])o  (17)
and
vee (E [uf [@[1u] ) = B [vec (uf [m/3uw)]
= E [vec (u] u;Z1; u;)]
- Bhlueus]e  (8)
where
o =vec(X) and o' = vec(¥')
Substituting (16)-(18) into (15) finally yields
o' =Fo (19)

where the coefficient matrix F is of size M2 x M? and
is given by
F a Iy — puE [u?ﬁi] Iy — pIyQFE [u?ﬁi]
+ p*E [ulw;®u] 0]
or
F=E[(Iy - pu]w)® (Iy —pujw)]  (20)

Therefore, in terms of the vec notation, (13) takes the
form

~ 2 ~ 112 —
E (lliss11}] = B [ll@illk, | +#202 B [I]12]

(21)

This recursion is not self-contained, i.e., it can not
be propagated in time. We can resolve this issue by
expanding the dimension of the recursion and using
the Caley-Hamilton theorem to construct the following
state-space model (which characterizes the dynamical
behavior of adaptive filters with data nonlinearities):

‘ Wip1 = AW; + p2Y ‘ (22)
where
E [l | A
| E[l@ile] oo | F [lwill30]

o E[ 5. 112 ]
E [l 3021 [T



and
0 1 0 0 0
0 0 1 0 0
A= :
0 0 0 0 1

—Pm2-2 —Pm2-1

where the {p;} denote the coefficients of the character-
istic polynomial of F':

p(z) 2 det (zI — F)
2 2
= pot+pz+--+pppa M
We are now ready to construct the learning curves and
to perform stability and steady-state analysis.
4.1. Learning Curves

The learning curve of an adaptive filter describes the
evolution of the variance E[e2(i)] as a function of time.
By the polarization property, we have

Ele; ()] = El(uw;)?] = E[||wi[%]

which suggests that the learning curve can be evaluated
by computing E[||w;||%] for each i. This task can be
accomplished recursively from relation (21) by iterating
it and setting o = vec(R) (which we shall denote by 7).
This yields

El@wll] = E[iolfp,] +
That is,

B [[[di1[7] = E [|lfo

a) Fuloghi o (23)

where the vector a; and the scalar b; satisfy the recur-
sions

a; = Faz-_l, a_1 =7 (24)

b= b+ B[], ba=0 (25)

Qai—1

We thus have an expression for ||w;||2 in terms of the
initial weight-error vector wqo. Using the superposition
property of weighted norms, and the above definitions
for {a;,b;}, it is easy to show that

B [loia 2] = E [lil?] + B [ll@ols e _ry.]
+uP oy B ([l ]

In other words,

E[e(i+1)] = E[2(0)] + E [ |bo|

2
Fi(F-I)r (26)
+u2 oy B |95, ]

5. STABILITY AND STEADY-STATE
ANALYSIS

Starting from (21) or (22), it is easy to characterize
stability and steady-state behavior.

5.1. Stability

By inspecting (21) or (22), it becomes clear that the
recursion is stable if, and only if, the matrix F is stable.
[The matrix F is actually positive-definite because it is
(the expectation of) a Kronecker product of a matrix
with itself.] Thus, for stability, the step size p should
be chosen such that A(F) < 1. Equivalently, by writing
Fas F=1—puA + y?B with

A = IQE[u; + E[uw] QI (27)

we can show that F' (and hence the filter) is stable if
and only if

y (29)

O<M<m

5.2. Steady-State Behavior

Once filter stability has been guaranteed, we can pro-
ceed to derive expressions for the steady-state value of
the mean-square error (MSE) and the mean-square de-
viation (MSD). To this end, note that in steady-state,
we have that for any vector o

tim B [|lissa]2] = im 2 [l
i—00 1—00

Thus, in the limit, (21) takes the form
. _ 2 . -2 T 2 2 =12
Tim E [|[@]}] - lim B [ldoill},] = lim 4202 [|m)2]
By incorporating the superposition property, and the
fact that the input is stationary, we can alternatively

write,

. ~ 2 =
lim B [||wi||(I—F)a] = poy B [|[ll7]

or, upon replacing o by (I — F) 1o,

limisoo B |[3ll5] = 12028 [[Wl77_pyr, ]| (30)




This gives an expression for the steady-state error en-
ergy lim; ,oc F [||'[vZ ||i] for any weight vector o. In par-
ticular, to evaluate the mean-square deviation (MSD),

MSD £ lim F [|||]

we set o = vec(I) in (30) to get

MSD = 1202 B [l )1 yeen (31)

Similarly, to calculate the mean-square error (MSE)

A 2,7 _ 1s ~ 12
MSE £ lim £ [¢2(i)] = lim £ [||w,||R]

1—00

we replace o in (30) by vec(R) which yields

MSE = 4202 F [||ﬁ,~||g,_F)_1vec(R)] (32)

6. CONCLUSION

This paper is the first part of a unified study on mean-
square analysis of adaptive filtering algorithms. The fo-
cus here was on the class of adaptive algorithms employ-
ing a general data nonlinearity. Qur approach, which is
based on energy conservation arguments, does not im-
pose restrictions on the color or statistics of the input
sequence. Expressions for the steady-state mean-square
performance, and necessary and sufficient conditions for
mean-square stability, were derived. In the companion
article [10], we extend the discussion to the more de-
manding case of adaptive filters with error nonlineari-
ties.
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