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ABSTRACT

Most adaptive filters are inherently nonlinear and time vari-
ant systems. The nonlinearities in the update equations of
these filters usually lead to significant difficulties in the study
of their performance. This paper develops a new feedback
approach to the steady-state and tracking analyses of adap-
tive algorithms that bypasses many of the difficulties en-
countered in traditional approaches. In this new formula-
tion, we not only re-derive several earlier results in the lit-
erature, but we often do so under weaker assumptions, in
a considerably more compact way, and we also obtain new
results.

1. INTRODUCTION

This paper develops a new approach to the analysis of the
steady-state performance of adaptive schemes. The approach
is based on showing how a generic adaptive filter can be
represented as a cascade of elementary sections, with each
section consisting of a lossless system in the feedforward
path and a feedback interconnection. By studying the en-
ergy flow through the cascade, we are able to establish a
fundamental error variance relation. This relation has sev-
eral ramifications, one of which is in the context of steady-
state and tracking analyses, as we show in this paper.1

Thus consider noisy measurements
���������
	

that arise from
the linear model

����������������������������
(1)

where
� �

is an unknown column vector that we wish to es-
timate,

�������
accounts for measurement noise and modeling

errors, and
� �

denotes a nonzero row input (regressor) vec-
tor. Many adaptive algorithms have been developed in the

1This work was supported in part by the National Science Foundation
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Table 1: Examples for ��� ����� .
ALGORITHM � � �����

LMS  �����
NLMS  �����"!$#%� � #%&
LMF  (' �����

LMMN )* �����+�,�.-0/ ) �  (' �����
SA 1.24365+7  �����98

CMA1-2 7 :<;<=(>
�@?A =(>
�@? A /CBD�����98

CMA2-2
BE����� 7 : & /GF BE�����HF &I8

literature for the estimation of
� �

in different contexts (e.g.,
echo cancelation, system identification, blind and non-blind
channel equalization). In this paper, we focus on the follow-
ing general class of algorithms:�J�LK ; � �J����MN�PO� � � ������� (2)

where
�J�

is an estimate for
� �

at iteration
�
,
M

is the step-
size, and � � ����� denotes a generic scalar function of the quan-
tities

�*�P���
�J�.�"�������
	
. Usually, � � ����� is a (linear or nonlinear)

function of the so-called output estimation error, defined by

 ������G�������P/Q� � � ��R
(3)

Different choices for � � ����� result in different adaptive algo-
rithms. For example, Tab. 1 defines � � ����� for many famous
special cases of (2), for both blind and non-blind modes of
adaptation. In the table, ) , :S; , and : & are constants, andBE��������T�U�J�

is the adaptive filter output.
An important performance measure for an adaptive fil-

ter is its steady-state mean-square-error (MSE), which is
defined as

VXWEY �[Z 2L\�L]S^`_ F  �����HF & � Z 24\�4]a^`_ F �������b�����dc�X�"F & �
where

c�J���e� � /Q�J�
denotes the weight error vector. Un-

der the often realistic assumption that (see, e.g., [1]–[4]):



A.1 The noise sequence
�*�������
	

is iid and statistically
independent of the regressor sequence

�*� � 	
,

we find that the MSE is equivalently given by
V W+Y � � &� � Z 24\�4]a^ _ F � � c� � F & R

(4)

Now the standard way for evaluating (4), and which dom-
inates most derivations in the literature, is the following.
First, one assumes, in addition to A.1, that the regression
vector

� �
is independent of

c� �
. Then the above MSE be-

comes
VXWEY � � &� � Z 24\�4]a^���� ���	� �9���

(5)

where
� �

denotes the weight error covariance matrix,
� � �

_ c� � c� O�
, and

� � _ � O� � � is the input covariance matrix.
As is evident from (5), this method of computation requires
the determination of the steady-state value of

�J�
, say

� ^
.

Finding
� ^

is a burden, especially for adaptive schemes
with nonlinear update equations, which is the case for most
of the algorithms listed in Tab. 1. This explains why the
steady-state analysis of these algorithms in the literature is
more advanced in some cases than in others. It also ex-
plains why such analyses have often been carried out sep-
arately for each individual algorithm and under varied as-
sumptions. However, it would be very useful to develop a
unifying framework that can handle a variety of algorithms.
This paper takes an important step in this direction. More
specifically, the following are the novel contributions of this
work:

1. We develop a new feedback approach for evaluating
the MSE of a large class of adaptive schemes. This
approach distinguishes itself from earlier approaches
in that it bypasses the need for working directly with� �

or with its limiting value.

2. The feedback approach not only allows us to re-derive
several earlier results in literature in a unified manner,
but it does so with considerably less effort and often
under weaker assumptions.

3. The approach also allows us to derive several new
results, especially for adaptive filters with nonlinear
updates for which approaches that require

�J�
are not

easily applicable.

4. The approach further establishes the significant con-
clusion that the tracking analysis of adaptive schemes
can be obtained almost by inspection from the results
in the stationary case. In contrast, analyses for both
the stationary and non-stationary cases have always
been carried out separately in the literature.

2. FUNDAMENTAL ENERGY RELATION

We start by noting that with any adaptive scheme we can
associate the following so-called a-priori and a-posteriori
estimation errors,

 �
 ������,��� c�J�P�  � ��������T� c�J�@K ; R
Using the data model (1), it is easy to see that the errors�  ����� �  �
 �����
	 are related via  �������  �
 �����T� �D�����

. If we fur-
ther subtract

� �
from both sides of (2) and multiply by

��
from the left, we also find that the errors

�  � ����� �  
 ����� �  �����
	
are related via:

 � ����� �  
 �����P/
M

�M����� � � ������� (6)

where we defined, for compactness,
�M����� � -(! #%� � #I&

. Sub-
stituting (6) into (2), we obtain the update relation

c� �LK ; � c� � / �M������� O� 7  
 �����P/  � ������8 R (7)

By evaluating the energies of both sides of this equation we
obtain [5, 6]
#Pc� �LK ; # & � �M�����IF  
 �����IF & � # c� � # & � �M�����HF  � �����IF & R

(8)

This energy conservation relation holds for all adaptive al-
gorithms whose recursions are of the form given by (2).
No approximations or assumptions are needed to establish
(8); it is an exact relation that shows how the energies of
the weight error vectors at two successive time instants are
related to the energies of the a-priori and a-posteriori esti-
mation errors. The relation also has an interesting system-
theoretic interpretation. It establishes that the mapping from���������� ���� �"!"#%$&� ��!(' to

�)����+*-,.�/� ���� �"!"#/01� �"!(' is energy preserv-
ing (or lossless). Furthermore, combining (8) with (6), we
see that both relations establish the existence of the feed-
back configuration shown in Fig. 1, where 2 denotes a loss-
less map and 314 ; denotes the unit delay operator. [The vari-
able 5 � that appears in the figure should be set to zero at this
first part of the paper. It will be nonzero when we discuss
later the tracking performance of an adaptive filter. We use
the same figure for both cases to emphasize that they will
only differ by one additional disturbance represented by 5 � .]
Relevance to Steady-State Performance Analysis

As mentioned in the introduction, relation (8) has sev-
eral ramifications. It was used in [5, 6] (and in some of the
references therein) to study the robustness and 6 & / stability
of adaptive filters. Here we show its significance to steady-
state analysis.

Recall that we are interested in evaluating the MSE of
an adaptive filter once it reaches steady-state. To do so, we
simply note that _ #c�J�@K ; # & � _ #�c�J�
# & in steady-state, so
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Figure 1: Lossless mapping and a feedback loop.

that by taking expectations of both sides of (8) we obtain
the equality

_ �M�����IF  
 �����IF & � _ �M�����IF  � �����IF & R
Using (6), the above collapses to the following fundamental
error variance relation in terms of

�  
 ����� �"�������"	 only (recall
that  ������  �
 �����+���D�����

):

_ �M�����HF  �
 �����HF & � _ �M����������  �
 �����P/
M

�M����� � � ����������
& R

(9)

This equation can now be solved for the steady-state excess
mean-square-error (EMSE):����[Z 2L\�L]S^`_ F  �
 �����HF & R
Observe from (4) that the desired MSE is given by

V WEY �
� &� � �

, so that finding
�

is equivalent to finding the MSE.
Moreover, observe again that (9) is an exact relation that
holds without any approximations or assumptions (except
for the assumption that the filter is in steady-state).

The procedure of finding the EMSE through (9) com-
pletely avoids the need for evaluating _ # c� ^ #%& . This is be-
cause in steady-state, and in view of the energy-preserving
relation (8), the effect of the weight error variance is can-
celed out!

3. STEADY-STATE ANALYSIS

We now apply the above general procedure to various adap-
tive algorithms from Tab. 1. Due to space limitations, we
omit some of the details and only highlight the main steps
in the arguments. The reader will soon realize the conve-
nience of working with (9).

3.1. The LMS Algorithm

For LMS we have � � ������  ������  
 �����I�S������� . Substituting
into (9) and using A.1, it follows immediately that� M ��� �"! �,M & _$# #%� � # & F  
 �����HF &&% ��M & � &� ��� ��� � R

(10)

To solve for
� � �"!

we consider two cases:

1. For sufficiently small
M

, we can assume that the termM+& _ #%���"#I&6F  �
 �����IF & is negligible relative to the second
term on the right-hand side of (10), so that��� �"! � M � � &� ��� � � � R (11)

This is the same result obtained in [7] for small values
of
M

but here we get it in a much simpler way.

2. For larger values of
M

, equation (10) can be solved by
imposing the following (often studied) assumption:

A.2 At steady state,
MT& #%���
#%&

is statistically inde-
pendent of

F  �
 �����HF & .
This assumption in fact becomes very realistic for
long filter lengths. Furthermore, it becomes exact for
the case of constant modulus data that arises in many
adaptive filtering applications. Using A.2, and (10),
we directly obtain�'�(�"! � M � &� ��� ��� �� /CM ��� � � � R (12)

This is also a well-known result (see [8]) but is ob-
tained here very directly and under the single assump-
tion A.2.

3.2. The LMF and LMMN Algorithms

For the least-mean mixed-norm (LMMN) algorithm, we have� � ������ )* ����� �Q��-�/ ) �  (' ����� . The least-mean fourth (LMF)
algorithm corresponds to the special case ) �*)

. Introduce,
for compactness of notation,�) � - / ) � _ F �D�����IF + �*,�+� � _ F �������HF -��*,�-� R
We again consider two cases. In both cases, we make the
reasonable assumption that in steady-state

F  
 �����HF &/. F �D�����IF &
.

We also assume A.1.

1. For values of
M

that are small enough so that the termM+& _ #%���"#I&6F  �
 �����IF & could be ignored, we obtain� � �0��1 � M �32 ) & � &� � � ) �) , +� � �) &4, -�
) �65 �) � &� 7 ��� � � � R (13)

This is the same result obtained in [9], but we get it
here more directly and under weaker conditions. For
) �8)

, the above expression collapses to� � ��9 � M �32 , -�5 � &� 7 ��� ��� ���
(14)

which is the same expression obtained in [10] by us-
ing the so-called independence assumptions.



2. For larger values of
M

, and using A.2 again, we get
the following new expressions for the EMSE:��������� � �����
	��	����� � ��������� ��
	��
�� !�������� !� ��� �! ��"� 	� ! � ����� 	 �$# � ��"� 	� �!% ��&� �� !�������� !

��� ��9 � M , -� ��� � � �' � &� /)(�M , +� ��� � � � R

3.3. The NLMS Algorithm

For the normalized LMS algorithm, � � �������  �����"!$#%���
#I& .
In this case, relation (9), and assumption A.1, lead to the
equality

� � /CMb� _ 2 F  
 �����IF &#%���
# & 7 �,M � &� _ 2 -
#%���
# & 7 R

(15)

Again this is an exact equality. We consider two cases.

1. Under assumption A.2, we have

_ 2 F  �
 �����IF &M & #I� � # & 7 � _ F  �
 �����IF & _ 2 -
M & #%� � # & 7 �

so that (15) leads to the expression��1 � � ! � M � &�� � / Mb� R (16)

This result is in fact exact for constant modulus data.
Observe also that it is independent of

�
.

2. In some works (see, e.g., p. 443 of [2]), the following
approximation is instead used

_ 2 F  �
 �����HF &#I� � # & 7 * _ F  �
 �����HF &_ #I� � # & �

in which case (15) leads to� 1 � �"! � M � &�� � /CMb� _ 2 -
#%� � # & 7 ��� ��� � R

(17)

This is the same expression obtained in [13] in a very
different (and also less direct) way.

3.4. The Sign Algorithm

For the sign algorithm (SA), we have � � ������� sign 7  �����98 . In
this case, relation (9) leads to the equality:

_ 7  
 ����� sign
�  
 �����b���D�����.��8E� M � ��� � � � R (18)

By assuming that  
 ����� and
�D�����

are jointly Gaussian, and
by using A.1 and Price’s theorem [11], we obtain

_ 7  
 ����� sign
�  
 �����+���D�����.��8E�,+ �- _ F  �
 �����IF &. � &� � _ F  �
 �����HF &

R

Substituting into (18) and solving for _ F  
 �����IF & , we find that� !�/ �10 �32 # 0 � . 0 & �54 � &� % �
(19)

where 0 � . 6 7 M ��� � � � . This is the same result that was
obtained in [12] by using the independence assumptions.
Here we have shown that the same result holds without any
independence assumptions!

3.5. The CM Algorithms

Similar analyses can be carried out for constant modulus
(CM) algorithms. The details are provided in [14]. Here we
only briefly comment on one particular case for the sake of
illustration. Assume

�������J� )
(and, hence,  
 �����X�  ����� )

and define

� &8 � _ F �������HF & � , +8 � _ F �������IF + � , -8 � _ F �������IF - R
Let : & � , +8 ! � &8 and assume also that all data are real-
valued (the complex case is studied in [14]). Define further,
for compactness of notation, 9 ����� � BE�����%� : & / F BD�����IF & �

.
Then relation (9) yields for CMA2-2,� M _  �
 ����� 9 ������,M & _ 7 #%���"# & F 9 �����HF & 8 R
To solve this equation for _ F  �
 �����IF & , we make the following
reasonable (and common) assumption.

A.3 The signals
�������

and  �
 ����� are independent in steady-
state so that _ �������  �
 ������� )

, since the signal
�������

is
assumed zero mean.

Using assumptions A.2 and A.3, yields for small enough
M

:�;: �</;= 4 = � M �32 � &8 : && / � : & , +8 �6, -8� � 5 � &8 / : & � 7 ��� � � � R

This is a slightly different expression from the one obtained
in [15] via a different (and less direct) route. It was shown
in [14] that the above expression leads to a better approxi-
mation for the MSE. More discussion on, and new EMSE
expressions for, other CM algorithms can be found in [14].

4. TRACKING ANALYSIS

In a nonstationary environment, the data
�*�������
	

is assumed
to arise from a linear model of the form

���������� � � �� � �D�����
,

where the unknown system
� ��

is now time-variant. It is
often assumed that the variation in

� ��
is according to the

model
� ��@K ; �,� �� � 5 � , where 5 � denotes the random per-

turbation. The purpose of the tracking analysis of an adap-
tive filter is to study its ability to track such time-variations.
We now show how to evaluate the tracking performance of



Table 2: Expressions for the EMSE in a nonstationary environment and small
M

.

ALGORITHM EMSE ASSUMPTIONS

LMS ;& M 4 ; ��� � � �+� ;& M � &� ��� � � � 1, 4, 5.

NLMS �����& 4 � ��� � � � ��� � � �N� �����	& 4 � _ # ;
����
 � % ��� ��� � 1, 2, 4,5

LMF ��������� >�� ?�K �����	 ��� >�� ?- � �	 1, 4, 5

LMMN ��������� >�� ?�K ��� �������	 K & ��������	 K ������	! �"� >�� ?& � � K ' ���� �	  1, 4, 5

SA # & #�$ � . $ & � 4 � &� % , $ � . 6 7&% M 4 ; ��� � � �b��M ��� � � �(' 1, 4, 5, Gaussian errors

CMA2-2 ��������� >�� ?�K � � ���)�* �� 4 & * � ���) K ���) � �"� >�� ?& > ' � �) 4 * � ? 1, 2, 3, 4, 5

an adaptive algorithm by the same feedback method pro-
posed in this paper.

For this purpose, we first redefine the weight error vec-
tor as

c� � � � �� /Q� �
, and the a-posteriori estimation error

as  � �������� � �$c� �LK ; / 5 � � . Then
c� �

satisfies

c� �@K ; � c� � /CM����� � O� � � �����+� 5 �PR (20)

If we further multiply (20) by
� �

from the left, we obtain
that (6) and (7) still hold for the nonstationary case, while
(8) becomes: �� �+*-, � � �  	 � ���� �"!�+ # 0 � �"!�+ 	 �  �� �  	 � ���� �"!�+ # $ � �"!�+ 	-, (21)

For mathematical tractability of the tracking analysis, we
impose the following assumptions, which are typical in the
context of tracking analysis of adaptive filters (see, e.g., [8]).

A.4 The sequences
�*� � 	

and
�*�������
	

are mutually sta-
tistically independent of

� 5 � 	 .
A.5 The sequence

� 5 � 	 is a stationary sequence of in-
dependent zero-mean vectors whose autocorrelation
matrix

� � _ 5 � 5 O� is positive definite.

Using (6), A.4 and A.5, it is straightforward to verify that
the variance relation (9) should now be replaced by:

.&/ ���� ��!�+ # 0 � �"!�+ 	!0 � �����21 ! � .43 �� � �"!65555 # 0 � �"! � ��� � �"!87 � � �"!95555 	�: ,
Comparing the above with (9), we see that evaluating the

nonstationary EMSE is simply a straightforward extension
of evaluating the stationary EMSE! The only addition is
the steady-state contribution by the system nonstationarity,
which is equal to ��� � � � .

This is a very significant and helpful observation in the
context of the tracking analysis of adaptive algorithms, since
it allows us to arrive at tracking results almost by inspec-
tion from the stationary case results. In the literature, both
cases have always been studied separately. We summarize

the EMSE results for tracking in Tab. 2 for the case of
small

M
(for brevity). The expressions for LMF, LMMN,

and CMA2-2 are new.
Moreover, by differentiating the EMSE expressions in

Tab. 2 with respect to
M

, we obtain several new expressions
for the optimum step-sizes that achieve the lowest EMSE.
Due to space limitations, we do not list these expressions
here.
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