Proc. MTNS Leuven, Belgium, July 2004.

A Power and Rate Control Algorithm for
Wireless Networks with State-Delayed
Dynamics

Ananth Subramanian and Ali H. Sayed

Abstract—A robust algorithm is developed for jointly controlling Il. POWER AND RATE CONTROL STRATEGY
the power and rate of flow in a distributed wireless network. The . . . . .
dynamics of the network is modelled as a discrete-time state-delayed Consider a wireless network with nodes organized into
system with uncertainties and the proposed algorithm achieves bet-  |ocal clusters or cells with one node acting as the master
ter SIR performance than a conventional power control scheme. node in each cell. Any node that wishes to communicate

is allowed to do so only with the master node and using
a time slot. Nodes communicating during the same time-
slot in other cells cause interference in this cell. Figure
1 shows a schematic representation with three cells, three
|. INTRODUCTION master nodes, and active and interfering nodes.

keywords: Robust estimation, congestion control, power control, rate
control, wireless network, convex optimization.

Power consumption is a key limiting factor in the per-
formance of wireless networks. This limitation is further
compounded by the fact that nodes in a network need to
cater to desired data rates, which in turn require the SNR
level, and consequently the power level, to be above cer- ~o
tain values. As such, a fundamental tradeoff exists be- h
tween power levels, data rates, and congestion rates in a

Gy d; i », d:Distance

4 G:Channel gain
® : Transmit node
O :Master node

network. There have been a handful of power control al- h |
gorithms that have been investigated in the literature [1]— ‘\
[4]. Most of the available solutions do not combine in o \ o

a cohesive manner the requirements of power, data rate,
and congestion. For this reason, such solutions may not
perform well when the rates in a network need to vary
due to the use of rate adaptation or congestion control al-Fig- 1. A sqhematiq repres_entation with three_cells, three master nodes,
gorithms. In recent work [6], the authors proposed algo- ﬁﬂgr?e?,'nvge ,?Q(?e'smae[efeg'on(?ég‘;ﬂﬁj The active node is icated the
rithms that allow for thgoint control of rate and power in

a network. However, these algorithms do not account for ) ] ]

feedback delays that arise from round trip time propaga- 1h€ Signal-to-Interference-plus-Noise-Ratio (SIR) for
tion in the network. In this paper, we show how to develop N0dei at timek on an uplink channel is defined by

algorithms for the more demanding situation when there G (s (k

. 1 ii(k)pi (k)
are delayed measurements in the network. From a system- vi(k) = S G (k)p; (k) + 02 1)
theoretic perspective, the problem requires that we now jeATi\FIbg 7

deal with state-delayed models. As a result of the ana"whereGij is the channel gain from thgth node to the
ysis, we will end up with a joint rate and power control jhtended master node of thigh cell, p; is the transmitted
algorithm that minimizes a bound on the error variance power from thei-th node,o? is the power of the white
between the desired and actual signal-to-interference ra-z5ssian noise at the receiver of the master node. &and
tios (SIR). is the set of nodes that are interfering with nade

Let f;(k) denote the flow rate at nodeat timek. We
Notation. For a column vectot, we write | z||? to denote  shall assume that each node in the network employs the
its Euclidean norm. following flow-rate control algorithm:

fi(k+1) = fi(k)+p[d(k)—c1 (k) fi(k) —c2(k) fi(k—T)]
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7 is non-zero for any controller that incorporates round Then combining (4) and (7) we arrive at the state-space

trip time. Now, in view of Shannon’s capacity formula, the
flow rate f;(k) demands an SIR level. (k) that is given

by .
fi(k) = 3 logy[1 +7; (k)] )

Usually, during normal network operatiory;(k) > 1
and, hencef; (k) in (3) is proportional tdog ~; (k). Sub-

stituting this fact into (2) we find that the desired SIR, in

dB scale, should vary according to the rule

Yilk+1) = [1*ucl(k)]%(k)*#Cz(k)%(k*THN'd((Z))
wherep’ = 20u/ log,(10) and¥;(k) = 10log v; (k).

We shall initially assume that each node in the network A = [ 0
adjusts its power according to the power control algo-

rithm:

pi(k +1) = pi(k) + ai[7i (k) — 7i(k)] (5)

whereq; is a step-size parameter that is allowed to vary

from one node to another, ang(k) is the actual SIR that
is achieved by; (k) as given by (1). Now let

_ Gii(k)
B _Z;‘Gij(k)pj(k) + o2

Bi(k)

denote the scaling factor that determines k) affects
the achieved; (k) in (1), i.e.,

vi(k) = Bi(k)pi(k)
or, equivalently, in dB scale,
Yi(k) = Bi(k) + pi(k) (6)

We refer tof; (k) as the effective channel gain. We shall
model the time variation i; (k) according to the random
walk model

Bi(k+1) = B;(k) + ni(k)

wheren; (k) is a zero-mean disturbance of variance
and is independent gf; (k). Substituting this model for

model:
B 11—« « .
i = [ 10" 1 e |
0 0 n(k)
F[8 iy Jor+ | 2 |
or, more compactly,
Ti+1 = At + Ag pTp—r + Wi (8)

where the2 x 2 coefficient matricesl;, and A, ;. are given
by

|- =10 et
©)

and wherew;, is a2 x 1 zero-mean random vector with
covariance matrix

l—«o «
1 — peq (k)

2
Q = Bwyw} = [ n 242 ] <p.d (10)

u
assumed bounded for some knowp > 0 assumed
bounded. In order to drive;(k) towardsy; (k) we shall
employ a control sequeneg, in (8) as follows:

Tp1 = Apxr + Agp2p—r + Bug + wy ‘ (11)

for some giver2 x 2 matrix B and2 x 1 control sequence
ug. For example, let

k)

Buy = i

¥ [ ug (k) }

denote the individual entries @w,, to be designed. Then

the inclusion of the ternBuy, in (11) amounts to adding

the control signat:, (k) to the power update (5), and the
control signalus(k) to the desired SIR update (4). We
shall also assume that we have access to output measure-
ments that are related to the state vector as follows:

| yr = Cag + vy | (12)

for some known matrixX’ and wherev;, denotes measure-

3;(k) into (6), and using (5), we find that the achieved MeNt noise with bounded covariance matfix

~:(k) varies according to the rule:

Filk +1) = (1 = i)%i(k) + ivi(k) +ni(k)  (7)

’ R = Evpvl < pvl‘

for some knownp, > 0. Usually, C = I so that the

Our objective is to design the power control sequence entries ofy;, correspond to noisy measurements of the ac-

{pi(k)} such that the actual SIR leve|s;(k)} from (7)
will tend to the desired SIR levelsy;(k)} from (4). To do

tual and desired SIR levelsy(k),7'(k)}. We now pro-
pose a design procedure that takes into account uncertain-

so, we shall formulate a robust quadratic control problem ties that arise due to the lack of perfect knowledge about

as follows. First, we drop the node indéfor simplicity

the network dynamics. For example, the congestion con-

of notation (it is to be understood that the resulting control trol functionsc; (k) andez (k) are usually not known ex-
mechanism is implemented at each node). Second, we in-actly and have to be estimated; the estimation process in-

troduce the two-dimensional state vector:

w= | 20 ]

troduces errors in the assumed state-space model. Let us
model the uncertainty in; (k) as

c1(k) = (k) + g8(k)d (13)



where (k) is a zero mean random noise with variance
02, g andd are known scalars, ard (k) is unknown but
bounded as

g < (k) <cra (14)

for some known positive scalafs ;,c1,,}. In other

and

0
Hea

0
HC2 4

(8 1G]

Given al x 2 vector L, the following is a robust joint
power and rate-flow control strategy:

Agy = 8 1—

words, we allow for both deterministic and stochastic un-

certainties inc, (k). In this way, the matrices!, them- 1 |ntroduce & x 2 matrix A; and a2 x 1 vector B; to
selves are not known exactly but they are modelled aspe determined. Let

Ay = Ak + 5 AL where

A 0 Ay 0
=10 e | (15) ,
pe(k) and define
and < _ AdJ 0 vy _ Ad,u 0
0A = go(k)D (16) A = [ Aqq O } » Adu = [ Agu O }
where 0 0 The quantitiesd; and B; are determined in the follow-
D= (O —MJ) a7 ing manner [7]. Given a scaldr < o < 1, solve the

following convex optimization problem over the variables

Likewise, letca(k) be bounded as;; < ca(k) < co4. (P = diag{Py, P2}, R, Ay, By}:

In this way, the matricesl, ;, are also not known exactly
but they are now modelled as belonging to a convex poly-
tope. We shall design the control sequefeg} as fol-
lows. First, we use the robust algorithm of [7] to estimate subject to the conditions
the state of perturbed state-space models as in (15)—(17).

min Tr(p, (P + P2) + po?Png) (19)

Then, the control sequende;,} will be designed such H —Al PAgm ALP 0
that an upper bou.n(_j on th.e following stochastic quadratic _AT PA, R-AY PAy. 0 0 ;
cost function is minimized: >«
00 k PA,, 0 P ?}
0 0 0
JzE{Z ||ka||2} (20)
k=0 form = I,u, and with? > I, R > I,
with L = [ 1 —1 ], and whereE denotes the expecta-
tion operator. This choice df results in H 2 P-R-02D"GTPGD
Lz = (k) — 7' (k) and i P
so that| Lz||? is a measure of the difference between G=9. D= (0 O) (21)

{7(k),”'(k)}. The resulting control will guarantee the jith 4, and B; found in this fashion, we minimize a
following performance over all mode{sd,, + 0Ay}. Let  pound on the state error variance in the absence of control
I = xp — &) denote the state estimation error. Then [7]. In addition, the construction below ensures asymp-
the construction will determine state estimafeg }, and  totic stability in the presence of a control signal (as shown
a control sequencéuy} as a function of these state esti- i Appendix B).

mates, such that an upper boundBfiLz,||* and hence 2. Using the just found A, B;}, define
J is minimized. Specifically, it will hold that

o . |: A - K, K, :|
j<V2E{Z<wk||2+Uk||2)}+b (18) YTl A -Ar-Bio 4
k=0 § A, — K. K.

for some constarit > 0 and for the smallest possibié,
and over all zero-mean noise sequenteg, vy, } satisfy-

Ay — Ay — B;C A
ing I 0

- |
|1 B ]

for some2 x 2 matrix K. to be determined. Determine
K., X, Y, and the smallest positivé’ that guarantee

B =

E (ZHMIQ) <oo, E (levk||2> <00
k=0 k=0

The following statement is specialized Bo= I. Hy, AL X Agm ~ALXB
_ AT A _ AT A _ AT b
A Robust Power and Rate Control Algorithm. Let AgmXAm Y = A X Adm AgmXB 1 >0
1— o o -« o -BTXA,, ~-BTXA,,, vI-BT'XB
Al = |: 0 1— He :| ) A“ = |: 0 1— HC1 :| (22)



where
H,=X-Y-Al XA, - L"L - 0}D"G"XGD

form =[,u and

L=[L 0]
Then set
up, = —KcIg
1 = Afip + Bryp + ug

3. Partitionu;, as

=Ll

and update the rate flow and the power at the relevant node

as follows. Lets = (log,(10))/20. Then

y'(k)y = fik)/x
pi(k+1) pi(k) + ;7 (k) — % (k)] + up(k)
Ji(k+1) fi(k) + pld(k) — c1(k) fi(k) — ca(k) fi(k —7)]
+rug(k)

&
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Fig. 2. Variance in SIR tracking.

APPENDIXA: ROBUST PERFORMANCE

In this appendix, we show that the proposed algorithm
is stable and ensures a robust performance levet ofs
in (18). Define

or = (F) (25)

To illustrate the performance of the algorithm, we sim- and

ulate the following model from [8]. The space is divided o(k)y=[nl nl_y .. mi_, ]T
into virtual geographical cells, each containing many
nodes with one node acting as a master node. A frequenq}'et b1
slot is allocated to each node that wishes to communicate T T
v =, X0k + s Y, 26
with the master node in a cell. We allow for frequency (9r) = mi X i;ﬁ K (26)

reuse across cells in a manner similar to that in mobile cel- ) )

lular systems. The nodes are made to take turns as mastePr SomeX > 0 andY” > 0 to be determined in order to
nodes with equal probability, but with the constraint that Satisfy the inequality

there can be only one master node in a cell at any time. 5 ) ) .
Priority to act as a master node is given to the node that hastV (9r+1) =BV (dr) = E([lwr[*+[ox ") +E] 2 ]” < 0
lowest interference from other cells. The nodes communi- . . ~ ., i (@7)
cating in the same frequency slot in other cells cause inter-WNerézi = Lny = 7(k) — 7' (k). We will show that, for
ference with this cell and this interference is measured in & givenA; ?‘ndBf', if X an('jY. are determmgd such that
terms of the signal-to-interference ratio (SIR). The chan- the above inequality is satisfied, then (18) is guaranteed.

nel gainG,; is assumed to have a lognormal distribution, 'ndeed, if we sum inequality (27) ovér, and if we use
ie. the fact that the system is asymptotically stable (which is

Gy = Sod;ﬂloa/lo (23) shown in the next appendix), we would get
where S is a function of the carrier frequency, is the
path loss exponent (PLE), any; is the distance of the
master node from the node. The valugsafepends on the
physical environment and varies between 2 and 6 (usually
4), while « is a zero mean Gaussian random variable with
variancer2, which usually ranges between 6 and 12. Data
is transmitted from a source to its final destination through e A 4B K 29
intermediary master nodes. Fig. 2 illustrates the perfor-  Ck+1 = AsTk By Uk, Uk = — Rl (29)
mance of the proposed robust power and rate algorithm in
comparison to the following power algorithm from [3]:

pi(k+1) = pi(k) + a[3i(k) —%(k)]  (24)

E { > lak) - w’(k)F} < EV(no)+v’E { > lwell® + vkz}
k=0 k=0
(28)

as desired. Now assume a control structure of the form

for some given{ Ay, By} and unknownk.. Combining
this equation with

wpr1 = (A+0Ap)zk + Aa®i—r + up + wi
ye = Cxp+up



and assuming, for example, thdtis equal to one of the
boundary points, sayl;, and that4, is equal to one of
the boundary points, sa¥,;, we find thaty,, satisfies the
state-space model:

Ne+1 = (Al + 5Ak)77k + Ad_’ﬂ]kf,,- + Bok (30)
where
- Al - Kc Kc v I 0
A = 5 B =
! (Al — A; — B;C Af> (I *Bf)
(31)

Likewise, for the boundary poimd,. Using (30) and ex-
panding (27) gives

E{nj, ATX Any, — uj, Xy, + o3nj, G DT X DGy,

+ i, AT X Bog + of, BY X Ay + 11, Y

+ng AT X Agny—r + ngffz‘deXAnk

it A X Agne—r — 8 Y pr

+ n,z,TAdTXBOk + o0l BY X Agny_~

—v20} o + ot BT X Boy +nf LT L} < 0

(32)

With A taking values betweeA; and A5, condition (32)
is satisfied if we require

H, ~AT X Agm ~ATXB
—AT XA, Y-AY XAy, —AT XB >0
~-BTXA,, -BTXA,,, vI-BTXB
(33)

for m = I, u and for somek,, v?>, X > 0andY > 0,

as desired. Inequality (33) also implies that the system is

asymptotically stable as we show next.

APPENDIXB: STABILITY OF THE NETWORK

and A, takes values in the polytope with verticds and
A,,. Now condition [10]

EV(¢r+1)|k; s d0] — V(dr) <0

is satisfied if

(36)

{nf ATX Any, — nf X + 020 G DT X DGy,
Al Yo +0f ATX A +0f_ Ag" X Any
— T —
+nf L Aa XAgk—7 =0 Ynp—r} <0

with A taking values in the polytope with verticels and
A,. Condition (36) is therefore satisfied if

_A%;szld,m

HTYI/
B 5 _ _ >0, m=1lu
~AT XA, Y- AT XAy,
(37)
where
H,=X-Y -AL XA, —c2GT"DTXDG, m=1,u

for someK ., X > 0 andY > 0. But it can be seen that
K., X > 0andY > 0 satisfying (33) also satisfy (37).

Condition (36) implies the asymptotic stability of the pro-
cess{ny } and, hence, the stability of routds guaranteed.

For the scenario of multiple sources, whensources
use a route-, each of the sources being stable will con-
tribute to a bounded arrival of packets in the routen-
suring network stability.

(1]

(3]

4
Let J denote the set of sources (or equivalently nodes)[ ]

in the network. Letr denote a route. Without loss of gen-

erality, we ignore routing choices and identify each source (5]

with a route. We consider first a single route and a single

source scenario. Consider a particular source, and a route6
r adopted by the source. The rate catered to by the route id®]

proportionally given in terms of’ (k) (recall that the rate
fi is proportional toy'(k)). Now the stability ofn; im-
plies the stability ofy’(k) = [0 1 0 0]n;. Hence we will
derive conditions for the stability ofy, which will im-
ply stability ofv/(k) and hence that of route Consider
again equation (30) in the absence of noises witaking
values in the polytope with verticed, and A,, and A4
taking values in the polytope with verticels;; and A, ,:

Ne1 = (A+ 5AR)ns + Aanp—r (34)
where
< Am - Kc Kc
A= < ) (35)
Ay — Ay — BsC Ay

(71

(8]

[9]

(20]
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