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A Power and Rate Control Algorithm for
Wireless Networks with State-Delayed

Dynamics
Ananth Subramanian and Ali H. Sayed

Abstract—A robust algorithm is developed for jointly controlling
the power and rate of flow in a distributed wireless network. The
dynamics of the network is modelled as a discrete-time state-delayed
system with uncertainties and the proposed algorithm achieves bet-
ter SIR performance than a conventional power control scheme.
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I. I NTRODUCTION

Power consumption is a key limiting factor in the per-
formance of wireless networks. This limitation is further
compounded by the fact that nodes in a network need to
cater to desired data rates, which in turn require the SNR
level, and consequently the power level, to be above cer-
tain values. As such, a fundamental tradeoff exists be-
tween power levels, data rates, and congestion rates in a
network. There have been a handful of power control al-
gorithms that have been investigated in the literature [1]–
[4]. Most of the available solutions do not combine in
a cohesive manner the requirements of power, data rate,
and congestion. For this reason, such solutions may not
perform well when the rates in a network need to vary
due to the use of rate adaptation or congestion control al-
gorithms. In recent work [6], the authors proposed algo-
rithms that allow for thejoint control of rate and power in
a network. However, these algorithms do not account for
feedback delays that arise from round trip time propaga-
tion in the network. In this paper, we show how to develop
algorithms for the more demanding situation when there
are delayed measurements in the network. From a system-
theoretic perspective, the problem requires that we now
deal with state-delayed models. As a result of the anal-
ysis, we will end up with a joint rate and power control
algorithm that minimizes a bound on the error variance
between the desired and actual signal-to-interference ra-
tios (SIR).

Notation. For a column vectorz, we write‖z‖2 to denote
its Euclidean norm.
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II. POWER AND RATE CONTROL STRATEGY

Consider a wireless network with nodes organized into
local clusters or cells with one node acting as the master
node in each cell. Any node that wishes to communicate
is allowed to do so only with the master node and using
a time slot. Nodes communicating during the same time-
slot in other cells cause interference in this cell. Figure
1 shows a schematic representation with three cells, three
master nodes, and active and interfering nodes.
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Fig. 1. A schematic representation with three cells, three master nodes,
and active and interfering nodes. The active node is nodei and the
interfering nodes are nodesh andl.

The Signal-to-Interference-plus-Noise-Ratio (SIR) for
nodei at timek on an uplink channel is defined by

γi(k) =
Gii(k)pi(k)∑

j∈AGij(k)pj(k) + σ2
(1)

whereGij is the channel gain from thej-th node to the
intended master node of thei-th cell,pi is the transmitted
power from thei-th node,σ2 is the power of the white
Gaussian noise at the receiver of the master node, andA
is the set of nodes that are interfering with nodei.

Let fi(k) denote the flow rate at nodei at timek. We
shall assume that each node in the network employs the
following flow-rate control algorithm:

fi(k+1) = fi(k)+µ[d(k)−c1(k)fi(k)−c2(k)fi(k−τ)]
(2)

whereµ > 0 is a step-size parameter, andc1(k) andc2(k)
are measures of the amount of congestion in the network.
Moreover,d(k) controls the rate increase per iteration and



τ is non-zero for any controller that incorporates round
trip time. Now, in view of Shannon’s capacity formula, the
flow ratefi(k) demands an SIR levelγ′i(k) that is given
by

fi(k) =
1
2

log2[1 + γ′i(k)] (3)

Usually, during normal network operation,γ′i(k) À 1
and, hence,fi(k) in (3) is proportional tolog γ′i(k). Sub-
stituting this fact into (2) we find that the desired SIR, in
dB scale, should vary according to the rule

γ̄′i(k+1) = [1−µc1(k)]γ̄′i(k)−µc2(k)γ̄′i(k−τ)+µ′d(k)
(4)

whereµ′ = 20µ/ log2(10) andγ̄i(k) = 10 log γi(k).
We shall initially assume that each node in the network

adjusts its power according to the power control algo-
rithm:

p̄i(k + 1) = p̄i(k) + αi[γ̄′i(k)− γ̄i(k)] (5)

whereαi is a step-size parameter that is allowed to vary
from one node to another, andγi(k) is the actual SIR that
is achieved bypi(k) as given by (1). Now let

βi(k) =
Gii(k)∑

j∈A
Gij(k)pj(k) + σ2

denote the scaling factor that determines howpi(k) affects
the achievedγi(k) in (1), i.e.,

γi(k) = βi(k)pi(k)

or, equivalently, in dB scale,

γ̄i(k) = β̄i(k) + p̄i(k) (6)

We refer toβ̄i(k) as the effective channel gain. We shall
model the time variation in̄βi(k) according to the random
walk model

β̄i(k + 1) = β̄i(k) + ni(k)

whereni(k) is a zero-mean disturbance of varianceσ2
n

and is independent of̄pi(k). Substituting this model for
β̄i(k) into (6), and using (5), we find that the achieved
γ̄i(k) varies according to the rule:

γ̄i(k + 1) = (1− αi)γ̄i(k) + αiγ̄
′
i(k) + ni(k) (7)

Our objective is to design the power control sequence
{pi(k)} such that the actual SIR levels{γ̄i(k)} from (7)
will tend to the desired SIR levels{γ̄′i(k)} from (4). To do
so, we shall formulate a robust quadratic control problem
as follows. First, we drop the node indexi for simplicity
of notation (it is to be understood that the resulting control
mechanism is implemented at each node). Second, we in-
troduce the two-dimensional state vector:

xk =
[

γ̄i(k)
γ̄′i(k)

]

Then combining (4) and (7) we arrive at the state-space
model:

xk+1 =
[ 1− α α

0 1− µc1(k)

]
xk

+
[ 0 0

0 −µc2(k)

]
xk−τ +

[
n(k)

µ′d(k)

]

or, more compactly,

xk+1 = Akxk + Ad,kxk−τ + wk (8)

where the2×2 coefficient matricesAk andAd,k are given
by

Ak =
[ 1− α α

0 1− µc1(k)

]
, Ad,k =

[ 0 0
0 −µc2(k)

]

(9)
and wherewk is a 2 × 1 zero-mean random vector with
covariance matrix

Q = EwkwT
k =

[
σ2

n
µ′2σ2

d

]
≤ ρuI (10)

assumed bounded for some knownρu > 0 assumed
bounded. In order to driveγi(k) towardsγ′i(k) we shall
employ a control sequenceuk in (8) as follows:

xk+1 = Akxk + Ad,kxk−τ + Buk + wk (11)

for some given2×2 matrixB and2×1 control sequence
uk. For example, let

Buk =
[

up(k)
uf (k)

]

denote the individual entries ofBuk to be designed. Then
the inclusion of the termBuk in (11) amounts to adding
the control signalup(k) to the power update (5), and the
control signaluf (k) to the desired SIR update (4). We
shall also assume that we have access to output measure-
ments that are related to the state vector as follows:

yk = Cxk + vk (12)

for some known matrixC and wherevk denotes measure-
ment noise with bounded covariance matrixR,

R = EvkvT
k ≤ ρvI

for some knownρv > 0. Usually, C = I so that the
entries ofyk correspond to noisy measurements of the ac-
tual and desired SIR levels{γ̄(k), γ̄′(k)}. We now pro-
pose a design procedure that takes into account uncertain-
ties that arise due to the lack of perfect knowledge about
the network dynamics. For example, the congestion con-
trol functionsc1(k) andc2(k) are usually not known ex-
actly and have to be estimated; the estimation process in-
troduces errors in the assumed state-space model. Let us
model the uncertainty inc1(k) as

c1(k) = c̄1(k) + gδ(k)d̄ (13)



whereδ(k) is a zero mean random noise with variance
σ2

δ , g andd̄ are known scalars, and̄c1(k) is unknown but
bounded as

c1,l ≤ c̄1(k) ≤ c1,u (14)

for some known positive scalars{c1,l, c1,u}. In other
words, we allow for both deterministic and stochastic un-
certainties inc1(k). In this way, the matricesAk them-
selves are not known exactly but they are modelled as
Ak = Āk + δAk where

Āk =
[ 1− α α

0 1− µc̄(k)

]
(15)

and
δAk = gδ(k)D (16)

where
D =

(0 0
0 −µd̄

)
(17)

Likewise, letc2(k) be bounded asc2,l ≤ c2(k) ≤ c2,u.
In this way, the matricesAd,k are also not known exactly
but they are now modelled as belonging to a convex poly-
tope. We shall design the control sequence{uk} as fol-
lows. First, we use the robust algorithm of [7] to estimate
the state of perturbed state-space models as in (15)–(17).
Then, the control sequence{uk} will be designed such
that an upper bound on the following stochastic quadratic
cost function is minimized:

J = E

{ ∞∑

k=0

‖Lxk‖2
}

with L = [ 1 −1 ], and whereE denotes the expecta-
tion operator. This choice ofL results in

Lxk = γ̄(k)− γ̄′(k)

so that‖Lxk‖2 is a measure of the difference between
{γ̄(k), γ̄′(k)}. The resulting control will guarantee the
following performance over all models{Āk + δAk}. Let
x̃k = xk − x̂k denote the state estimation error. Then
the construction will determine state estimates{x̂k}, and
a control sequence{uk} as a function of these state esti-
mates, such that an upper bound onE‖Lxk‖2 and hence
J is minimized. Specifically, it will hold that

J < ν2E

{ ∞∑

k=0

(‖wk‖2 + ‖vk‖2
)
}

+ b (18)

for some constantb > 0 and for the smallest possibleν2,
and over all zero-mean noise sequences{wk, vk} satisfy-
ing

E

( ∞∑

k=0

‖wk‖2
)

< ∞, E

( ∞∑

k=0

‖vk‖2
)

< ∞

The following statement is specialized toB = I.

A Robust Power and Rate Control Algorithm. Let

Al =
[ 1− α α

0 1− µc1,l

]
, Au =

[ 1− α α
0 1− µc1,u

]

and

Ad,l =
[

0 0
0 1− µc2,l

]
, Ad,u =

[
0 0
0 1− µc2,u

]

Given a1 × 2 vector L, the following is a robust joint
power and rate-flow control strategy:

1. Introduce a2 × 2 matrix Af and a2 × 1 vectorBf to
be determined. Let

Āl =
[

Al 0
Al −Af −Bf C Af

]
, Āu =

[
Au 0

Au −Af −Bf C Af

]

and define

Ād,l =
[

Ad,l 0
Ad,l 0

]
, Ād,u =

[
Ad,u 0
Ad,u 0

]

The quantitiesAf andBf are determined in the follow-
ing manner [7]. Given a scalar0 < α < 1, solve the
following convex optimization problem over the variables
{P = diag{P1, P2}, R, Af , Bf}:

min Tr(ρu(P1 + P2) + ρvBT
f P2Bf ) (19)

subject to the conditions




H̄ −ĀT
mPĀd,m ĀT

mP 0

−ĀT
d,mPĀm R− ĀT

d,mPĀd,m 0 0

PĀm 0 P 0
0 0 0 I


 > αI

(20)
for m = l, u, and withP > I, R > I,

H̄
∆= P −R− σ2

δD̄T ḠT PḠD̄

and
Ḡ = g, D̄ =

(
D 0
0 0

)
(21)

With Af and Bf found in this fashion, we minimize a
bound on the state error variance in the absence of control
[7]. In addition, the construction below ensures asymp-
totic stability in the presence of a control signal (as shown
in Appendix B).
2. Using the just found{Af , Bf}, define

Ǎ1 =
[

Al −Kc Kc

Al −Af −BfC Af

]

Ǎ2 =
[

Au −Kc Kc

Au −Af −BfC Af

]

B̌ =
[

I 0
I −Bf

]

for some2 × 2 matrix Kc to be determined. Determine
Kc, X, Y , and the smallest positiveν2 that guarantee




Ȟm ǍT
mXĀd,m −ǍT

mXB̌

−ĀT
d,mXǍm Y − ĀT

d,mXĀd,m −ĀT
d,mXB̌

−B̌T XǍm −B̌T XĀd,m ν2I − B̌T XB̌


 > 0

(22)



where

Ȟm = X − Y − ǍT
mXǍm − ĽT Ľ− σ2

δD̄T ḠT XḠD̄

for m = l, u and

Ľ = [ L 0 ]

Then set

uk = −Kcx̂k

x̂k+1 = Af x̂k + Bfyk + uk

3. Partitionuk as

uk =
[

up(k)
uf (k)

]

and update the rate flow and the power at the relevant node
as follows. Letκ = (log2(10))/20. Then

γ̄′(k) = fi(k)/κ

p̄i(k + 1) = p̄i(k) + αi[γ̄
′
i(k)− γ̄i(k)] + up(k)

fi(k + 1) = fi(k) + µ[d(k)− c1(k)fi(k)− c2(k)fi(k − τ)]

+κuf (k)

♦
III. S IMULATIONS

To illustrate the performance of the algorithm, we sim-
ulate the following model from [8]. The space is divided
into virtual geographical cells, each containing many
nodes with one node acting as a master node. A frequency
slot is allocated to each node that wishes to communicate
with the master node in a cell. We allow for frequency
reuse across cells in a manner similar to that in mobile cel-
lular systems. The nodes are made to take turns as master
nodes with equal probability, but with the constraint that
there can be only one master node in a cell at any time.
Priority to act as a master node is given to the node that has
lowest interference from other cells. The nodes communi-
cating in the same frequency slot in other cells cause inter-
ference with this cell and this interference is measured in
terms of the signal-to-interference ratio (SIR). The chan-
nel gainGii is assumed to have a lognormal distribution,
i.e.,

Gii = S0d
−β
ii 10α/10 (23)

whereS0 is a function of the carrier frequency,β is the
path loss exponent (PLE), anddii is the distance of the
master node from the node. The value ofβ depends on the
physical environment and varies between 2 and 6 (usually
4), whileα is a zero mean Gaussian random variable with
varianceσ2

α, which usually ranges between 6 and 12. Data
is transmitted from a source to its final destination through
intermediary master nodes. Fig. 2 illustrates the perfor-
mance of the proposed robust power and rate algorithm in
comparison to the following power algorithm from [3]:

p̄i(k + 1) = p̄i(k) + α[γ̄′i(k)− γ̄i(k)] (24)
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Fig. 2. Variance in SIR tracking.

APPENDIX A: ROBUST PERFORMANCE

In this appendix, we show that the proposed algorithm
is stable and ensures a robust performance level ofν2, as
in (18). Define

ok
∆=

(
wk
vk

)
(25)

and
φ(k) =

[
ηT

k ηT
k−1 . . . ηT

k−τ

]T

Let

V (φk) = ηT
k Xηk +

k−1∑

i=k−τ

ηT
i Y ηi (26)

for someX > 0 andY > 0 to be determined in order to
satisfy the inequality

EV (φk+1)−EV (φk)−ν2E(‖wk‖2+‖vk‖2)+E‖z̃k‖2 < 0
(27)

wherez̃k = Ľηk = γ̄(k) − γ̄′(k). We will show that, for
a givenAf andBf , if X andY are determined such that
the above inequality is satisfied, then (18) is guaranteed.
Indeed, if we sum inequality (27) overk, and if we use
the fact that the system is asymptotically stable (which is
shown in the next appendix), we would get

E

{ ∞∑

k=0

|γ̄(k)− γ̄′(k)|2
}

< EV (η0)+ν2E

{ ∞∑

k=0

‖wk‖2 + ‖vk‖2
}

(28)

as desired. Now assume a control structure of the form

x̂k+1 = Af x̂k + Bfyk + uk, uk = −Kcx̂k (29)

for some given{Af , Bf} and unknownKc. Combining
this equation with

xk+1 = (Ā + δAk)xk + Adxk−τ + uk + wk

yk = Cxk + vk



and assuming, for example, thatǍ is equal to one of the
boundary points, say̌A1, and thatĀd is equal to one of
the boundary points, saȳAd,l, we find thatηk satisfies the
state-space model:

ηk+1 = (Ǎ1 + δǍk)ηk + Ād,1ηk−τ + B̌ok (30)

where

Ǎ1 =
(

Al −Kc Kc

Al −Af −BfC Af

)
, B̌ =

(
I 0
I −Bf

)

(31)
Likewise, for the boundary poinťA2. Using (30) and ex-
panding (27) gives

E{ηT
k ǍT XǍηk − ηT

k Xηk + σ2
δηT

k ḠT D̄T XD̄Ḡηk

+ ηT
k ǍT XB̌ok + oT

k B̌T XǍηk + ηT
k Y ηk

+ ηT
k ǍT XĀdηk−τ + ηT

k−τ Ād
T
XǍηk

+ ηT
k−τ Ād

T
XĀdηk−τ − ηT

k−τY ηk−τ

+ ηT
k−τ Ād

T
XB̌ok + oT

k B̌T XĀdηk−τ

− ν2oT
k ok + oT

k B̌T XB̌ok + ηT
k ĽT Ľηk} < 0

(32)

With Ǎ taking values betweeňA1 andǍ2, condition (32)
is satisfied if we require




Ȟm −ǍT
mX ¯Ad,m −ǍT

mXB̌

−ĀT
d,mXǍm Y − ĀT

d,mXĀd,m −ĀT
d,mXB̌

−B̌T XǍm −B̌T XĀd,m ν2I − B̌T XB̌


 > 0

(33)
for m = l, u and for someKc, ν2, X > 0 andY > 0,
as desired. Inequality (33) also implies that the system is
asymptotically stable as we show next.

APPENDIX B: STABILITY OF THE NETWORK

Let J denote the set of sources (or equivalently nodes)
in the network. Letr denote a route. Without loss of gen-
erality, we ignore routing choices and identify each source
with a route. We consider first a single route and a single
source scenario. Consider a particular source, and a route
r adopted by the source. The rate catered to by the route is
proportionally given in terms ofγ′(k) (recall that the rate
fi is proportional toγ̄′(k)). Now the stability ofηk im-
plies the stability of̄γ′(k) = [0 1 0 0]ηk. Hence we will
derive conditions for the stability ofηk, which will im-
ply stability of γ′(k) and hence that of router. Consider
again equation (30) in the absence of noises withǍ taking
values in the polytope with verticešA1 and Ǎ2, andĀd

taking values in the polytope with vertices̄Ad,l andĀd,u:

ηk+1 = (Ǎ + δǍk)ηk + Ādηk−τ (34)

where

Ǎ =
(

Am −Kc Kc

Am −Af −BfC Af

)
(35)

andAm takes values in the polytope with verticesAl and
Au. Now condition [10]

E[V (φk+1)|φk, ...., φ0]− V (φk) < 0 (36)

is satisfied if

{ηT
k ǍT XǍηk − ηT

k Xηk + σ2
δηT

k ḠT D̄T XD̄Ḡηk

+ηT
k Y ηk + ηT

k ǍT XĀdηk−τ + ηT
k−τ Ād

T
XǍηk

+ηT
k−τ Ād

T
XĀdηk−τ − ηT

k−τY ηk−τ} < 0

with Ǎ taking values in the polytope with verticešA1 and
Ǎ2. Condition (36) is therefore satisfied if

(
H̃m −ǍT

mXĀd,m

−ĀT
d,mXǍm Y − ĀT

d,mXĀd,m

)
> 0, m = l, u

(37)
where

H̃m = X − Y − ǍT
mXǍm − σ2

δ ḠT D̄T XD̄Ḡ, m = l, u

for someKc, X > 0 andY > 0. But it can be seen that
Kc, X > 0 andY > 0 satisfying (33) also satisfy (37).
Condition (36) implies the asymptotic stability of the pro-
cess{ηk} and, hence, the stability of router is guaranteed.

For the scenario of multiple sources, whenm sources
use a router, each of the sources being stable will con-
tribute to a bounded arrival of packets in the router en-
suring network stability.
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