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FAST ALGORITHMS FOR GENERALIZED
DISPLACEMENT STRUCTURES*

T. Kailath and A.H. Sayed!

ABSTRACT

We introduce a generalized displacement structure that includes
a variety of previously studied cases, and leads to a unified approach
to fast O(n?) algorithms for the triangular factorization of structured
matrices such as Toeplitz-like and Hankel-like structures. The algorithm
is derived through a recursive state-space procedure and can be used
to solve a variety of other problems. For instance, we show that the
state-space derivation allows us to extend previous results on the cascade
decomposition of lossless and J-lossless rational matrices to a larger class
of rational matrices. Also new recursive solutions to certain interpolation
and H* —control problems are obtained.

Key Words: Structured matrices, triangular factorization, state-space
recursion, J-lossless systems, interpolation, H° —control.

1. INTRODUCTION
In this paper we introduce a generalized displacement structure of the form

QRA* — FRA* = GJB* (1)

where the symbol * denotes complex conjugation, 2, A, F and A are n X n lower
triangular matrices, G and B are n X7 (r < n) generator matrices and J is an r X r
matrix satisfying J? = I. The matrix R is said to have displacement rank r and the
matrices 2, A, F' and A are called displacement operators. There are examples
where the appropriate use of all four matrices (2, A, F, A) reduces the displace-
ment rank. We shall obtain the triangular factorization of R by embedding ( 1) into
two discrete-time systems that satisfy a generalized notion of J-losslessness, and
then performing the cascade decomposition of the corresponding transfer matrices.
This approach is a generalization of a recursive (state-space) embedding technique
introduced recently by Lev-Ari and Kailath [1]. The derived recursions can be
applied to solve a variety of problems [2, 3, 4, 5] e.g. fast O(n?) algorithms for
the triangular and orthogonal factorization of strongly regular structured matrices
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and their inverses, cascade decomposition of systems satisfying a generalized notion
of J-losslessness and recursive state-space solution to interpolation and H®-control
problems. The results can be also extended to deal with the case of structured
matrices with arbitrary rank profile. In this paper we shall only discuss the factor-
ization of R and the cascade decomposition of the embedded transfer matrices. Brief
mention will be made of the interpolation and H*—control problems. For brevity
we shall only state the main results; the details and proofs can be found in [2].

2. A GENERALIZED STATE SPACE APPROACH

We begin by noting conditions for the existence of a unique solution R of ( 1).
Let w;, 0; fi and a; (i = 0,1,...,n — 1) designate the diagonal elements of the
n X n lower triangular matrices 2, A, F' and A respectively.

Lemma 1 (Uniqueness of R) The matriz equation QRA* — FRA* = X has a
unique solution R for any matriz X if, and only if, (w;6f — f;a¥) # 0 for all
,7-

In the sequel we assume that uniqueness of R is guaranteed and that €2 and A are
invertible. However the recursions are still valid when either 2 or A is singular, and

the nonuniqueness of R need not be a problem in some cases [2, 6]. The embedding
procedure is guaranteed by the following result.

Theorem 1 (Generalized Embedding) Given QRA* — FRA* = GJB* and R
wnvertible, we can find unique matrices Hywn, Kyxr, Crxn and Dy, such that :

1. Defining T(z) and W(z) as the transfer matrices of the discrete-time sys-
tems [ O 'F QG H K'] and [ A7'A AT'B C D] respectively, i.e.
T(z) =K+ H(:Q—F)7'G and W(z) =D+ C(zA — A)"'B . Then

F G][R o][A B]" _[QRA* © @)
HK||oJ||CD| | o J
and T(t) = W(u) = I, where 7 and i are points chosen from the complex

plane and satisfying Tu* = 1. We call [ F G H K ] and [ A B C D ]
a discrete-time embedding of ( 1).

2. All possible discrete-time embeddings [ F G H K] and [ A B C D]
satisfying a relation of the form ( 2) are given by [ F G UH UK ] and
[ A B VC VD ], where U and V' are constant matrices satisfying UJV* =
J. Moreover, T(z)JW*(w)=J on zw* =1 and

T(z) =U{I - (z—7)JB*(A* — 7A") 'R (20 — F)7'G} (3)
W(z) =V {I—(z=p)J"G(Q — uF") 'R *(2A — A) ' B} (4)
T(2)JW*(w) = J — (z2w* — 1)H(2Q — F) 'QRA*(wA — A)™*C* (5)

where T(z) = K+ H(z2Q — F)'G and W(z) =D+ C(zA — A)"'B.



The generalized embedding theorem is valid for matrices 2, A, F' and A that are
not necessarily lower triangular; the triangularity of the displacement operators is
needed for the derivation of a recursive algorithm. Our next step is to show that the
cascade decomposition of the two discrete-time systems [ Q'F QG H K

and [ A™'A A'B C D ] leads to the triangular factorization of R as well.

3. TRIANGULAR FACTORIZATION

A strongly regular n X n matrix (namely one with nonzero leading principal
minors) R admits a triangular factorization of the form R = LDU, where L is a
lower-triangular matrix with unit diagonal elements, U is an upper-triangular matrix
with unit diagonal elements and D = diagonal {og,01,...,0,-1}:

L=l i . by ], U= @1 ... an_l]* (6)
The columns l~Z and u; are of the form
G=[0 ... 01 7] and @&=[0 ...01 o] (7)

The recursive triangularization procedure can be carried out as follows:

- 1 0][oi O 1 ol" .. s
a= )z 2 )20 v e o

Riﬂ is the Schur complement of R,- with respect to g;. We are interested in decom-
posing T'(z) and W (z) into a cascade of first order sections:

T(z) =T,-1(2)...Ti(2)To(2) and W(z) = W,_1(2)... Wi(2)Wy(2) (9)

where T;(z) and W;(z) satisfy the generalized J-losslessness property T;(z) JW} (w) =
J on zw* = 1, and are of the form Tj(z) = k; + h;(2w; — f;)"'g; and W;(2)

d; + c;(26; — a;)"1b;. This decomposition generalizes the results of Potapov [7] and
Genin et al. [8].

Using the generalized embedding theorem and some straightforward manipulations
[2] we can show that this decomposition can be achieved through the following
recursive procedure:

Q'R Q'G _ _ i Ji i 9|
z}]l 3 ZK- 7 ‘| = CZ—"L 0 Qi—l}lF'i'i'l Qi—l—llGi-i'l 0 In—i—l 0 11'1z 1
Z ' 0 Hip Kin | A 0 k;
[ A7 A AT'B; L0 o ][é&'a 0 &'y
zC. ' b ’ ] =Qi| 0 A;_|_11Ai+1 Aiq_llBi—H 0 In_i1 0 z'_l
z Z 0 Cin Dit1 | ci 0 d;
where
1 00 1 00
0 0 I 0 0 I
_ | Wi |4 O
= [ Qi1 ] and A = l 7 A ] (11)



The letter ? stands for irrelevant entries. More specifically we are led to the follow-

ing recursive algorithm:

Recursive Algorithm: The triangular factorization of R and the cascade decom-

position of T(z) and W (z) can be carried out recursively as follows:
e Begin with Fp =F, Go =G, Ay = A, By =B, (y =Q and Ay = A.
e For =0 to n— 1, compute recursively:

1. Find f;, Fiy1, ai Aiqr, wi, Qig1 and 65, Agyr:

fi O a 0
-F1i = ) A’L =
[ 7 Fn T A

Q":l? Qi+1]’ Ai—l? AiJ

2. Choose 7; and p; such that ruf =1
3. Set

a’; - N:5:> * * -1
(wi ) ) )

-f’i* - Ti*w;,'k * * —
I = (m (@ildi = §idi) (Wi Ay — fiA) ™
4. Set g; = first row of G; and b; = first row of B;
5. Compute the triangular factors /;, u; and o; :

0= —
w6 — fiaf Li o)

(8:% — aXF) ™ G;Jb}

[ 1 _ 1 * * -1 * %k
| u ] _O__;(wiAi_fiAi) B;J"g;

6. Compute G;1; and Bjiq :

0 Jbigi | =1
=G+ (®; — I)Gi— i
i Git1 ] lG + )G gin;‘] U
0 J*gibi | - 4
= | B, I'.—I)B; ¢ :
_Bz-+1] [ i+ (=) ’bz-J*g:]V’

(12)

(13)

(14)

(15)

(18)

(19)

where U; ! and V;™! are constant matrices satisfying U; ' JV,™* = J. We

can choose, for example, U; = V; = 1.

e The state-space realizations of the first order sections T;(z) and W;(z) follow

from:

h,:U,-( ! ”“’"‘f”’)Jb;f) and ki:Ui(I— L __Jbi ))

ow; (6F — maf ow; (6F — Tia}

1 J*g:b,

- ( 1 pid; —ay

076 (Wi — piff) g) (

(20)
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4. THE SCHUR ALGORITHM

The recursions presented here include some important special cases where fast
algorithms have been derived, e.g. Toeplitz-like and Hankel-like structures and
structured matrices with Toeplitz displacement operators. For brevity, we only show
here how to reduce the general recursions to the classical Schur algorithm. For this
purpose we consider the special case Q =A =1, F=A=72, G=B = [ Uy Vo ],
J = diagonal {1, -1}, and we assume that the solution of R — ZRZ* = GJG* is
Hermitian positive definite. Here uy and vy are n x 1 column vectors and Z is the
lower triangular shift matrix with ones on the first subdiagonal. We choose 7; = 1
and write G; = [ u; v ] where u; and v; are (n — ¢) X 1 column vectors. Let

gi = [ Uio  Vio ] be the first row of G;. The generator recursion ( 18) reduces to

0 JGigi| ~_1
= |Gi+ (Z - I)G; U; 22
l&ﬂl l tZ=0 mhA 22)

where U; ! is any J-unitary matrix. Choose

] where k; = Yio

U0

1 1 —k
—kr 1

W

and observe that o; = |u;|> — |vio|> and hence |k;| < 1 because R > 0 < o; >

_ _ 1
0 <= |ki| < 1. Moreover U; ' is such that g;U;, ' = o} [ 10 ] Assume that

all matrices have been extended to semi-infinite dimensions and introduce G;(z) &

[ 1z 22 ... ]Gi = [ ui(z) vi(2) ] Gi(z) is called the generating function of
G;. Equation ( 22) can then be written in the form :

2Gin(2) = Gile) e [ _1@ _1’“"] [g 2] (23)

i(2) e

which is the linearized version of Schur’s recursion [9, 10]. If we define 7;(z) =

2ivi(2), 4;(2) = 2'ui(2) and fi(z) = 218 then ( 23) reduces to the classical Schur

recursion [11]:

. 1 f,(Z) — k,
T 21—k filz)

5. INTERPOLATION AND H*-CONTROL PROBLEMS

The classical Schur algorithm [9, 11] is an efficient recursive procedure for
the triangular factorization of structured (Quasi-Toeplitz) matrices of the form
R — ZRZ* = GJG*, where G is an n X 2 generator matrix; this result connects
the factorization of Quasi-Toeplitz matrices to the solution of the Caratheodory
interpolation problem. On the other hand, we have noted that the state-space ap-
proach allows us to obtain recursive procedures for the triangular factorization of
more general structures; it is natural to ask whether these procedures can be applied
to the solution of interpolation problems. The answer is positive. For example, the
solution of the the tangential Nevanlinna-Pick problem can be obtained by applying
the recursive triangularization procedure to R — FRF* = GJG*, for suitably chosen

fir1(2) with k; = f£;(0) (24)



F and G. This leads to a cascade state-space realization of the solution. More-
over, note that our recursions are very general and can be applied to non-Hermitian
structures as well. In these cases we are solving new nonsymmetric interpolation
problems [3].

A second class of applications for these results includes the solution of classical
H®— control problems. It is well known that many of these problems admit an
interpolation formulation. We get an explicit cascade state-space realization of the
solution in terms of J-lossless first-order sections [4].

6. CONCLUSION

We introduced a generalized displacement structure and derived a recursive
procedure that computes the triangular factors of the matrix. We also showed that
the recursions lead to a cascade factorization of the transfer matrices T'(z) and
W (z) obtained in the embedding procedure, in terms of first order sections with a
generalized J-losslessness property. Extensions to interpolation problems were also
noted.
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