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ABSTRACT

The minimization of empirical risks over finite sample sizes is an
important problem in large-scale machine learning. A variety of al-
gorithms has been proposed in the literature to alleviate the compu-
tational burden per iteration at the expense of convergence speed and
accuracy. Many of these approaches can be interpreted as stochastic
gradient descent algorithms, where data is sampled from particular
empirical distributions. In this work, we leverage this interpreta-
tion and draw from recent results in the field of online adaptation to
derive new tight performance expressions for empirical implemen-
tations of stochastic gradient descent, mini-batch gradient descent,
and importance sampling. The expressions are exact to first order
in the step-size parameter and are tighter than existing bounds. We
further quantify the performance gained from employing mini-batch
solutions, and propose an optimal importance sampling algorithm to
optimize performance.

Index Terms— Online learning, stochastic gradient descent,
constant step-size, mini-batch technique, importance sampling.

1. INTRODUCTION

We consider minimizing an empirical risk function J.(w), which is
the sample average over a possibly large, yet finite training set:
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where the {x, }2_, are training data samples. In this paper we as-
sume the loss function Q(w; x,) is differentiable, and the empirical
risk Je(w) is strongly convex. Problems of the form (1) are com-
mon in many areas of machine learning including linear regression,
logistic regression and their regularized versions.

When the size of the dataset IV is large, it is impractical to solve
(1) directly with classical gradient descent. One simple, yet pow-
erful, approach to remedy this difficulty is to employ the stochas-
tic gradient method (SGD) [1-7]. In this method, at every itera-
tion, rather than compute the full gradient V,,J.(w) on the entire
data set, the algorithm picks one index m; at random, and employs
VwQ(w; Trn,) to approximate V., Je(w). Specifically, at iteration
1, the update for estimating the minimizer is of the form:

w; = Wi—1 — i VuQ(Wi—1;Tn, ), 2

where p; is the step-size parameter. Note that we are using boldface
notation to refer to random variables. Although uncommon in the
literature, in this paper we refer to recursion (2) as the empirical

This work was supported in part by NSF grants CCF-1524250
and ECCS-1407712, and by DARPA project N66001-14-2-4029.
Emails: {kunyuan,ybc,svlaski,sayed } @ucla.edu

978-1-5090-0746-2/16/$31.00 ©2016 IEEE

stochastic gradient descent (E-SGD) iteration, mainly because we
will be contrasting it with an online stochastic gradient descent (O-
SGD) algorithm.

Stochastic gradient descent recursions of the form (2) have been
studied extensively in the literature, primarily in the case when the
step-size p; is diminishing [2-6, 8]. When J.(w) is strongly con-
vex, these algorithms have been shown to converge to the minimizer
w* at a sublinear rate O(1/4). In comparison, implementations with
constant step-size p; = p do not converge to the exact minimizer
w”, but rather to a small region around the minimizer in the order
of O(u) [7,9-13]. However, convergence to this region occurs at
an exponentially fast rate. Fast convergence to an approximate but
close solution is very useful in the context of machine learning since,
after all, empirical risks of the form (1) correspond to auxiliary prob-
lem formulations for the true, yet inaccessible problem of interest,
namely,

w® £ argmin J(w) = E[Q(w; x)], 3)

weRM

where the letter E denotes expectation over the often unknown prob-
ability distribution of the data . While (1) is used for training, the
actual performance on unseen data is measured through (3). The
intrinsic bias between w* and w® removes the need for exact con-
vergence to w* [4,5]. This line of reasoning, along with the fast ex-
ponential convergence rate and robustness to initialization, has mo-
tivated a tremendous interest in constant step-size implementations
with a focus on practical solutions [5, 14-16].

A fundamental question that arises when employing a constant
step-size is how to choose p in order to ensure a desired tolerance
on the excess risk (ER) or mean-square-deviation (MSD) that persist
after convergence. Non-asymptotic bounds have been given in [7,
12,13,17-19], which are useful in revealing worst-case performance
guarantees, but do not predict exact performance. Recent advances
in the field of online adaptation, on the other hand, have yielded
insights into the related problem of learning from streaming data [10,
11, 16]. In particular, MSD and ER expressions, which are accurate
to first order in the step-size, are derived in [11, 16] for a broad class
of risk functions beyond the traditional quadratic measure.

In this work, we exploit these results to reveal an interesting con-
nection between the two classes of empirical (E-SGD) and online
(O-SGD) constructions. First, we show that the stochastic gradi-
ent descent algorithm for learning empirical risks (E-SGD) is a spe-
cial case of online stochastic gradient descent algorithms (O-SGD)
studied in [11, 16]. This connection helps establish a powerful uni-
fication for learning from finite datasets and learning from stream-
ing data. Once this connection is established, we then leverage this
insight to great effect to derive first-order expressions for both the
MSD and ER of empirical (E-SGD) implementations. The resulting



expressions appear to be the tightest in comparison to available re-
sults in the literature, such as [7,12, 13, 19] and other similar works.
We further extend the analysis to include mini-batch gradient de-
scent [20, 21] and importance sampling methods [19, 22], and also
derive the corresponding MSD and ER expressions for both algo-
rithms. In particular, we show that the MSD and ER of mini-batch
are inversely proportional to the batch size.

Another important contribution in this work is that we use the
performance expressions to optimize the probability with which the
data samples are selected during the empirical implementation. Dif-
ferent from previous works [19, 22], which assume knowledge of
Lipschitz constants and use them to design the sampling probability,
we start from the uniform distribution and devise a procedure that
automatically learns the optimal sampling distribution and attains
the optimal ER performance.

2. EMPIRICAL STOCHASTIC GRADIENT DESCENT

In this section we derive the steady-state performance of E-SGD
implementations by showing how they can be viewed as special
cases of O-SGD implementations. The analysis will build on results
from [11], which considered stochastic optimization problems of the
form (3). In online implementations, data «; keep streaming in and
the gradient vector of J (w) is approximated by V., Q(w; ;). In this
way, the successive iterates are computed by means of the following
so-called O-SGD recursion:

w; = wi—1 — pVuQ(wi—1; ;). “)

Since the data stream in continuously, it is observed in recursion (4)
that the data x; has the same index ¢ as the iteration number. In
comparison, in the empirical (E-SGD) implementation (2), the data
Tn, is indexed by a randomly selected index, n;, from the finite
sample-size range 1 <n < N.

2.1. Relating both formulations

Given a finite number of data samples {z1, z2,...,zn}, we intro-
duce a discrete random variable x. having these samples as realiza-
tions and a uniform probability mass function (pmf) defined by
%, if xe = x1,
plxe) =4 : Q)
ﬁ, ifxee =anN.
As a result, the empirical problem (1) can be rewritten as

N
. 1

1,112]1151{1 Je(w) = E[Q(w; xe)] = ~ "z::l Q(w;zyn), (6)

which has the same form as (4) with the random data @ replaced by

x.. Therefore, we can apply the O-SGD algorithm (4) to solve (6),

namely,

Wi = Wi—1 — IJVQ(’UH—N me,i)y @)
where the notation x. ; represents the realization of x. that streams
in at iteration ¢. Since x.; is selected from {z1,z2, -+ ,zN} at

iteration ¢ according to the pmf (5), we can rewrite @ ; as £r, and
replace (7) by

w; = Wi—1 — pVQ(Wi—1;Tn,). ®)

Here, the variable n; is a uniform discrete random variable indicat-
ing the index of the sample that is picked at iteration ¢. Recursion
(8) is the E-SGD algorithm (2). We therefore conclude that the E-
SGD recursion is an O-SGD recursion applied to the solution of the
stochastic optimization problem (6). This interpretation is useful be-
cause we can now call upon results from [11] for O-SGD and apply
them to characterize the performance of E-SGD. This step is not as
straightforward as it appears. This is because the results in [11], as is
common in studies on stochastic optimization, rely on certain regu-
larity conditions on the risk function and the gradient noise process.
In order to be able to appeal to the earlier results from stochastic
optimization theory, we need to verify first that problem (6) satisfies
these regularity conditions. In preparation for the main results, we
list two typical conditions on the empirical loss function.

Assumption 1 (CONDITION ON LOSS FUNCTION). It is assumed
that Q(w; xy) is differentiable and has a ,-Lipschitz continuous
gradient, i.e., foreveryn = 1,..., N and any w1, w2 € RM:

[Vw@(wi;zn) = VwQ(wa; )| < Gnflwr — w2l (9)

We also assume Je(w) is v-strongly convex. |

If we introduce § = max{d1, 02, - -
is also §-Lipschitz continuous.

-, 0N}, then each Vo, Q(w; zr)

Assumption 2 (SMOOTHNESS CONDITION). It is assumed that
Je(w) is twice differentiable and that the Hessian matrix of Je(w)
is locally Lipschitz continuous in a small neighborhood around w*:

[Vide(w* + Aw) = Vi, Je(w”)|| < kel Awl|,  (10)

where | Aw|| < € and constant ke > 0. [ |

2.2. Gradient noise and its moments
For the E-SGD algorithm (8), the gradient noise is given by
si(wis1) 2 VuQwio1;2n,) — Vude(wio1). (1)

Let F;_1 refer to the collection of all past iterates {w;,j < ¢} and
define

lim E[s;(w*)s] (w*)|Fi_1]

i— 00

R, 2

—~

N
= %Z[VwQ(w*;xn)va(w*;xn)TL (12)

n=1

where (a) holds because V., Je (w*) = 0. Based on this definition,

1 & R
Tr(RS) = N Z ”va(w ?xn)||2' (13)
n=1

We now verify that the gradient noise process (11) has zero mean
and its second-order moment improves as the iterate gets closer to
the desired minimizer, w*. These are among the regularity condi-
tions required in [11]. Here we show that this is not an assumption
anymore for E-SGD but that it does actually hold.

Lemma 1 (GRADIENT NOISE PROPERTIES). The first, second and
fourth-order moments of the gradient noise s;(w;—1) satisfy:

E[si(w¢,1)|.7"¢,1] = 0, (14)
E[llsi(wi-1)[1*|Fi-1] < B2|Wia]® + 02, (15)
Elllsi(wi1)||*|Fi-1] < Beall@i—1||” + oda, (16)



where W;i—1 = w* — wi_1 and
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Besa = 1286°, 0cq = ~ E (IVwQw™;z)|" (18)
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Proof. We first prove (14). Since w;—1 € F;—1 and n; is selected
uniformly, it holds that

N
E[S (’LUZ 1 |.¢1 1 Z wi71;$n)—vag(wi71) =0.

19
Next we establish (15). Using Jensen’s inequality:
E[l|si (wi1)||*|Fi1]
=E[|VwQwi—1;Zn,) Ve (wi)|*|Fi]
SQE[vaQ(wFM xni)_va(W*§ zni)_vae(wifl)HzL’Fi—l}

+ 2E[|VuQ(w';2n,) || Fica]. (20)
Noting that for any random variable :
Ellz — Ez|* = Ellz||* - |Ez|* < Ellz|*, @n
and using V., Je(w*) = 0, we have

E[l| Vo Q(wi—1;%n,) = VuQ(w';2n,) = Vi Je(wizr) [|*|Fizi]
x Ex

<E[||VuQ(wi—1;7n,) — VuQw";2n, )| Fii]

(a) _

< Oflwi — w*[|* = 8 |lwia |, (22)
where (a) holds because of Assumption 1. Substituting (22) into
(20), we obtain (15). A similar argument can be used to establish the
fourth-order moment property (16), which we omit for brevity.

O

2.3. Mean-square stability and performance of E-SGD

We can now appeal directly to Lemma 3.1 from [11] to conclude the
mean-square stability of E-SGD.

Theorem 1 (MEAN-SQUARE-ERROR STABILITY OF E-SGD). Un-
der Assumption I and any step-size satisfying p < 2v/(6% + 52) =

2u /362, it holds that
Bl < o Ellwo — w* | + O(s) 23
where o = 1 — 2vp + 36%u% € (0,1). [ |

Theorem 1 states that E-SGD converges exponentially fast to a small
neighborhood around w* of size O(). From (23), it is also observed
that E-SGD is not sensitive to the initial staring point wo because
lwo — w*||* will diminish exponentially fast. Theorem 1 does not
provide an accurate expression for the steady-state performance of
E-SGD. More is needed to arrive at this expression. Here we appeal
to Theorem 4.7 from [11] to derive the expression for the steady-
state performance of E-SGD. By steady-state we mean the algorithm
is applied repeatedly in random passes over the finite training data.
We denote the Hessian of the empirical risk (1) at w* by

2 V2 Jo(w*). (24)

Theorem 2 (STEADY-STATE PERFORMANCE). Assume the condi-
tions under Assumptions 1 and 2 hold. When the step-size is suf-
ficiently small, the MSD and ER metrics to first-order in p for the
E-SGD algorithm (2) are given by the following expressions:

MSD 2 limsupE[[|w; — w*||?] = gTr(H‘lRS), (25)
1—00

ER 2 limsupE[J.(w:) — Je(w")] = %Tr(RSL (26)
1— 00

where H is defined in (24) and R is defined in (12). |

The MSD expression (25) is tighter than the bound given in [19],
which is written as

pTr(Rs) pTr(Rs)

lim sup E||w;||* = .7
l?i,llp leoall” < v(l — pmax,{dn}t) v(1— ud) @7)
Since J. (w) is v-strongly convex, we have H > vI. Therefore,
7 1 7 pTr(R;)
-Tr(H s) < —Tr(Rs _—, 28
g TH "R < o P Tr(Re) < S5 %)

where the last inequality holds because 1 — ud < 2. Relation (28)
shows that our MSD expression (25) is tighter. As a result, expres-
sions (25) and (26) are more helpful to determine a proper step-size
when a certain accuracy e is required for the MSD or ER perfor-
mance.

3. MINI-BATCH GRADIENT DESCENT

In this section, we derive the MSD and ER performance expres-
sions for mini-batch gradient descent. Following arguments simi-
lar to Section 2, we will also interpret mini-batch gradient descent
as a special case of O-SGD, and then refer to the theoretical results
in [11].

Suppose we have B independent discrete random variables
ccgl), a:f), e a:é ) , each with the same distribution as x. that is
defined from Sectlon 2. 1. Using these variables, we define

Qwi {z!, 2, aM}) £ Zwa“) 29)
and note that
E[Q(w; {z", @ m(B)})]
- 1
@ 1 Z ) 2 ZJ Jo(w).  (30)

It follows that the empirical problem (1) can also be rewritten as:
min Jo(w) = E[Q(w; {z{", ¥, - ,2P}], 3D
eRM

w
which is a stochastic optimization problem. We can therefore apply
the O-SGD algorithm to seek its minimizer, which leads to the mini-
batch gradient descent algorithm:

B
W; = Wi— 1_MV Q(wz 17{wez7w((a2z)7.“7wi,i>})

= W;—1 — B ZV’(UQ Wi—1; m(J))

o

(a) H
e vaQ(wi—Hxni(j))» (32)

j=1
(9)

where @/ is the instantaneous realization of the random variable



29

xs’ at iteration ¢. Equality (a) holds because, similarly to (7)

(J)

and (8), we redefine x,; as x,,(;) where the random variables

{n:(j)}L, are mutually independent with the same pmf as n;.
During the implementation of recursion (32), we will sample B data
with replacement at each iteration, and then compute their average.

3.1. Gradient noise and its moments

According to the mini-batch recursion (32), the gradient noise is

sy (wi—1) ZVwQ (Wi—1; T, () — Vade(wi—1). (33)

The following result extends Lemma 1 to the mini-batch method.

Lemma 2 (GRADIENT NOISE PROPERTIES). The first and second-
order moments of the gradient noise s?(wifl) defined in (33) sat-

isfy:

E[s; (w;1)|Fi1] =0, (34)
E[||s? (wi—1)|?|Fia] < B l|@i1 ]| + o, (35)
E[l|s7(wi—1)[|*|Fi-1] < Boall@ial” + oa, (36)

where W;_1 = w* — w;_1,
2 B/B. o £ 0l/B, 37)
5;14 = /8347 0214 = 034- (38)
and B2, 02, B, and o}y are defined in Lemma 1. |

Proof. The argument for (34) is similar to (19). To prove (35), we
start by noting that

E[||s} (wi—1)|*|Fi-1]

2
Fi1

o
[iZ( wQ(Wi—1;Tn; () — Ve(wi- 1))T
j=1 ks

(VwQ(wi,l; Ty (1)) — VJe(wi,l)) ’ J—'H]
B XB:E{HVWQ(UHHJSM(J')) - VJe(wi—l)H2’ -7'7‘71}
1

Jj=

B
% Z (VMQ(UH;H :pni(j))—VJe (wi—1))

B
Z vaQ wi;— 1,1’n (])) VJE(’LUZ 1)
=1

(39)

where (a) holds because when k # j, n; () is independent of n; (k).
Now using property (15) from Lemma 1 in (39) gives (35). The
derivation for the fourth-order moment result follows from Jensen’s
inequality and property (16). We omit the proof for brevity.

O

One important observation is that, with the mini-batch tech-
nique, the magnitude of the second-order moment of the gradient
noise is reduced to 1/B of its original magnitude (see (37)), which
suggests that we should expect both the MSD and ER of mini-batch
implementations to improve by a factor of B. The analysis in the
next section confirms this conclusion.

3.2. Performance of mini-batch gradient descent

First, the limiting covariance matrix of the mini batch gradient noise
process is given by

R (- 1
Ri= 55> Re= 3R (40)
j=1

Then, using Theorem 4.7 from [11] we deduce the following.

Theorem 3 (STEADY-STATE PERFORMANCE). Under Assumptions
1 and 2, for a sufficiently small step-size, the MSD and ER metrics
for the mini-batch method (32) are given by:

MSD, = %Tr(H”R ) = ;BTr(H R.), (@D

-k - H
ER, = 4Tr(R5) 15 (R, 42)

where H is defined in (24) and R is defined in (40). Moreover, the
algorithm converges at an exponential rate:

ap=1—2vp+ (1+2/B)5% . (43)
[

4. OPTIMAL IMPORTANCE SAMPLING

We have assumed so far that the data samples in an empirical SGD
implementation are selected uniformly at random, according to (5).
However, we can consider other selection policies in order to en-
hance performance. The works [19, 22] proposed to measure the
importance of each sample according to its Lipschitz constant §y,
in (9). Specifically, they suggest selecting the sampling probability
according to

6’”

n)= =N < 44
p(n) ST (44)
where p(n) is the sampling probability of data x,. This scheme
assumes knowledge of the Lipschitz constants, which is usually not
available in advance or even known. Moreover, this importance sam-
pling method is not optimal, as the ensuing discussion will show

where we derive the optimal sampling algorithm.
Let us denote the new pmf for the random variable n that we

wish to determine optimally by

a(l), ifn =1,
a(2), ifn =2,

pn) =4 : (5)
a(N), ifn=N,

where a(n) is the sampling probability for data z,, and it holds that
the {a(n)} add up to one. With this new pmf for n, the empirical
problem (1) can be interpreted as the following stochastic optimiza-
tion problem

N
i, ) = 3 Qi) = BaiQ izl (6
n=1
where we defined
1
Q' (w;zn) 2 Q(w; ). @7

a(n)N
Now if we apply O-SGD to solve problem (46), we obtain the fol-



lowing importance sampling recursion:
1
w; = Wi—1 — pVuQ (Wi—1;Tn,)

ol -
WVU,Q(w@_l,xni). (48)

Next we will explain how to choose p(7;) such that the above recur-

sion can reach optimal steady-state performance. First, the gradient
noise of the importance sampling approach is given by:

val(wi—l;xn,,;) - vae(wi—l) (49)

Lemma 3 (GRADIENT NOISE PROPERTY). The gradient noise pro-
cess in (49) satisfies the following conditions:

E[st(wi_1)|Fi1] =0, (50)
E[||si(wi—1)|]*|Fi-1] < Bl @i |® + of (51)

where Wi_1 = w* — w;_1 and

= Wi-1 —

si(wi—1) =

N

?AQZ N2’Uléz

N2 IV @w"; )|

|
This Lemma can be established by following arguments similar to
those used in Lemmas 1 and 2. Now, calling upon Theorem 4.7
from [11] we arrive at the following expression for the proposed
importance sampling recursion (48):

9=4 o

We can minimize this expression over the {c(n)} and solve:

ERl:“Tr 7 IVuQutsen)|® (52)

N

. 1 * 2
min —— [V Q(w™; x4) (53)
i3y IVeQe ]
N
s.b. d am)=1, 0<a(m) <1, n=1,2---,N.
n=1

Fortunately, this problem has a closed-form solution, which can be
derived by the Lagrangian multiplier method:

* VuQ(w*; z,
ot n) = V2@ i) s
>t Ve Qs zm)||
Substituting into (52) yields the optimal ER value:
N 2
BR; = 4 (3 < IVaQ 2] (55)
4 n=1 N 7

From Jensen’s inequality, we can verify that ER; is always smaller
than or equal to the ER of E-SGD derived earlier in (26).

Although we determined the optimal pmf in (55), one practical
problem is that the expression for o (n) depends on the unknown
w™*. This problem can be overcome by replacing the minimizer by its
estimate, which leads to an adaptive importance sampling method:

vaQ('LUi—N :L’n) ||
S I Vw@wi—1; )|
Expression (56) is still inefficient to update because at each iteration
we have to compute ||V, Q(w;—1;2y)| for all data samples and

then calculate the average. To reach an efficient update, we introduce
an auxiliary variable 1 € RY, with its nth entry updated as follows:

Jrbi (M) +A=N[VuQwi-i;zn)l, ifn=mn;
"P@(”)—{ Y1 (n), i

a;i(n) = (56)

where v € (0,1); in the simulations we selected v € (0.1,0.5).
Note that each entry 1), (n) is an estimate of || V., Q(w;; z»)||. Note
further that at iteration 4, only one entry of 1), is updated, and hence
this update is cheap. We also update a scalar # to maintain the sum
of 7). Suppose n; is picked up at iteration ¢, then

N
92':2"#1 Z’j’l 1

(57)
= 0ic1+ (1= 7) (Ve Qwi-1;z0)| = ;1 (1)) . (58)
Note that each update of 6 only requires O(1) operations, which
is also cheap. The algorithm is summarized in the following table,
where p; € RY is the sampling probability vector with each entry
pi(n) indicating the probability that data =, is selected.

)+ (i) — b, (na)

Optimal adaptive importance sampling for SGD

Initialization:
1, is initialized to be some large positive vector;
0o is initialized as the sum of the entires in 1 ;
po is initialized as uniform distribution;
for:=1,2,3,...
Pick n; according to sampling probability p;_1;
Update 1), and 6; according to (57) and (58) respectively;
Update sampling probability p; = v, /0;;
Update w; according to (48)
end

In the above algorithm, we initialize 1), to large entries so that p; is
not too small for some indices. In this way, we can guarantee that
all data samples are accessed with large enough probability during
the initial stages. The key feature of this algorithm is that it does not
depend on any pre-knowledge of each data sample (such as the Lip-
schitz constants needed in [19,22]), and can automatically learn the
optimal sampling probability distribution. Moreover, the algorithm
is very efficient in computational cost.

5. NUMERICAL EXPERIMENTS

We illustrate the results by considering the regularized logistic re-
gression problem:

Je(w) = +—Zln( + exp(—
where h,, € R' is the feature and y(n) € {£1} is the label scalar.
In the simulation, we generate a random data set {h,,~y(n)} with
N = 500. We set p = 0.01 and x = 0.01. We run the empiri-
cal SGD and mini-batch algorithms over 25 epochs. All simulation
results shown below are averaged over 100 trials. From Fig 1, it is
clear that our bound is significantly tighter than the bound from [19],
which is also shown in (27). We also observe that the MSD perfor-
mance is inversely proportionally to the size of the mini-batch, as
predicted by Theorem 3. Moreover, the figure shows that our the-
oretical performance expressions match well with the simulated re-
sults.

Next, in Fig. 2 we illustrate the behavior of our optimal im-
portance sampling algorithm with the same problem setting. All al-
gorithms use a 10 mini-batch size. The red curve is the standard
SGD learning curve, which is used as reference; The blue curve is

Ymhiw)), (59



using the fixed optimal importance sampling probability, which is
precalculated with the w* information (54). The green curve is our
proposed adaptive importance sampling method, which is seen to be
as good as the optimal solution. We also compare against the resam-
pling technique from [19,22], which use the Lipschitz constants. The
result is the black curve, which is only matching the performance of
the standard SGD implementation and is away from the optimal per-
formance.

5 other bound [19]
——E-SGD (8)
or MSD (25) for E-SGD
—— Mini-Batch (32) with B=10
-5t MSD (41) with B=10
= —— Mini-Batch (32) with B=100
Z 1o MSD (41) with B=100
= 151 ,
2 o} 1
53
—25+ 1
-30+ 1
-35F

6000 8000 10000 12000

iteration

2000 4000

Fig. 1. Convergence behavior of mini-batch SGD for regularized
logistic regression problem. B indicates the size of the mini-batch.

=50 T T T T T T T T T
—~-SGD (8)
—@- SGD+Optimal Sampling (54)
-10p SGD+Adaptive (57)-(58) ||
—%— SGD-+Lipschitz (44)
—15) 1
o
i
¥ 20t
]
(2]
& -25¢
o
x
w
-30f
-35
-40

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
iteration

Fig. 2. Optimal adaptive importance sampling algorithm for regu-
larized logistic regression problem.

6. CONCLUSION

This paper establishes a useful connection between empirical
stochastic gradient methods for learning from finite data samples,
and online stochastic gradient methods for learning from streaming
data. Using performance expressions for the excess risk (ER), an op-
timal sampling strategy is devised to attain the best ER performance.
Simulation runs illustrate the results.
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