
2011 IEEE International Workshop on Machine Learning for Signal Processing
September 18-21, 2011, Beijing, China

978-1-4577-1623-2/11/$26.00 c©2011 IEEE

COLLABORATIVE LEARNING OF MIXTURE MODELS USING DIFFUSION ADAPTATION

Zaid J. Towfic, Jianshu Chen, and Ali H. Sayed

Department of Electrical Engineering
University of California, Los Angeles

ABSTRACT

In large ad-hoc networks, classification tasks such as spam filtering,

multi-camera surveillance, and advertising have been traditionally

implemented in a centralized manner by means of fusion centers.

These centers receive and process the information that is collected

from across the network. In this paper, we develop a decentralized

adaptive strategy for information processing and apply it to the task

of estimating the parameters of a Gaussian-mixture-model (GMM).

The proposed technique employs adaptive diffusion algorithms that

enable adaptation, learning, and cooperation at local levels. The

simulation results illustrate how the proposed technique outperforms

non-collaborative learning and is competitive against centralized so-

lutions.

Index Terms— online-learning, Newton’s method, diffu-

sion, Expectation-Maximization, Gaussian-mixture-model, machine

learning, distributed processing

1. INTRODUCTION

In large ad-hoc networks, classification tasks have traditionally been

implemented in a centralized manner at fusion servers that retain and

process information collected from across the network [1]. Server-

based classification schemes can suffer from a handful of limitations.

First, fusion-based solutions are centralized in nature and demand

high levels of communication resources between the fusion center

and the access points at which the data are collected. Second, in

many classification problems, the amount of data that is available is

abundant and continuous, which further compounds the communica-

tions requirements. Furthermore, in applications where the data are

collected across nodes that are already distributed in space, it may

be more convenient to process the data in a decentralized manner

through local processing rather than rely on repeated data transfer to

the central server. This last point is especially relevant when feature

extraction mechanisms preserve privacy features, and transmissions

over multiple hops may pose security risks and copyright issues. In

some other applications, such as multi-camera tracking and surveil-

lance, item suggestion and advertising, and social tagging and book-

marking, it is inherently preferable to process data in a distributed

manner and in real-time. For all these reasons, we focus in this

work on proposing decentralized strategies that are able to endow

distributed agents with learning and adaptation abilities. These dis-

tributed techniques are able to deliver enhanced performance and to

compete favorably with centralized solutions.

In a series of recent works, a family of diffusion-based adapta-

tion strategies have been proposed to enable estimation, tracking,

and detection over distributed networks [2–6]. The adaptive dif-

fusion techniques have the distinct advantage of relying solely on

Email:{ztowfic, jshchen, sayed}@ee.ucla.edu. This work was supported
in part by NSF grants CCF-1011918, CCF-0942936, and ECS-0725441.

in-network (local) processing to enable adaptation and learning in

real-time. In this paper, we show how to apply the diffusion strategy

to maximize the Expectation-Maximization (EM) [7] utility func-

tion. The EM algorithm is a popular technique that is used for both

classification and clustering purposes [8, 9]. For example, EM al-

gorithms have been applied to Gaussian Mixture Models (GMMs)

in several applications including speaker identification and image

retrieval [10, 11]. In recent works [12, 13], distributed EM algo-

rithms were proposed. In [12], the algorithm estimates local suffi-

cient statistics at each node and then shares information with neigh-

bors to arrive at the global statistics through an average consensus

filter. Subsequently, each node accomplishes the maximization step

based on the estimated global statistics. In [13], two rounds of shar-

ing are conducted: first, the local statistics are averaged between

neighbors and, second, a new round of sharing communicates pre-

estimates between neighbors. However, both of these approaches

apply only when the mixture model is Gaussian, where the maxi-

mization can be solved analytically and in closed form.

In this paper, we develop a general distributed approach to solve

the problem for general mixture models where the maximization

step is solved by an adaptive diffusion process rather than in closed

form. This adaptive diffusion procedure provides improved steady-

state mean-square-error in simulation compared to [?, 13]. In the

maximization step, instead of using a steepest-descent argument for

optimization, we develop a Newton’s recursion based on a diffusion

adaptation strategy. Compared with consensus-based solutions, the

diffusion strategy does not require different agents to converge to

the same global statistics; the individual agents are allowed flexi-

bility through adaptation and through their own assessment of local

information. Diffusion strategies also enable recursive learning and

adaptation. We test the proposed solution on the “Iris” dataset [14]

and on a synthetic dataset generated from a GMM consisting of two

components. The simulated results indicate that the mean-square-

deviation of the estimated parameter is within 1dB of the central-

ized solution, over 3dB better than that of the algorithms proposed

in [12, 13], and over 10dB better than non-cooperative schemes.

We use the following notation throughout the paper: random

quantities are denoted in boldface while deterministic quantities

are plain. Matrices are denoted by capital letters while vectors and

scalars are denoted by small letters. No distinction is made between

vectors and scalars, except for the context.

2. PROBLEM FORMULATION

Consider a connected network consisting of N nodes. Each node k
has access to multiple i.i.d. vector realizations {xk,1, . . . ,xk,D}. It

is assumed that all nodes in the network observe data generated by

the same probability density function (PDF). The PDF of the data

is assumed to consist of a mixture of C component distributions as

p
(x

)

x

−10 −5 0 5 10
0

0.1

0.2

0.3

Fig. 1. Example of a PDF of a mixture model consisting of two

Gaussian components with means 0 and 5, respectively, and unit

variance. Instances are drawn from the zero-mean component 70%
of the time.

follows:

p(x) =

C
∑

j=1

αjp(x|z = j; βj) (1)

where αj is the prior probability that the sample comes from class

z = j, and βj are parameters that define the jth component of the

distribution. The coefficients αj satisfy
∑C

j=1
αj = 1 and αj ≥ 0

for all j ∈ {1, . . . , C}. In this way, each instance xk,i arises from a

mixture ofC component distributions each weighted by the prior αj .

One example of a distribution as in (1) would be to consider data that

arises 70% of the time from a Gaussian distribution with mean 0 and

variance 1, and 30% of the time from a Gaussian distribution with

mean 5 and variance 1. In this case, we would set α1 = 0.7, α2 =
0.3, x|z = 1 ∼ N (0, 1), x|z = 2 ∼ N (5, 1), β1 = (µ1, σ

2
1) =

(0, 1), and β2 = (µ2, σ
2
2) = (5, 1). The probability density function

for this example is illustrated in Figure 1.

Our objective is to estimate the model parameter vector θ from

all the data, where

θ =
(

{αj}
C
j=1, {βj}

C
j=1

)

The standard method used in the literature to estimate such param-

eters is the expectation maximization (EM) algorithm [9]. The gen-

eral EM algorithm introduces unobserved variables zk,i, which, to-

gether with the observed variables xk,i, form the extended or com-

plete variables yk,i = (xk,i,zk,i). Then, at each iteration, the algo-

rithm evaluates the expectation of the log-likelihood function of the

complete data {yk,i} conditioned on the observed samples {xk,i}
and the current estimate of the parameter θ of the mixture model.

For the mixture model, the unobserved variable zk,i usually denotes

the mixture component from which the instance xk,i is generated.

It is known [7, 15] that the EM algorithm can make the likelihood

function increase until it reaches a (local or global) maximum.

The EM algorithm can be applied by each node k individually to

its own data. The argument in [9, pp.46] shows that, at each iteration,

node k would maximize the following objective function:

J loc
k (θ) =

D
∑

n=1

C
∑

zk,n=1

p(zk,n|xk,n; θk,i−1)

× log
(

αzk,n
p(xk,n|zk,n; θ)

)

(2)

where θk,i−1 is the node k’s estimate of θ at time i − 1, and the

probability p(zk,n|xk,n; θk,i−1) is evaluated by

p(zk,n|xk,n; θk,i−1),
p(xk,n|zk,n; θk,i−1)αzk,n

∑

zk,n

p(xk,n|zk,n; θk,i−1)αzk,n

(3)

The EM algorithm can also be implemented at a fusion center, which

is assumed to collect all data from the N nodes. Then, the global

objective function becomes:

Jglob(θ) ,

N
∑

l=1

J loc
l (θ) (4)

with θk,i−1 replaced by θi−1 for all k = 1, . . . , N . There are many

ways to maximize (4) iteratively such as using a steepest descent

method or Newton’s method. Here, we consider Newton’s method,

which takes the following form:

θi = θi−1 − λ · [∇2Jglob(θi−1)]
−1∇Jglob(θi−1)

= θi−1 − λ ·
N
∑

l=1

[

N
∑

l=1

∇2J loc
l (θi−1)

]−1

∇J loc
l (θi−1) (5)

where λ is some small step-size and ∇J loc
l (θ) and ∇2J loc

l (θ) are

the gradient vector and the Hessian matrix of the local objective

function J loc
l (θ), respectively. After the new estimate θi is com-

puted, it is sent back to all nodes, i.e., θk,i = θi.
Algorithm (5) is not distributed: it requires access to all local

data across all nodes. In the next section, we develop a distributed

strategy based on the adaptive diffusion strategies of [2, 4]

3. DISTRIBUTED OPTIMIZATION VIA DIFFUSION

First, we rewrite the global objective function in the following form

[4]:

Jglob(θ) = J loc
k (θ) +

∑

l 6=k

J loc
l (θ) (6)

Assume J loc
l (θ) is second-order differentiable, and that there exists

a θlocl that optimizes J loc
l (θ). Then, J loc

l (θ) (l 6= k) can be ap-

proximated, via a second order Taylor series expansion around θlocl ,

as:

J loc
l (θ) ≈J loc

l (θlocl) +∇J loc
l (θlocl)⊤(θ − θlocl)

+
1

2
(θ − θlocl)⊤∇2J loc

l (θlocl)(θ − θlocl)

=
∥

∥

∥
θ − θlocl

∥

∥

∥

2

Γl

+ constant (7)

where Γl , ∇2J loc
l (θlocl)/2. In the last step, we used the fact that

∇J loc
l (θlocl) = 0, because θlocl optimizes J loc

l (θ). Furthermore,

since J loc
l (θlocl) is independent of the optimization variable θ, we

treat it as a constant and drop it from now on. Then, the objective

function in (4) can be replaced by the equivalent objective function:

Jglob′

(θ) = J loc
k (θ) +

∑

l 6=k

∥

∥

∥θ − θlocl

∥

∥

∥

2

Γl

(8)

Optimizing the above objective function at every node k still requires

the nodes to have access to global information, namely, the local es-

timates θlocl , and the matrices Γl at the other nodes. However, (8)

provides insights into motivating a useful distributed implementa-

tion. Specifically, we use (8) to motivate a local cost functions at the

individual nodes that serve as approximations to (8). To do so, we

first confine the sum in (8) to be over the neighborhood of node k,

i.e., Nk/{k}. Then, we replace the local optimal θlocl with an inter-

mediate estimate for it that will be available at node l, denoted by

θl. In this way, each node k can proceed to minimize the modified

objective function:

Jdist
k (θ) = J loc

k (θ) +
∑

l∈Nk/{k}

∥

∥

∥θ − θlocl

∥

∥

∥

2

Γl

(9)

We could proceed here and develop a Newton’s method to optimize

(9) in a manner similar to (5). However, in order to adapt to the case

in which the unknown parameter θ is a matrix in the next section,

we will go through a quadratic approximation argument to motivate

Newton’s method [16].

Suppose we have an intermediate estimate θk,i−1 of the un-

known θ at node k. Let us introduce a small perturbation δ to

θk,i−1, and perform a second-order Taylor series expansion of

Jdist
k (θk,i−1 + δ) around θk,i−1. Then, by (9), we get

Jdist
k (θk,i−1 + δ)

≈J loc
k (θk,i−1)+∇θJ

loc
k (θk,i−1)

⊤δ+
1

2
δ⊤∇2

θJ
loc
k (θk,i−1)δ

+
∑

l∈Nk/{k}

‖θk,i−1 + δ − θl‖
2

Γl
(10)

The main idea is to approximate Jdist
k (θk,i−1 + δ) by a quadratic

function centered around θk,i−1, and then pick the value of δ that

optimizes the quadratic approximation. This happens when the gra-

dient with respect to δ is zero. Taking the gradient of above approx-

imated objective funtion with respect to δ, we get

∇δJ
dist
k (θk,i−1 + δ) ≈∇θJ

loc
k (θk,i−1)+∇2

θJ
loc
k (θk,i−1)δ

+2
∑

l∈Nk/{k}

Γl(θk,i−1+δ−θl)

Setting ∇δJ
dist
k (θk,i−1 + δ) = 0 and solving for δ, the optimum

update step is found to be:

δ≈−H−1
i



∇θJ
loc
k (θk,i−1)+2

∑

l∈Nk/{k}

Γl(θk,i−1−θl)





= −H−1
i



∇θJ
loc
k (θk,i−1)+

∑

l∈Nk/{k}

∇2
θJ

loc
l (θl)(θk,i−1−θl)





(11)

where

Hi , ∇2
θJ

loc
k (θk,i−1) + 2

∑

l∈Nk/{k}

Γl

= ∇2
θJ

loc
k (θk,i−1) +

∑

l∈Nk/{k}

∇2
θJ

loc
l (θl) (12)

Next, we assume the Hessian matrices ∇2
θJ

loc
l (θ) do not deviate

from each other significantly for different l. We expect this approxi-

mation to be reasonable since all nodes sample data according to the

same distribution, yielding similar Hessians. Thus,

∇2
θJ

loc
l (θl) ≈ bk,lHi, ∇2

θJ
loc
k (θk,i−1) ≈ bk,kHi

From (12), this means that

Hi ≈
∑

l∈Nk

bk,lHi ⇒
∑

l∈Nk

bk,l = 1 (13)

where bl,k is some nonnegative scalar that scales the neighborhood

Hessian to yield the local objective function’s Hessian. Then, (11)

simplifies to

δ ≈− bk,k
[

∇2
θJ

loc
k (θk,i−1)

]−1

∇θJ
loc
k (θk,i−1)

−
∑

l∈Nk/{k}

bk,l(θk,i−1−θl)

and the recursive update equation can be written as

θk,i =θk,i−1 − λbk,k
[

∇2
θJ

loc
k (θk,i−1)

]−1

∇θJ
loc
k (θk,i−1)

− νk
∑

l∈Nk/{k}

bk,l(θk,i−1 − θl) (14)

where λ and νk are small step-sizes associated with the Newton-

step. We can accomplish the update (14) in two steps by generating

an intermediate estimate ψk,i as follows:

ψk,i=θk,i−1−λbk,k
[

∇2
θJ

loc
k (θk,i−1)

]−1

∇θJ
loc
k (θk,i−1) (15)

θk,i=ψk,i − νk
∑

l∈Nk/{k}

bk,l(θk,i−1 − θl) (16)

We further replace θl in (16) by the intermediate estimate that is

available at node l at time i, namely, ψl,i. We also replace θk,i−1 in

(16) by ψk,i. Then, (16) leads to

θk,i=ψk,i − νk
∑

l∈Nk/{k}

bk,l(ψk,i − ψl,i)

=(1− νk + νkbk,k)ψk,i + νk
∑

l∈Nk/{k}

bk,lψl,i (17)

Let us introduce the following coefficients

ak,k = 1− νk + νkbk,k and al,k = νkbl,k for l 6= k

Assume A is the matrix whose {l, k}-entry is al,k, then it satisfies:

al,k = 0 if l /∈ Nk,1
TA = 1

T
(18)

Define the Newton step of the the local objective function as

δlock,i−1 , −
[

∇2J loc
k (θk,i−1)

]−1

∇J loc
k (θk,i−1) (19)

Then, the algorithm (15) and (17) can be expressed as:

ψk,i = θk,i−1 + γkδ
loc
k,i−1

θk,i =
∑

l∈Nk

al,kψl,i
(20)

where γk is some small step-size and al,k are nonnegative combina-

tion coefficients used to combine the shared estimates. In the next

section, we will derive the specific algorithm for estimating the mul-

tivariate Gaussian-mixture-model.

4. APPLICATION TO GAUSSIAN-MIXTURE-MODELS

In this section, we use (20) to derive update equations for the pa-

rameters of a multivariate GMM. In this case, the distribution of an

instance vector xk,n is described by (1), where the component dis-

tribution is given by

p(xk,n|zk,n = j) ,

exp

{

− 1
2
‖xk,n − µj‖

2

Σ
−1

j

}

(2π)
M
2 det (Σj)

1

2

(21)

where M is the length of the feature vector xk,n. Furthermore, µj

and Σj are the mean vector and covariance matrix of the j-th Gaus-

sian component, respectively.

Then,we can substitute (21) into (2), (4), (19), and (20) to derive

the specific diffusion Newton method for EM. Before that, we first

simplify the notation. Let us replace zk,n with the dummy index

variable j as this will not change equation (2), and hence replace

αzk,n
with αj . Then, (2) becomes:

J loc
k (θ) =

D
∑

n=1

C
∑

j=1

p(j|xk,n; θk,i−1)·

[log(αj) + log(p(xk,n|j; θ))]

It is now possible to derive the Newton step (19) for the parameter

θ, defined as:

θ =
(

{µj}, {Σ
−1
j }, {αj}

)

(22)

which then completes the algorithm. Ideally, we can derive the re-

cursion for θ jointly according to (19). However, this will complicate

the algorithm. Hence, our strategy here is to derive the recursion for

each of {µj}, {Σj}, and {αj} separately while fixing the other two.

Afterwards, the three recursions will operate jointly to estimate θ.

4.1. Diffusion adaptation for {µj}

We derive the Newton-step for the mean vectors {µj}
C
j=1 directly

from the definition in (19), while fixing {Σj} and {αj}. We note

that the gradient and the Hessian can respectively be written as:

∇µj
J loc
k ({µj}) =

D
∑

n=1

p(j|xk,n; θk,i−1)Σ
−1
j (xk,n − µj) (23)

∇2
µj
J loc
k ({µj}) = −

D
∑

n=1

p(j|xk,n; θk,i−1)Σ
−1
j , j = 1, . . . , C

Then, the Newton step evaluated at

θk,i−1 = ({µk,i−1,j}, {Σk,i−1,j}, {αk,i−1,j}})

can be written as:

δµ,lock,i−1,j =

∑D
n=1

p(j|xk,n; θk,i−1) (xk,n − µk,i−1,j)
∑D

n=1
p(j|xk,n; θk,i−1)

(24)

It is worth noting here that Newton’s method in this application has

lower complexity than a steepest-descend solution for the same prob-

lem. This can be seen by comparing (23) with (24) and noting that

it consists of a matrix-vector multiplication. The multiplication by

the inverse of the Hessian reduces the complexity to vector subtrac-

tion. The main reason for this simplicity is that Newton’s method

uses a quadratic approximation to derive the optimal update, and the

log-likelihood function for {µj} is exactly quadratic.

4.2. Diffusion adaptation for {Σ−1
j }

In order to derive the Newton step for the matrix Σ−1
j , we use the

same approach used in Sec. 3. Specifically, we add a small per-

turbation to {Σk,i−1,j} in the objective function, and optimize for

the perturbation after expanding the objective function up to second

order:

J loc
k (Σ−1

k,i−1,j +∆)

=
D
∑

n=1

p(j|xk,n; θk,i−1) ·
[

log(αk,i−1,j)−
M

2
log(2π)+

1

2
log det(Σ−1

k,i−1,j +∆)−
1

2
‖xk,n − µk,i−1,j‖

2

Σ
−1

k,i−1,j
+∆

+ constant
]

(25)

≈
D
∑

n=1

p(j|xk,n; θk,i−1) ·
[

log(αk,i−1,j)−
M

2
log(2π)+

1

2
log det(Σ−1

k,i−1,j) +
1

2
Tr(Σk,i−1,j∆)−

1

4
Tr(Σk,i−1,j∆Σk,i−1,j∆)−

1

2
‖xk,n − µk,i−1,j‖

2

Σ
−1

k,i−1,j
+∆

+ constant
]

(26)

where we used the second-order Taylor series expansion of log det(X)
given in [16]:

log det(X +∆) ≈ log det(X) + Tr(X∆)−
1

2
Tr(X∆X∆)

Next, just as in Sec. 3, we need to evaluate the gradient of

J loc
k (Σ−1

k,i−1,j + ∆) with respect to ∆, set it to zero, and solve

for the optimal ∆. Using the gradient properties:

∇XTr(AX) = A, ∇XTr(AXAX) = 2AXA

for symmetric matrices A and X , we can compute the gradient of

J loc
k (Σ−1

k,i−1,m +∆) with respect to ∆ as:

∇∆J
loc
k (Σ−1

k,i−1,j +∆)

≈
D
∑

n=1

p(j|xk,n; θk,i−1)
[1

2
Σk,i−1,j −

1

2
Σk,i−1,j∆Σk,i−1,j−

1

2
(xk,n − µk,i−1,j)(xk,n − µk,i−1,j)

⊤
]

Setting the gradient to zero and solving for ∆ yields the Newton step

in (27).

∆Σ−1,loc
k,i−1 = Σ−1

k,i−1,j − Σ−1
k,i−1,j

∑D
n=1

p(j|xk,n; θk,i−1)(xk,n − µk,i−1,j)(xk,n − µk,i−1,j)
⊤

∑D
n=1 p(j|xk,n; θk,i−1)

Σ−1
k,i−1,j (27)

4.3. Diffusion adaptation for {αj}

We note that the recursion for {αj} must preserve the fact that
∑

j αj = 1. We rewrite the optimization problem for α =

col{α1, α2, . . . , αC} as

max J loc
k (α) (28)

subject to 1
Tα = 1 (29)

We follow the same approach as above where we add a step to the

optimization variable and perform a second-order Taylor series ap-

proximation near α. The Newton step can then be found by solving

the following system of equations [16]:
[

∇2
αJ

loc
k (α) 1

1
T 0

] [

δα,loc

w

]

=

[

−∇αJ
loc
k (α)
0

]

(30)

where w is the lagrange multiplier associated with the equality con-

straint and the gradient vector and Hessian matrix are defined as:

∇αJ
loc
k (α) =

(

D
∑

n=1

p(j|xk,n; θk,i−1)

)

col

{

1

α1

, . . . ,
1

αC

}

∇2
αJ

loc
k (α) =

(

D
∑

n=1

p(j|xk,n; θk,i−1)

)

diag

{

−1

α2
1

, . . . ,
−1

α2
C

}

The Newton step can then be shown to be

δα,loc
k,i−1 =

[

I −

[

∇2
αJ

loc
k (αk,i−1)

]−1
11

T

1T
[

∇2
αJ

loc
k (αk,i−1)

]−1
1

]

×

(

−
[

∇2
αJ

loc
k (αk,i−1)

]−1

∇αJ
loc
k (αk,i−1)

)

(31)

and
[

∇2
αJ

loc
k (αk,i−1)

]−1
can be computed easily since the Hessian

is diagonal. We note here, however, that it is possible in this for-

mulation for αk,i−1,m to become negative as we have not incorpo-

rated the inequality constraint αk,i−1,j ≥ 0. For this reason, we

project αk,i−1,m onto the non-negative orthant after each computa-

tion. Hence, by (20), the recursion for {αj} becomes:

ψα
k,i,j = max

(

αk,i−1,j + γkδ
α,loc
k,i−1(j), 0

)

αk,i,j =
∑

l∈Nk

al,kψ
α
l,i,j

(32)

where δα,loc
k,i−1(j) is the jth element of δα,loc

k,i−1 in (31).

5. SIMULATION RESULTS

We evaluate our mixture model estimation method by first estimating

a known distribution. This allows us to establish some performance

results and compare the centralized and non-cooperative solutions

against our algorithm, as well as compare our algorithm to the ones

proposed in [12] and [13]. Following this, we will evaluate the per-

formance of the algorithm on the popular “Iris” dataset [14]. For all

simulations, the combination coefficients al,k in (20) are chosen as

al,k = 1/|Nk| where |Nk| is the size of node k’s neighborhood.

Fig. 2. A network used in the estimation of the mixture-model.

5.1. The “Two Gaussians” Data Set

In this section, we attempt to estimate the parameters of a 2-D

GMM. The mixture consists of two Gaussian components with

weights α1 = 7/10, α2 = 3/10 and means µ1 = 01 and µ2 = 41.

The covariance matrices of the two components are defined to be

Σc = cI for c = {1, 2}. We simulate N = 20 nodes in a single-

component network. An example of such network is illustrated

in Figure 2. Each node receives a collection of D = 100 feature

vectors {xk,1, . . . ,xk,D} and performs Algorithm (20) to estimate

the model parameters. The received feature vectors are corrupted by

white Gaussian noise whose variance varies between the different

nodes. The variance of the noise is chosen to be uniformly random

in the range [0, 1). A step-size of γk = 0.05 is chosen for all nodes.

The mean-square-deviation (MSD) is defined as

MSDθ = E

[

‖θ̂ − θ‖22
]

(33)

where ‖ · ‖2 is the Euclidean norm. The MSD is evaluated and

used for comparison purposes between the different algorithms. The

above expectation is evaluated over different experiments and the

different nodes in the network. Due to lack of space, we only dis-

play the MSDs of µ1 and µ2 in Figure 3.

We compare our algorithm with the consensus-based method

proposed in [12]. We include 100 consensus iterations in order for

the discrete consensus filter to converge. We chose η = 1/N since

the condition for convergence of the discrete consensus filter in [12]

is that η ≤ 1/dmax where dmax is the maximum degree. In our com-

parison to the algorithm proposed in [13], we include a single round

of averaging in the D-step and M-step respectively.

The MSD is computed by averaging over 100 networks and ran-

dom initializations around the true mean values. The initial covari-

ance matrices are all assumed to be the identity matrix. The initial

components weights are assumed to be uniform (i.e. αc = 1/2 for

0 20 40 60 80 100
−30

−20

−10

0

10

M
S

D
 o

f
µ

1
 (

d
B

)

Iteration

0 20 40 60 80 100
−20

−10

0

10

M
S

D
 o

f
µ

2
 (

d
B

)

Iteration

Individual

[12]

[13]

Proposed Algorithm

Centralized EM

Fig. 3. MSD for the means of the distribution. MSD is averaged over

100 networks and random initializations around the true parameters.

c = {1, 2}). We note that the “Centralized EM” solution, the so-

lution from [12], and the solution from [13] explicitly compute the

the minimum of the expectation at each iteration for the Gaussian-

mixture-model. This fact explains their faster convergence. In the

proposed scheme, however, we use an iterative procedure to step in

the direction of the minimum at every stage. While this may not

be necessary in the Gaussian case, this iterative procedure is use-

ful when it is not possible to compute the minimum analytically in

closed form. In other words, the proposed scheme is not restricted

to Gaussian mixture models, and it is seen to lead to lower mean-

square-error even the Gaussian case. Additionally, the “Centralized

EM” curve shows the performance of running EM at a centralized

node where all the observations are available. This is not the case in

the proposed work and [12, 13] where the raw data is not exchanged

but only the estimates of the parameters of the generating distribu-

tion are exchanged within a node’s neighborhood–no communica-

tion occurs past a single hop. “Individual” illustrates that if the nodes

do not cooperate and rely only on their private observations, then the

estimation of the distribution parameters suffers significantly.

5.2. The “Iris” Data Set

The Iris dataset contains 150 instances for three classes (evenly di-

vided). We give the first 25 points of the data to each node as train-

ing. The training-data per node is corrupted by zero-mean white

Gaussian noise with power σ2
v independently and uniformly dis-

tributed in the interval (0, 4) for each node. Each class is fitted with

a single mixture component since at the training state, the class la-

bels are known to the classifiers. After the training stage, the entire

noise-free dataset is used to generate the confusion matrix. The con-

fusion matrix indicates what proportion of data points from class X
are classified as class Y . Ideally, the confusion matrix of a classi-

fier will be the identity matrix. Here we display the network average

confusion matrix from non-cooperative and diffusion classifiers. We

average the confusion matrices over 100 experiments and N = 20
nodes. The step-size for the algorithms is chosen to be γk = 0.01
and 500 iterations are used to ensure convergence. The classifica-

tion for the diffusion-trained classifiers is done individually. The

diffusion-based algorithm presented in this paper shows improve-

ment in the classification of each of the three classes when compared

to the non-cooperative classifier.

Table 1. Confusion matrix for non-cooperative classification. Cell

(1, 2) indicates a Setosa sample being mis-classified as Versicolor

Setosa Versicolor Virginica

Setosa 0.9978 0.0004 0.0018

Versicolor 0.0063 0.8751 0.1187

Virginica 0 0.2563 0.7437

Table 2. Confusion matrix for diffusion-based training. Cell (1, 2)
indicates a Setosa sample being mis-classified as Versicolor

Setosa Versicolor Virginica

Setosa 1 0 0

Versicolor 0 0.9784 0.0216

Virginica 0 0.1959 0.8041

6. REFERENCES

[1] V. V. Prakash and A. O’Donnell, “Fighting spam with reputation systems,” Queue,
vol. 3, pp. 36–41, November 2005.

[2] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adaptive net-
works: Formulation and performance analysis,” IEEE Transactions on Signal Pro-
cessing, vol. 56, no. 7-2, pp. 3122–3136, July 2008.

[3] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “Diffusion recursive least-squares
for distributed estimation over adaptive networks,” IEEE Transactions on Signal
Processing, vol. 56, no. 5, pp. 1865–1877, May 2008.

[4] F. S. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for distributed esti-
mation,” IEEE Transactions on Signal Processing, vol. 58, no. 3, pp. 1035–1048,
March 2010.

[5] ——, “Diffusion strategies for distributed Kalman filtering and smoothing,” IEEE
Transactions on Automatic Control, vol. 55, no. 9, pp. 2069–2084, September
2010.

[6] ——, “Distributed detection over adaptive networks using diffusion adaptation,”
Signal Processing, IEEE Transactions on, vol. 59, no. 5, pp. 1917 –1932, May
2011.

[7] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incom-
plete data via the EM algorithm,” Journal of the Royal Statistical Society. Series
B (Methodological), vol. 39, no. 1, pp. 1–38, 1977.

[8] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. New
York: Wiley, 2001.

[9] S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th ed. Burlington,
MA: Academic Press, 2008.

[10] D. A. Reynolds and R. C. Rose, “Robust text-independent speaker identification
using gaussian mixture speaker models,” IEEE Transactions on Speech and Audio
Processing, vol. 3, no. 1, pp. 72–83, 1995.

[11] H. Permuter and J. Francos, “Gaussian mixture models of texture and colour for
image database retrieval,” in Proc. IEEE ICASSP, vol. 3, Hong Kong, April 2003,
pp. 569–572.

[12] D. Gu, “Distributed EM algorithm for Gaussian mixtures in sensor networks,”
IEEE Transactions on Neural Networks, vol. 19, no. 7, pp. 1154–1166, 2008.

[13] Y. Weng, W. Xiao, and L. Xie, “Diffusion-based EM algorithm for distributed
estimation of Gaussian mixtures in wireless sensor networks,” Sensors, vol. 11,
no. 6, pp. 6297–6316, June 2011.

[14] E. Anderson, “The irises of the gaspe peninsula,” Bulletin of the American Iris
Society, vol. 59, p. 25, 1935.

[15] C. Wu, “On the convergence properties of the EM algorithm,” The Annals of
Statistics, vol. 11, pp. 95–103, 1983.

[16] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

