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ABSTRACT

In this paper we exploit the one-to-one correspondences
between the recursive least-squares (RLS) and Kalman
variables to formulate extended forms of the RLS al-
gorithm. Two particular forms are considered, one
pertaining to a system identification problem and the
other to the tracking of a chirped sinusoid in addi-
tive noise. For both applications, experiments are pre-
sented that demonstrate the tracking optimality of the
extended RLS algorithms, compared with the standard
RLS and least-mean-squares (LMS) algorithms.

1. Introduction

The LMS algorithm [1,2] and the RLS algorithm [2]
have established themselves as the principal tools for
linear adaptive filtering. The convergence behaviors
of both of these algorithms are now well understood.
Typically, the RLS algorithm has a faster rate of con-
vergence than the LMS algorithm, and is less sensitive
to variations in the eigenvalue spread of the correlation
matrix of the input vector. However, when operating
in a nonstationary environment, the adaptive filter has
the additional task of tracking the statistical variations
in environmental conditions. In this context, it is well
recognized that the convergence behavior of an adap-
tive filter is a transient phenomenon whereas its track-
ing behavior is a steady-state phenomenon. In general,
a good convergence behavior does not necessarily mean
a good tracking behavior.

In recent years, much has been written on a com-
parative evaluation of the tracking behaviors of the
LMS and RLS algorithms [3-6]. The general conclu-
sion drawn from the studies reported in the literature
to date is that, typically, the LMS algorithm exhibits a
better tracking behavior than the RLS algorithm. This
conclusion should not be surprising since the LMS al-
gorithm is model independent, whereas the RLS algo-
rithm is model dependent. Unless the multiparame-
ter regression model assumed in the derivation of the
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standard RLS algorithm closely matches the under-
lying model of the environment in which it operates,
we would expect a degradation in the tracking perfor-
mance of the RLS algorithm due to a model mismatch.

In a recent paper, Sayed and Kailath [7] delineated
the relationship between the RLS algorithm and the
Kalman filter in precise terms. Although work on this
relationship may be traced back to the seminal pa-
per by Godard [8], and subsequently elaborated on by
many other investigators, the exact nature of the re-
lationship was put on a firm footing for the first time
in [7]. Thus recognizing that the RLS algorithm is a
special case of the Kalman filter, and recognizing that
the Kalman filter is the optimum linear tracking de-
vice on the basis of second-order statistics, how then
is it that the exponentially weighted RLS algorithm
has not inherited the good tracking behavior of the
Kalman filter? The answer to this fundamental ques-
tion lies in the fact that in formulating the standard
form of the RLS algorithm by incorporating an ex-
ponential weighting factor into the cost function, the
transition matrix of the RLS algorithm (using the lan-
guage of Kalman filter theory) is in reality a constant,
which is clearly not the way to solve the tracking prob-
lem for a nonstationary environment.

The purpose of this paper is two-fold. First, we de-
scribe two different methods for the design of an RLS-
type algorithm so as to cope with corresponding forms
of nonstationary environmental conditions. Second, we
present computer experiments, one on system identi-
fication assuming a first-order Markov model and the
other on tracking a chirped sinusoid in additive noise.
The experiments demonstrate the tracking superiority
of the extended RLS algorithm(s) over the LMS algo-
rithm, when the right model for the RLS algorithm is
chosen to suit the particular problem of interest.
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2. The Standard RLS Algorithm and
Extensions

According to Sayed and Kailath [7], a state-space model
for the exponentially weighted RLS algorithm may be
described as follows:

A~ x(n),

u¥ (n)x(n) + v(n), (1)

x(n +1)
y(n)

where x(n) is the state vector of the model at time
(iteration) n, y(n) is the observation (reference) signal,
u(n) is the input signal vector, v(n) is the measurement
noise modeled as white noise with unit variance, and A
is a forgetting factor. Two observations from the state
equation are immediately apparent for the standard
RLS algorithm:

e The transition matrix is a constant multiple of
the identity matrix, namely A—1/2],

o The process (state) noise vector is zero.

Now, both of these conditions are synonymous with a
stationary environment. Thus, although it is widely
believed in the literature that by introducing the for-
getting factor A into the design of the RLS algorithm
the algorithm is enabled to track statistical variations
of the environment, in reality this is not exactly so. It
is therefore not surprising that the RLS algorithm, in
its standard form, does not always measure up to the
LMS algorithm when it comes to tracking considera-
tions.

Kalman filter theory tells us that a more general
form of the state-space model of the RLS algorithm
should be as follows:

il

x(n+1)
y(n)

F(n+ 1,n)x(n) + r(n),
u¥(n)x(n) + v(n). (2)

The measurement equation (i.e., second line of (2)) is
the same as before. However, the state equation (i.e.,
first line of (2)) differs from that of (1) in two aspects:

o The transition matrix F(n+1, %) is time varying.
e The process (state) noise vector r(n) is nonzero.

This, therefore, points to two special ways in which
the RLS algorithm may be modified in order to cope
with different nonstationary environments, as explained
in the next two sections; in one case we assume F(n+
1,n) is known and present the proper extension of the
RLS solution (refered to here as ERLS-1); this algo-
rithm is applicable to a system identification problem
assuming a Markov model. In the other case, we as-
sume F(n + 1,n) is not known and proceed to suggest

a second extension of the RLS solution by invoking
connections with extended Kalman filtering (the ex-
tension is refered to as ERLS-2); this second algorithm
is applicable to tracking a chirped sinusoid in additive
noise.

The fundamental point to stress here is that in both
cases, prior knowledge about the original dynamical
system model is explicitly built into the formulation
of the extended forms of the RLS algorithm, thereby
improving the tracking performance of the resulting
adaptive filter.

3. A System Identification Problem

Consider a linear time-variant system described by a
first-order Markov model. Specifically, we have the
following pair of equations as the system description:

Wo(n + 1)

y(n) =

F(n+ 1,n)wo(n) + r(n),
u¥(n)wo(n) + v(n), ®3)

where F(n+1,n) is a known transition matrix, w,(n)
is the optimum tap-weight vector of the model at time
n, y(n) is the desired response, and u(n) is the input
vector. A special case of interest is when F(n+1,n) =
al, where a is a positive constant assumed to be less
than one to assure the stability of the model. Further-
more, the following assumptions are made:

e {r(n)} is a zero-mean white noise sequence with
covariance matrix Q(n).

e {v(n)} is a zero-mean white noise sequence with
variance o2(n).

e Theinitial state-vector w,(0) is random with mean
w, and covariance matrix ITp.

e The random variables {r(n),v(n), (wo(0) — W,)}
are uncorrelated.

Then, building on the classical Kalman filter the-
ory and exploiting the one-to-one correspondences that
exist between Kalman variables and RLS variables [7],
the RLS algorithm appropriate for the task at hand is
the so-called ERLS-1 solution [9]:

Algorithm 1 (Extended RLS Solution I) The estimates of
the weight-vector wo(n) in (3), computed in the process of solving
the optimization criterion given above, can be recursively evalu-
ated as follows: Start with W(0] — 1) = W, P(0, ~1) = IIo, and
repeat for n > 0:

k(n) = F(n+1,n)P(n,n—1)u(n)
[u¥@)P@,n - Dun) + ()],
En) = y(n) - u¥n)w(nln-1),
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w(n+1n) = F(n+1,n)W(n|n—1)+k(n)é(n),
_ P(n,n — Du(n)u(n)P(n,n — 1)
P(n) = Plun-1)- u#(n)P(n,n — lju(n) + o2(n) ’
P(n+1,n) = F(n+1,n)PnH)FI(n+1,n)+Q(n),

where k(n) is the gain vector, £(n) is the apriori estimation error,
and W(n|n — 1) is the estimate of the unknown wo(n) given the
input data up to time (n —1).

In the Kalman filtering context, the matrix P(n,n—1)
is the covariance matrix of the predicted weight-error
vector,

W(n,n—1) =wo(n) - w(njn—1).

4. Tracking of a Chirped Sinusoid in Noise

For our second example of a nonstationary environ-
ment, we consider the tracking of a chirped sinusoid
in additive noise. The state-space model of interest in
this case takes the following form

F(y)wo(n),
uf(n)wo(n) + v(n), (4)

wo(n + 1)
y(n)

F(¢) is an unknown diagonal matrix that is parame-
terized fully in terms of a single unknown parameter 1.
This parameter is related to the linear shift of the cen-
ter frequency in the chirped signal and the dependence
of F on it is as follows:

F(¥) £ diag [¢'Y,

Here, M is the size of the tap-weight vector. If the
parameter 3 were known, then F(¢) will be a known
transition matrix and a standard least-squares (RLS)
problem results, the solution of which can be written
down as a special case of the standard Kalman filter
recursions.

Both w,(n) and 9 are unknowns that we wish to
estimate. Ideally, we may want to determine these es-
timates so as to meet the optimality criterion

[Wo(o)—Wo V-9 ]H[ Hgl ”21 }

il

It

eﬂfl/’_”yeJM'JJ]

min
{wo(0),%}

.[m@—wﬂ EZMﬂﬂﬁf”my

subject to wo(n + 1) = F(yp)w,(n). For this pur-
pose, we collect the unknowns into an extended (state)

vector:
A wo(n)
2|y ]
and note that it satisfies the nonlinear (state-space)

model:
F(y)wo(n) | _ [ F(¥) 0
x(n+1) [ 4 ]_[ 0 1],((”)
= f(x(n)), (5)
y(n) = [ uf(n) o ]x(n)+u(n),
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where f(-) is a nonlinear functional of the state-vector.
Note also that the last entry 1 of the state vector does
not change with time. Following a procedure similar
to that used to derive the extended Kalman filter, we
may derive the ERLS-2 algorithm as summarized here

(9]-
Algorithm 2 (Extended RLS Solution II) The estimates of
the weight-vector in (4) can be recursively evaluated as follows:
start with W(0| — 1) = Wo, ¢| 1 =19,

0

o !

P(0,~1) = [ %"

and repeat for n > 0:

_ u(n) u(n) 17
k(n) = P(n,n-—l)[ 0 } ([ 0 ] P(n,n-1)
[0]+o0)

((n) = y(n) —u(n)¥(njn—1),
[ k) ] - { v =1 ] (e,
W(n+1n) = F(Pa)W(nln),
P(n+1,n) = F(n+1,n)Pn,n)F(n+1,n),

P(n,n) = (I—k(n)[ uf(n) 0 ])P(n,n—l).

5. Computer Experiments

5.1. System Identification

In this experiment, we consider the system identifica-
tion of a simplified version of the first-order Markov
model described in (3), viz.,

il

Wo(n +1)
y(n)

where, for all m and n,

awo(n) + r(n),

uf(n)wo(n) +v(n), n>0, (6)

I

Wo(0) = 0, u(n) ~ N(0,R), r(n) ~ N(0,Q), v(n) ~ N(0,0?),

E [u(m)r?(n)] = E[u(m)v*(n)] = E

and all vectors are M —dimensional.
attention to the case M = 2 when

Q:az[

[r(m)v*(n)] =0,

We restrict our

1 q

@ ¢ ] ) lqll _<. 1, ¢ > 431

for the two specific cases (1): R™! = ¢Q and (2):
R = ¢Q, both for ¢ > 0. Our choices of the basic
parameters for the experiments that follow are given
in Table 1. Letting D represent the mean-square devi-
ation and M the relative mean-square misadjustment,
it can be shown [2,5] that for each case, the results of
Table 2 hold.



cin case 1 ¢ in case 2

oQ N q2 o a

0.9998 | 6.250 x 10* | 3.657 x 10°

0.01 l -0.75 1 1 | 0.2

Table 1: Basic parameters for experiments.

”7 rCase 1: R =¢Q TCase 2: R=c¢cQ ”
DRLS

H ﬁ 1 14
Dain 2(14242 4 42) N

v | afmw | A
M A 14492 1442

i

Table 2: Relative theoretical performance of RLS and
LMS algorithms.

The simulation results of Table 3 clearly show rea-
sonable agreement between the experimentally and the-
oretically evaluated quantities of interest in relative
terms. Furthermore, the results demonstrate the supe-
riority of the RLS algorithm over the LMS algorithm
in case (1), and vice versa in case (2). This condition
depends, of course, on the particular choice of experi-
mental parameters, but what is constant is the recipro-
cal symmetry between cases (1) and (2) for the ratios
DRELS/DIMS anq MEES /MIMS 45 given in Table 2.

It is also interesting to note that the ERLS1 al-
gorithm performs only marginally better than the op-
timal RLS/LMS algorithm in each case. Most likely,
this situation is an artifact of the choice of experimen-
tal parameters; it makes both the relative mean-square
weight deviation 4 and relative mean-square misadjust-
ment M sufficiently small, so that differences between
the performances of the algorithms are not discernable

Case 1: R™1 = ¢Q
Exp. value | Theor. valueT A%
DR'!"S
DN 0.7578 0.8 -5.3%
MELS
Vi 0.6347 0.6614 —-4.0%
Case 2: R=¢Q
Exp. value l Theor. value l A% I
DRLS
o 1.4806 1.5119 -2.1%
M?‘J!J:S
ey 1.2064 1.25 -3.5%

Table 3: Relative experimental performance of RLS
and LMS algorithms.

from normal simulation variance and numerical noise.

5.2. Tracking of Chirped Sinusoid

In this second experiment we consider the tracking of
a chirped sinusoid in noise. The deterministic shifts
caused by the chirp represent the other extreme of the
Markov model described in (2). The chirped input
signal is given by

(k) = VR AIHI, g

where /P; denotes the signal amplitude. Noisy mea-
surements of s(k) are available, say
y(k) = s(k) + n(k),

where n(k) denotes a white-noise sequence with power
P,. The signal-to-noise ratio is denoted by p = P;/P,.
A prediction problem is formulated with the objective
of estimating s(k) from the noisy data {y(k)}. More
specifically, the “prediction error” v(k) is defined as
v(k) = y(k) — 5(k), where

3(k) = u (K)w, ,
and
wfky=[ yk—1) y(k-2) y(k— M) .

The prediction weight-vector w, is chosen so as to
minimize E|v(k)|?. The state-space model in this case
takes the form

F(¢)wo(n) ,
u (n)wo(n) + v(n), (8)

wo(n+1)
y(n) =

which is in agreement with the model studied in Sec-
tion 4.. The sequence v(-) is taken as a white-noise pro-
cess with variance 02 &~ P,. With this model, the LMS
and RLS algorithms are used in an ALE (adaptive-
line-enhancer) configuration, predicting y(k) using the
vector of past inputs u(k).

The relative performance of the RLS and LMS algo-
rithms for tracking a chirped sinusoid in noise is given
by Macchi et al. [9]. The ratio of excess mean-squared
errors is

MRS o \'°
Mg,l;sz(m) : ©)

When the input chirped signal-to-noise ratio (p) is
less than 3M, the performance of the LMS algorithm is
superior to that of the RLS algorithm; and for p > 3M
the reverse is true.

To compare the performance of the RLS and LMS
algorithms to the ERLS2 algorithm, we simulate two
different cases indicated by (9): p < 3M;and p > 3M.
The parameters are chosen to complement those in {10]
and are given by
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1. (pL3M): p=2, M=2,¢9p=10"",
2. (p>3M): p=100, M =2, ¢ =107%,

The same chirped signal was used for all three al-
gorithms: LMS, standard RLS, and ERLS2. The es-
timates of the misadjustment were measured as the
mean of |y(k) — uf (k)W(k|k — 1)|?, over 1500 itera-
tions in steady state. This was repeated 10 times to
find a mean value for the misadjustment. In order to
illustrate that the ERLS2 algorithm can estimate an
unknown chirp rate, the initial value of Il was set to
the identity matrix, and the initial guess for the chirp
1 was set to 0. The fact that Il was incorrect was
compensated by using a larger value for o2 in the al-
gorithm. We found that the error decreased as o? is
increased for this case. The simulations results shown
below are for o2 that is 200X larger than the actual.

The results are summarized in Table 4. It can be

Case I (p=12)
Hmin Mmin /Pn
Theor. | Exp. Theor. Exp.
LMS 0.0037 | 2pope | -20.85dB | -24.37dB
RLS 0.0039 Hopt -20.55dB | -22.19dB
ERLS2 - - - -27.64dB
Case I1 (p = 100)
Bmin Mmin/p,
Theor. | Exp. Theor. Exp.
LMS 0.0261 2popt -12.31dB | -15.11dB
RLS 0.0144 Hopt -14.89dB | -16.23dB
ERLS2 - - - -31.33dB

Table 4: Misadjustment of LMS, RLS, and ERLS1 for
the chirped sinusoid problem.

seen that neither the LMS nor the RLS is superior in
all cases but, in this chirped-tone example, the LMS
might be favored since interest usually lies in the low
SNR regions. Note also that the misadjustments for
the LMS and RLS actually increase as the SNR (p)
is increased, since neither algorithm is estimating the
chirp rate. The ERLS2 algorithm uses the additional
SNR to improve its estimate of the chrip rate thereby,
decreasing the misadjustment. It was observed that,
on a run by run basis, the ERLS2 always performed
better.

6. Conclusions

The Kalman filter is known to be the linear optimum
tracker on the basis of second-order statistics. Build-
ing on this fact and exploiting the one-to-one corre-
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spondences between the RLS and Kalman variables,
we may derive extended forms of the RLS algorithm
that inherit the good tracking behaviour of the Kalman
filter. In this paper we have considered two particular
forms of this extension:

e ERLS-1, pertaining to a system identification prob-
lem.

e ERLS-2, pertaining to the tracking of a chirped
sinusoid in noise.

In each case, prior knowledge about the original
dynamical system model is built into the formulation
of the extended form of the RLS algorithm, making it
the optimum linear tracking device for the particular
applciation of interest.
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