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Abstract—This paper provides a time-domain feedback-
analysis of several adaptive schemes with emphasis on sta-
bility and robustness issues. It is shown that an intrinsic
feedback structure, mapping the noise sequence and the ini-
tial weight guess to the apriori estimation errors and the
final weight estimate, can be associated with such schemes.
The feedback configuration is motivated via energy argu-
ments and is shown to consist of two major blocks: a time-
variant lossless (i.e., energy preserving) feedforward path
and a time-variant feedback path. The configuration is fur-
ther shown to lend itself rather immediately to analysis via
a so-called small gain theorem; thus leading to stability con-
ditions that require the contractivity of certain operators.

I. INTRODUCTION

Considerable research activity has been devoted over
the last two decades to the analysis and design of adaptive
algorithms in both signal processing and control applica-
tions. In particular, several ingenious methods have been
proposed for the performance and stability analysis of the
varied adaptive schemes. Among these, the most notable
are the hyperstability results of Popov, a nice account of
which is given by Landau [1], the ODE approach of Ljung
[2], and the related class of averaging methods for trajec-
tory approximation, as described in Anderson et al. [3] and
in Solo and Kong [4].

1.1 Stability Analysis of Adaptive Schemes

The hyperstability approach is based on a stability the-
orem of Popov [5], which extends a result from linear feed-
back theory to a class of nonlinear feedback systems. The
theorem is applicable to a feedback interconnection with a
linear time-invariant system, say H(z), in the feedforward
path and a possibly nonlinear time-variant system in the
feedback loop. Such interconnections often arise in IIR (i.e.,
infinite-impulse-response) modeling and have received con-
siderable attention in the literature. In simple terms, the
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hyperstability theorem states that if the nonlinear system
obeys a so-called Popov’s inequality then the overall con-
nection is stable provided the feedforward transfer function
H(z) is strictly positive real. The application of this con-
dition to the analysis and development of stable adaptive
algorithms was pioneered by Landau [1] and further refined
by Johnson [6] , thus leading to algorithms that go by the
names of HARF, SHARF and PLR.

The stability analysis in the hyperstability framework
is usually carried out in the noise-free case, i.e., in the ab-
sence of measurement disturbances. The effect of the distur-
bances can be examined by resorting to another widely used
method for the convergence analysis of recursive schemes,
known as the ODE approach. Its application to the adap-
tive context was pioneered by Ljung [3], and the basic idea
is to associate a differential equation with a discrete-time
recursive scheme. Under some technical assumptions, in-
cluding slow adaptation, a stable point of the differential
equation can be shown to be a convergent point in the mean
for the adaptive algorithm.

ODE-based analyses have been carried out for both
cases when the adaptation gain is a constant, say u [7],
or vanishing, say u(i) — 0 [2]. The latter case leads to al-
gorithms that essentially turn off as time progresses, thus
debilitating the tracking capabilities of the algorithm in po-
tentially nonstationary (or time-variant) environments. In
the former case of constant u, the ODE analysis requires
slow adaptation and the convergence conclusions only hold
for sufficiently small . This is an issue that usually hinders
obtaining more powerful conclusions from an ODE analysis.

This situation is in fact characteristic of the class of
averaging methods, of which the ODE approach is a promi-
nent member. The averaging methods are tools designed for
the approximation of the trajectories of either difference or
differential equations, accounts of which can be found in
[3,4]. In the discrete-time case, for instance, the approxi-
mation is achieved by associating with a general, possibly
nonlinear and time-variant, difference equation a so-called
averaged system that is described by a time-invariant equa-
tion. The analysis of the time-invariant model is often more
amenable to standard stability tools, such as those from
Lyapunov analysis, than the original system. Here also the
convergence properties of the original and the averaged sys-
tems can be tied together as long as a certain parameter,



say the adaptation gain u in our case, is sufficiently small

(e.g., Ch. 7 of [4]).

1.2 A Time-Domain Feedback Analysis

The above results have motivated us to take an alterna-
tive look at two issues that are relevant to any performance
analysis of recursive identification schemes. We focus not
only on the potential stability of an adaptive scheme but
also on its robustness performance in the presence of distur-
bances. Here, the term disturbance is used to refer to both
measurement noise and uncertainties in the initial condi-
tion.

In this respect, this paper suggests a time-domain feed-
back framework that is useful for both the analysis and de-
sign of recursive estimators. A major motivation through-
out our derivation is to see how far we can progress in the
analysis without imposing restrictive assumptions on the
data (noisy or not) and on the adaptation gain (small or
not) right from the early stages of the analysis.

Moreover, the notion of robustness that we employ here
is in perfect agreement with the notion of robust filters in
studies on H *°-filtering (see, e.g., [8] and the references
therein). By explicitly bringing up the connection with
H*°-theory, we are able to exploit the wealth of results that
are already available in this area.

Indeed, and in order to further highlight these connec-
tions, the derivation in future sections will be fundamen-
tally based on a useful tool in system theory that is widely
known as the small gain theorem. In loose terms, the theo-
rem states that the feedback interconnection of two systems
is stable if the product of their gains (or induced norms) is
less than unity. While this statement can be reformulated
in terms of a passivity result, the analysis provided in this
paper has three distinctive features.

First, by relying on the small gain theorem, we can ad-
vantageously exploit many results that are available in the
H*®° —setting. In other words, since we essentially know
how to design a robust filter, i.e., a system with a bounded
gain, we can then guarantee an overall stable interconnec-
tion by imposing a condition on the gain of the feedback
system. This is especially helpful in the design (i.e., syn-
thesis) phase. In fact, it can be shown that several of the
algorithms that have been derived earlier in the literature,
with the objective of meeting the requirements of the hy-
perstability approach, are different forms of H *°—filters, as
will become apparent throughout our analysis.

We have in fact pursued this point of view in [9] where
we have provided a stability analysis, along the lines of this
paper, of two IIR adaptive schemes that are often attributed
to Landau [1] and Feintuch [10]. While a sufficient stabil-
ity condition is available for Landau’s scheme in terms of
a positive-realness constraint [4, pp.146-150], there did not
seem to exist a similar analysis for the closely related, yet
different, Feintuch’s algorithm. An explanation was pro-
vided in [9] by showing that Feintuch’s recursion requires
an additional condition on the data. This was obtained by
establishing the following interesting fact: Landau’s scheme
was shown to be a special case of a so-called aposterior:
H*°-filter while Feintuch’s algorithm was shown to be a
special case of a so-called apriori H°-filter. Moreover, it

is known in H °° —theory that the solvability and existence
conditions for both filters are different. We showed in [9]
that in Landau’s case, the condition trivializes and is there-
fore unnecessary, but it remains in Feintuch’s case and is
therefore required, along with a positive-realness condition.

Similar conclusions hold for a variety of recursive schemes,
which include the class of instantaneous-gradient-based es-
timators (e.g., LMS, normalized LMS, projection LMS, gen-
eral time-variant step-sizes), the class of Gauss-Newton es-
timators, and the class of filtered-error variants in both
the linear and nonlinear settings (e.g., filtered-error LMS,
filtered-error Gauss-Newton recursions). In particular, it
will follow from the arguments in this paper that these dif-
ferent variants are also robust filters.

The second distinctive feature of the approach suggested
herein is that although the feedback nature of most of the
above recursive schemes has been pointed out and advan-
tageously exploited in earlier places in the literature (e.g.,
[1,2]), the feedback configuration in this paper is of a differ-
ent nature. It does not only refer to the fact that the update
equations can be put into a feedback form (as explained in
[11]),) but is instead motivated via energy arguments that
also explicitly take into consideration both the effect of the
measurement noise and the effect of the uncertainty in the
initial guess for the weight vector. These extensions are
incorporated into the feedback arguments of this paper be-
cause our derivation is also concerned with the robustness
properties of the algorithms in the presence of uncertain
disturbances. This is especially useful, for example, when
the statistical properties of the disturbances are unknown.

Furthermore, the feedback connection provided herein
is shown to exhibit three main features that distinguish it
from earlier studies in the literature: the feedforward path
in the connection consists of a lossless (i.e., energy preserv-
ing) mapping while the feedback path consists either of a
memoryless interconnection or, in the case of filtered-error
variants, of a dynamicsystem that is dependent on the error
filter. The blocks in both the feedforward and the feedback
paths are allowed to be, and in fact are, time-variant. This
is a distinctive feature, especially when compared with the
hyperstability analysis which requires that one of the paths
be time-invariant.

1.3 Notation

In the sequel, we shall use small boldface letters to de-
note vectors and capital boldface letters to denote matrices.
Also, the symbol “x” will denote Hermitian conjugation
(complex conjugation for scalars), and the notation |x||3
will denote the squared Euclidean norm of a vector.

II. STOCHASTIC GRADIENT METHODS

In order to highlight the major features of the framework
proposed herein, we shall first focus on the important sub-
class of instantaneous-gradient-based schemes, which in-
cludes as a special case the famed least-mean-squares algo-
rithm (LMS). Once the basic ideas are introduced, we shall
then proceed to more involved situations, which include the
study of filtered-error variants and Gauss-Newton methods.



II.1 The Least-Mean-Squares Algorithm

One of the most widely used adaptive algorithms is the
least-mean-squares (LMS) algorithm. It starts with an ini-
tial guess w_1, for an unknown M x 1 weight vector w, and
updates it via the update equation

wi = wi_1+p(i)ul [d() —uiwiq]
— W + u(iuléai) 1)

where the {u;} are given row vectors and the {d(7)} are
noisy measurements of the terms {u;w}, viz., d(i) = u;w+
v(2). The nonnegative factor (i) is the adaptation gain
(step-size) parameter.

The difference [d(z) — uiwi_l] will be denoted by éa(i),

w; will denote the difference between the true weight vector

w and its estimate w;, W; = (w — Wz) eq(1) will denote
the apriori estimation error, ea( ) =u;W;—1, and ep( ) will
denote the aposteriori estimation error, ep(z) = u;w;. It

follows from the update equation (1) that the following re-
lations hold:

Wi = Wi — p(i)uféa(i) (2)

ep(i) = [ 1= p(@)wll ] ea(d) = p()lwill3 o(i)  (3)

I1.2 Local Error-Energy Bounds

We first establish several local error-energy bounds that
can in effect be used to account for the robust behaviour
of the LMS recursion in practice. For this purpose, we
invoke the time-domain update recursion (2) and compute
the squared norm (i.e., energies) of both of its sides. This
leads to the equality:

[Wi1ll3 + w(i) |o(i)* =
1905+ ) leaD* + () (1= w(Da™" @) ea(d)

where we have defined z7*(i) = ||ui||3. Consequently, the
following local-bounds always hold:

{ <1 for pu(s) < i)
1
1

190 + ) lea ()] for u() < (s
191 + ) o(0) P for 1(3) > 1)

In particular, the first two bounds have an interesting ro-
bustness interpretation: they state that no matter what the
value of the noise component v(i) is, and no matter how far
the estimate w;_; is from the true vector w, the sum of the
energies of the resulting errors, viz., ||W;||3 + p(i)|eq()]?,
will always be smaller than or equal to the sum of the en-
ergies of the starting errors (or disturbances), ||V~V¢_1||§ +
#(3)]v(8)|>. This is a local conclusion but a similar result
also holds over intervals of time. Indeed, note that if we
assume p(1) < @(2) for all 7 in the mterval 0 <i< N, then
the following inequality holds for every time instant in the
interval,

u() lea(D)* < Wizl = W13 + p(2) (i) -

Summing over ¢ we conclude that

N
||wN||2+Z ) lea(i)® < Woals + > u(i)le@)?
=0

2

which establishes a fundamental contractivity relation over
the interval 0 <: < N.

I1.3 The Feedback Structure

The previous local bounds can be described via an al-
ternative form that will lead us to an interesting feedback
structure that characterizes update relations of the form
(1). To clarify this, we re-express the update equation (1)
in the alternative form:

wi = Wi+ p(iujeq(i) +
upu(i)v(i) — ((1) — uli))ea(1)]
—a(i)ep()
That is,
w; = W;_1+ ﬂ(i)ll:[ea(i) — ep(i)]
= Wit + ali)ullea(i) + o(3)] (1)

This shows that the weight-update equation can be rewrit-
ten in terms of a new step-size parameter z(z) and a mod-
ified “noise” term o(i) = —ep(t) (compare with (1)). If
we now follow arguments similar to those in Sec. 11.2; we
readily conclude that the following equality holds for all

{u(2), v(1)},

||W1||2 + A1) [ea(t )|2 -1 (5)
[[Wi-1]l3 + &(1) lep(2)]*

This establishes that the map from {W;_1, \/p(1)v(7)} to
{Wi,+/B(1)ea(i)}, denoted by T, is always lossless, i.e., it
preserves energy. The overall mapping from the original
disturbance +/a(-)v(:) to the resulting apriori estimation
error \/ji(-)ea(+) can then be expressed in terms of a feed-
back structure, as in Figure 1. The feedback loop consists
of a gain factor that is equal to (1 — p(i)/i(2)). Moreover,

using (3), the terms o(i) and v(i) are related via

II.4 The Small Gain Theorem: [, —Stability

The feedback configuration of Figure 1 lends itself rather
immediately to stability analysis via the small-gain theorem
[12,13]. Indeed, by invoking the fact that 7; is a lossless sys-
tem, the overall interconnection will then be guaranteed to

result in an l;-stable mapping from {\/ S W 1} to
{\/(") ea(-)} provided we impose, for all 1,

L HD)

(1)

More specifically, if we define

<1 <= 0< p() < 20().

A(N) = max

, 7Y(N)= max —=
0<i<N

o<i<n  ji(i)
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Figure 1: A time-variant lossless mapping with time-variant gain feedback for stochastic gradient algorithms.

Then it can be shown that the following results hold.

THEOREM 1. Consider the gradient-recursion (1) and define
A(N) and v(N) as above. If0 < pu(i) < 2u(1), then the map

from {\/n(-)o(-),W_1} to {\/it(-)ea(-)} is lo—stable in the

following sense,

1
1- A(N)

Moreover, the map from {\/ v(+), W_1} to {/u(-)ea(

(i.e., with p(-) replaced by p(- ) is also Iz —stable in the fol-
lowmg sense:

7'2(N)

. 1/2
1_ A(N) ||W_1||2 +7

In fact, a stronger upper bound than (8) can be given
when (i) is further restricted to the interval 0 < pu(7) <
f(2). This follows from the arguments after the local error-
bounds of Sec. I1.2, namely, if 0 < p(i) < fi(z) then

N

3 i) ea()* <

=0

[[W-1ll2 +

The fact that the bound in (8) is valid even for u(7) in the
interval (1) < u(i) < 2p(i) suggests that a local bound,
along the lines of those in Sec. 11.2, should also exist for this

interval. In fact, this is the case and it can be established
that

Wil + w(1) lea(s)|?
[Wi-1ll3 + u() [o(2)
for (i) < u(i) < 24(1).

< p(i)

2p(1) — u(z)

I11.5 A Convergence Result

In order to appreciate the significance of the global
bounds of Theorem 1, assume that the normalized noise

sequence {/1( } has finite energy. It then follows
from (8) that Z;:o n(i)]ea(i)]* < oco. We therefore con-
clude that {/1(*) ea(-)} is a Cauchy sequence and, hence,

p() eq(2) converges to zero.

For the special case of a constant step-size in (1), the
condition 0 < u(2) < 2j(i) that appears in the statement
of Theorem 1 collapses to requiring 0 < p < 2 [inf; f(7)].
This latter condition coincides with the standard one re-
quired in [4, Ch. 6] in the noise free case (v(i) = 0) in
order to conclude the stability of the LMS recursion (1).
Here, however, we have argued that the condition can still
be employed in the noisy and also time-variant case, by
showing how to explicitly incorporate the noise signal into
the feedback structure and by studying the l; —stability of
the overall interconnection.

In fact, more physical insights into the convergence be-
haviour of the gradient recursion (1) can be obtained by
studying the energy flow through the feedback configura-
tion of Figure 1, as shown in the next section.

11.6 Energy Flow in the Feedback Structure

The feedback structure, and the associated lossless block
in the direct path, provide a helpful physical picture for the
energy flow through the system. To clarify this, let us ig-
nore the measurement noise v(i) and assume that we have
noiseless measurements d( ) = u;w. It is known that in
a stochastic Gaussian setting, the maximal speed of con-
vergence is obtained for u(i) = fi(7), i.e., for the so-called



projection LMS algorithm. We shall now argue that this
conclusion is consistent with the feedback configuration of
Figure 1.

Indeed, for u(t) = f(i), the feedback loop is discon-
nected. This means that there is no energy flowing back
into the lower input of the lossless section from its lower
output eq(-). The losslessness of the feedforward path then
implies that

Eu(i) = Ew(i — 1) — E.(i) (9)

where we are denoting by E.(i) the energy of /(1) ea(2)
and by E. (1) the energy of W;. Expression (9) implies that
the weight-error energy is a non-increasing function of time,
i.e., Ew(z) < Ew(i — 1) for all s.

But what if p(i) # @&(¢)? In this case the feedback path
is active and the convergence speed is affected since the rate
of decrease in the energy of the weight-error vector is now
lowered. Indeed, for p(i) # (i) we obtain (compare with

(9))

It is easy to verify that as long as pu(i) # (i) we always
have 0 < 7(i) < 1, which shows that the rate of decrease in
the energy of w; is lowered.

III. FILTERED-ERROR GRADIENT
METHODS

We now move a step further and consider the class of
filtered-error gradient algorithms. We shall show that the
feedback loop concept of the former sections applies equally
well to these variants, which employ filtered versions of the
output estimation error, €.(i) = d(i) — wiw;_;.

u;

Figure 2: Structure of filtered-error algorithms.

Such algorithms are useful when the error éa(i) can not
be observed directly, but rather a filtered version of it, as
indicated in Figure 2. The operator F' denotes the filter that
operates on €4(1). It may be assumed to be a finite-impulse
response filter of order M, say

Mp—1

F(g)[z(i)] = Fls()] = Y fiali—3)

It may also be a time-variant filter. A typical application
where the need for such algorithms arises is in the active
control of noise. In the sequel we shall discuss two impor-
tant classes of algorithms that employ filtered error mea-
surements; the so-called Modified filtered-x LMS (MFxLMS)
and filtered error LMS (FELMS) [14,15,16].

I11.1 The MFxLMS Algorithm

A common algorithm that is used to handle the filtered
error case is the filtered-x LMS algorithm. It employs a
recursive update of the form

wi = Wizt + (i) Flu]* Fléa(i)] (10)

where the input data wu; is also processed by the filter F'.
If slow adaptation is assumed, i.e., if the variation in the
weight estimates do not vary considerably over the length
of the filter F', then we can approximate F[u;w;_1] by
Flu;]wi_1, which leads to the approximate update

wi = Wiy + p(i) Flw]" (F[d(i)] — Flui]wi_1)

with F[d(:)] = F[u;]w + F[v(¢)]. This is of the same form
as the LMS update (1) with the quantities {u,d(¢), v(i)}
replaced by their filtered versions {F[u;], F[d(:)], F[v(i)]}.
In this case, the conclusions of the previous sections hold.
For example, the stability condition now becomes approxi-
mately, 0 < u(3) < 2/||F[us]||3.

Recently, an improvement has been proposed that avoids
the slow adaptation assumption [15]. This is achieved by
modifying the update expression as follows: w; =

Wit + (i) Pl (FIEa(D)] + Fluwio] - FluJwi)
which is equivalent to the update equation
wi = w1+ p(i) Flw]" ( Flo(i)] + Flu]Wwioy )

This is of the same form as the LMS update (1) but with
the filtered input sequence F[u;] and the filtered noise se-
quence F[v(7)]. This time, however, no approximation is
employed. The results of the previous sections will then be
immediately applicable with the proper change of variables.

II1.2 The FELMS Algorithm

The so-called filtered-error LMS algorithm retains the
input vector unchanged and uses

Wi = Wit + p(i)ul Fléa(i)] (11)

In contrast to the FxLMS algorithm, and its modified form,
the error-path filter F' does not need to be known explicitly,
and the algorithm also requires less computation. Similar
update forms also arise in the context of [IR modeling, such
as Feintuch’s algorithm [9,17] and the SHARF algorithm [6].
Following the discussion that led to (4), we get

wi = wio1 + a()uifeq(s) + v(7)]
a()o(r) = p()Flv())] — a(t)ea(r) + (1) Flea(s)]
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Figure 3: Filtered-error LMS algorithm as a time-variant lossless mapping with dynamic feedback.

and fi(i) = 1/||/uil|3. This is of the same form as the up-
date discussed in Section II.3, which readily implies that
the following relation always holds:

¥:2 + a() [ea(* _ (12)
Wi |13 + (i) [o(i)

This establishes that the map from {W;_1,+/p(1)o(i)} to
{Wi,\/i(i)ea(i)}, denoted by T, is also lossless, and that
(-)o()
to the resulting apriori estimation error y/f(-)eq(-) can be
expressed in terms of a feedback structure, as shown in
Figure 3.

The feedback loop now consists of a dynamic system.
But we can still proceed to study the l;—stability of the
overall configuration in much the same way as we did in
Section II.3. Similar arguments will easily lead to a suffi-
cient condition for stability that we now exhibit. But first
we introduce a compact matrix notation and define

diag {u(0), u(1), ..., u(N)}
diag {£(0), a(1),..., a(N)}

We also define the lower triangular matrix Fy that de-
scribes the action of the filter F' on a sequence at its input.
This is generally a band matrix since Mr € N, as shown
below for the special case Mp = 3,

the overall mapping from the original disturbance

My
My

Jo
i fo
f2 i fo

Fr = f2 B fo

It is then immediate to verify that the interconnection is
l3-stable provided the matrix Gy defined by
A -1 — 1
Gy = (I— MNQMNFNMNQ)

is strictly contractive. The matrix Gy can be easily seen
to have the following triangular form (it also has a band of

width ﬂffp): Gy =

0
o 5 ©
wn(l wn(l
Vaopm Tt o
) ) ye))
Ve 2 T amamt 1T o

Several special cases may be of interest. For example, the
special case F' =1 (i.e., no filter) immediately leads to the
case we encountered earlier in Section II.3. Another special
case is F = ¢7' (i.e., a simple delay). The filtered-error
LMS recursion (11) then collapses to the so-called delayed-
error LMS. The corresponding Gy matrix can not be a
strict contraction since its (1,1) entry will be equal to 1.
This is consistent with results in the literature where it
has been observed that the delayed-error LMS algorithm
usually leads to unstable behaviour. We also see from the
general expression for Gy that a simple gain filter F' = fo
with a negative fo leads to a non-contractive Gy.

I11.3 The Projection FELMS Algorithm

We focus now on an important choice for the step-size
parameter, viz., u(i) = o i(i) with o > 0. In this case,
it can be seen that the contractivity requirement now col-
lapses to

1 1
HI—onf\,FNMN2 <1
2,ind
with
1-— a/fo O
V(1)
— 1—
SV oM afo
Gy =

—O{\/%f1 1 —a/fo

_A/B2)
@ Jm 2

We shall further assume that the energy of the input se-
quence u; does not change very rapidly over the filter length



Mp,ie., p(i) = p(i—1) =~ ... =~ g(t—Mp). This is a reason-
able assumption since, as mentioned earlier, we often have
Mp € M. In this case, Gy collapses to Gy =~ I —aFy. It
is now easy to see that the contractivity of (I — aFx) can
be guaranteed if we choose the o so as to satisfy

max |1 — aF(e]Q)| <1 (13)

This also suggests that, for faster convergence (i.e., for
smaller feedback gain), we may choose a optimally by solv-
ing the min-max problem:
min max |1 - aF(e]ﬂ)| (14)
a Q
If the resulting minimum is less than 1 then the corre-
sponding optimum « will result in faster convergence. Sim-
ulations results have confirmed this conclusion. But we
omit the details here for brevity.

IV. GAUSS-NEWTON METHODS

We now discuss the so-called Gauss-Newton recursive
method, which updates the weight-estimate according to
the following relation

w; = w1 +p(i) Piuf (d(i) —wiwiza)  (15)

where P; satisfies the Riccati equation update, with initial
condition Ilg,

1 P._jufu,P;
P, = —|Pii — 577" 16
A(z)( ST m) (1)

and {A(z), u(2), (1)} are given positive scalar time-variant
coefficients, with A({) < 1. An important special case
of (15) is the so-called Recursive-Least-Squares (RLS) al-
gorithm [18,19], which corresponds to the choices §(i) =
p(i) =1 and A(z) = A = cte.

It further follows from the update equation (15) that

Wi = Wiy — p(i)Piuléa(i) (17)

If we multiply (17) by u; from the left we also obtain the
following relation between e,(1), eq(2), and v(),

ep(i) = [1 = p()wiPiu ] ea(t) — p(1)uiPiuf o()

The same line of reasoning that we followed in Sec.Il.2
can be repeated here to show that

WP+ (i) = A ol [ ST 100 < H
AW P Wims + (i) [o(i) > i

2

Define en(w_1,v(-))

{w;‘VP;wN + Z(,u(z) -

=0

BliyAl+ |ea(z'>|2} —~

{A[ON]~*1P_1W J+Z [l+1N]| ()| }
=0

where we have employed the notation A7 = H] A(k). If
p(i) < p(7) over 0 <1 < N, then the first two local bounds
allow us to conclude that the Gauss-Newton algorithm (15)
always guarantees en(w_1,v(:)) <0 for any w_; and v(-).
If we further have 3(i) < (i) < ja(7), then this also estab-
lishes the existence of a contraction mapping from

{\/W\/)\["HVN]U( ), \/A[07N1H0_1/2v~v_1}

to {\/ NVALFLN e, (), P P

It can also be Venﬁed that z(2) > #(¢) for all i. Now, by
following an argument similar to the one presented in Sec.
I1.3 we can verify that it always holds, for all x(i) and v(2),

that
WP A+ (i(3) = B(1)) lea(s)
AW P Wit + ai) Jep(d)?
with ep(1) = —o(i) and
MU i) — — M (2 (1)eq(i
w" (1- ) et

Hence, the map from

(VAOP 2w, Vam)o(i)}

=1 (18)

i (i)o(i) =

to

(P 2wi, /(1) — Bli)ea(i)},

denoted by T, is always lossless, i.e., it preserves energy.
B(-)o()
to the resulting apriori estimation error y/ft(-)eq(-) can then
be expressed in terms of a feedback structure as shown in
Figure 4.

The feedback configuration of Figure 4 also lends itself
to analysis via the small gain theorem, along the same lines

of Sec. I1.4. If we define

The overall mapping from the originaldisturbance

1 — &)
A(N) = max O
0<iEN | [T AG)

oa()

then the small-gain condition would require that we impose
(1= A(N)) > 0, which is equivalent to

0 < p(i) < a(i) <1+ 1_%) (19)

Under this condition, we can verify that the map from

_1
(VAFEAT() (), VARNTP E )

to

{VAFLNI () = B(i)) eal)}
is l;—stable. Moreover, if 3(z) < u(1) then it also holds that
the map from

S
(VAN o), VARNTPZ )

to

{V/AHLN () = B(-) eal)}

(i-e., with z(-) replaced by p(-)) is l;—stable.
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Figure 4: A time-variant lossless mapping with time-variant gain feedback for Gauss-Newton methods.

V.CONCLUDING REMARKS

More variants of the Gauss-Newton type update oc-
cur if the underlying model is not a transversal model but
rather an ITR model. In this case, the update recursion is of
filtered-error type, and leads to a dynamic feedback — see,
e.g., [9,17] for more details and for connections with results
in H°° —theory.
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