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Abstract—We examine the performance of stochastic-gradient
learners over connected networks for global optimization prob-
lems involving risk functions that are not necessarily quadratic.
We consider two well-studied classes of distributed schemes
including consensus strategies and diffusion strategies. We quan-
tify how the mean-square-error and the convergence rate of
the network vary with the combination policy and with the
fraction of informed agents. Several combination policies are
considered including doubly-stochastic rules, the averaging rule,
Metropolis rule, and the Hastings rule. It will be seen that the
performance of the network does not necessarily improve with a
larger proportion of informed agents. A strategy to counter the
degradation in performance is presented.

I. INTRODUCTION

We consider connected networks with N agents, as depicted

in Fig. 1. The neighborhood of an arbitrary agent k is denoted

by Nk and it consists of all agents that are connected to k
by edges. Neighboring agents can share information over the

edges linking them. We assign a pair of nonnegative weights

{ak�, a�k} to the edges connecting every pair of neighbors k
and �. The scalar a�k is used by agent k to scale data it receives

from agent � and similarly for ak�. The weights {ak�, a�k}
can be different so that the exchange of information between

agents k and � need not be symmetric. When at least one akk
is positive for some k, the connected network is said to be

a standard network. We collect the coefficients {a�k} into an

N × N matrix A = [a�k]. We refer to A as the combination
matrix. The fact that the network is standard implies that A
will be a primitive matrix, i.e., there will exist a finite integer

power m > 0 such that the entries of Am are all strictly

positive [1], [2].

We associate with each agent k an individual real-valued

cost (or risk or utility) function, denoted by Jk(w). Although

unnecessary, we assume in this article that the M × 1 inde-

pendent variable w is real-valued as well. We also assume that

each of the individual costs, Jk(w), is νk−strongly-convex and

twice-differentiable with respect to w. This condition ensures

that the Hessian matrix of Jk(w) is sufficiently bounded away

from zero [3], [4], namely,

∇2
wJk(w) ≥ νkIM > 0, for all w (1)

where IM is the M × M identity matrix. The requirement

of strong convexity is not a serious limitation. For instance,

it is customary in machine learning problems [5], [6], and

Fig. 1. Neighboring agents can share information over the edge
linking them. The neighborhood of agent k is marked by the
highlighted area and consists of the set of agents Nk = {6, �, k,N}.

in adaptation and estimation problems [7], [8], to incorporate

regularization factors into the cost functions; these factors help

ensure strong convexity. Studies under more relaxed conditions

can be found in [9]–[12].

The unique minimizer for each convex function Jk(w) is

denoted by wo
k. The minimizers {wo

k} across all agents are

generally distinct from each other. Nevertheless, there are

many useful scenarios where all individual costs {Jk(w)}
happen to be minimized at the same location w = wo so

that

∇wJk(w
o) = 0, k = 1, 2, . . . , N (2)

Examples abound where agents need to work cooperatively to

attain a common objective such as tracking a target, locating

a food source, or evading a predator, e.g., [13], [14]. This

situation is also common in machine learning problems [5],

[6], [15]–[17], where data samples are often generated from

the same underlying distribution — see Sec. V further ahead.

Although the discussion can be extended to the more general

case where the {wo
k} are possibly distinct by applying the

results of [10]–[12], we will instead focus in this work on the



case in which the individual costs are minimized at the same

w = wo so that condition (2) is assumed to hold.

In summary, given a collection of N strongly-convex and

differentiable cost functions {Jk(w)} whose minimizers coin-

cide, we are interested in determining in a distributed manner

the unique parameter vector, wo, of size M×1, that minimizes

the following global cost function:

Jglob(w)
Δ
=

N∑
k=1

Jk(w) (3)

The individual costs {Jk(w)} can be distinct across the

agents or they can all be identical, i.e., Jk(w) ≡ J(w)
(k = 1, 2, . . . , N). The objective of decentralized processing

is to enable the agents to approach the solution wo by relying

solely on in-network (as opposed to centralized) processing.

II. DISTRIBUTED STRATEGIES

In this article, we examine two classes of distributed strate-

gies for the solution of (3): (a) consensus strategies (see, e.g.,

[18]–[21] and the references therein), and (b) diffusion strate-

gies (see, e.g., [1], [10], [14], [22], [23] and the references

therein). These strategies are based on stochastic-gradient

updates and are described by the following expressions.

We introduce combination coefficients {a�k} that are cho-

sen to satisfy the following conditions for each agent k =
1, 2, . . . , N :

a�k ≥ 0,
N∑
�=1

a�k = 1, and a�k = 0 if � /∈ Nk (4)

The coefficients {a�k} are free weighting parameters whose

selection influences the performance of the distributed so-

lutions. From (4), the resulting N × N combination matrix

A = [a�k] then satisfies

AT1 = 1 (5)

where the notation 1 denotes a column vector with unit entries.

That is, the entries on each column of A add up to one so that

A is a left-stochastic matrix.

A. Consensus Strategy

In the consensus strategy, each agent k evaluates estimators

for wo in the following manner:

wk,i =
∑
�∈Nk

a�kw�,i−1 − μk

[
∇̂wJk(wk,i−1)

]T
(6)

where μk > 0 is the step-size parameter. We can allow the

{μk} to be time-dependent as well, such as selecting sequences

μk(i) that satisfy the conditions:

∞∑
i=0

μk(i) =∞,
∞∑
i=0

μ2
k(i) <∞ (7)

Nevertheless, such decaying step-sizes turn-off adaptation and

learning as time progresses. For this reason, we focus in this

article on the case of constant step-sizes in order to endow the

distributed solutions with continuous adaptation and learning

abilities.

In the consensus implementation (6), the vector wk,i de-

notes the estimator for wo that is computed by agent k

at time i. Moreover, the term ∇̂wJk(wk,i−1) denotes an

approximation for the true gradient vector, ∇wJk(·), evaluated

at wk,i−1. In our notation, the gradient vector of Jk(w)
relative to w is taken to be a row vector (which explains the

use of the transposition symbol in (6)). In the consensus update

(6), it is seen that at each iteration i, every agent k performs

two steps: it combines the estimators from its neighbors using

the coefficients {a�k, � ∈ Nk} and, subsequently, updates this

combination by the approximate gradient vector (evaluated at

wk,i−1).

B. Diffusion Strategy

Diffusion strategies also enable the distributed minimization

of (3) and lead to enhanced performance for adaptation and

learning over graphs [24]. There are several diffusion variants.

It is sufficient for this article to focus on the combine-

then-adapt (CTA) and adapt-then-combine (ATC) forms of

diffusion. The CTA strategy is described by the following

update at each agent k:⎧⎪⎨⎪⎩
ψk,i−1 =

∑
�∈Nk

a�kw�,i−1 (CTA diffusion)

wk,i = ψk,i−1 − μk

[
∇̂wJk

(
ψk,i−1

)]T (8)

At every iteration i, the update (8) performs two operations.

The first step is a combination step where agent k combines the

estimators from its neighbors to obtain the intermediate iterate

ψk,i−1. The second step is an adaptation step where agent k
updates the intermediate estimate by using its approximate

gradient vector (evaluated at ψk,i−1).

The ATC strategy simply switches the order of the combi-

nation and adaptation steps in (8):⎧⎪⎨⎪⎩
ψk,i = wk,i−1 − μk

[
∇̂wJk(wk,i−1)

]T
wk,i =

∑
�∈Nk

a�kψ�,i (ATC diffusion)
(9)

We observe that the CTA and ATC diffusion strategies (8)

and (9) have fundamentally the same structure. The difference

between the two implementations lies in which variable we

choose to correspond to the updated estimator wk,i. In the

ATC case, we choose the result of the combination step to be

wk,i, whereas in the CTA case we choose the result of the

adaptation step to be wk,i.

Observe further that the diffusion strategies (8) and (9) have

exactly the same computational complexity as the consensus

strategy (6) in terms of the number of additions and multi-

plications required per iteration to update wk,i−1 to wk,i at

every agent k. However, diffusion strategies differ in an im-

portant way from the consensus implementation. For example,

the CTA implementation first evaluates an intermediate state

variable, ψk,i−1, and then uses it in the subsequent adaptation



step. The net effect for CTA diffusion is an update of the form

wk,i =
∑
�∈Nk

a�kw�,i−1 − μk

[
∇̂wJk

(∑
�∈Nk

a�kw�,i−1

)]T
(10)

Observe that the convex combination of the neighborhood

estimators appears inside the rightmost error term in (10). In

contrast, the consensus algorithm relies solely on wk,i−1 to

evaluate the error term in (6). This asymmetry in the consensus

update is responsible for an anomaly in its behavior [24].

III. PERFORMANCE OF DISTRIBUTED STRATEGIES

Studying the performance of distributed strategies is more

demanding than studying the performance of traditional non-

cooperative and centralized schemes. This is because agents

in the network influence each other’s behavior. Nevertheless,

by studying how the variances (or energies) of error vectors

evolve over the network, it is possible to derive useful ex-

pressions to characterize the mean-square-error performance

of the consensus and diffusion strategies for sufficiently small
step-sizes. These arguments are pursued in some great detail

in [1], [10]–[12].

Assume the network is standard so that its combination

matrix A is primitive. One important property of such left-

stochastic and primitive matrices follows from the Perron-

Frobenius Theorem [1], [2], [25], [26], namely, that they have

a single eigenvalue at one, while all other eigenvalues are

strictly inside the unit circle. Thus, let p denote the right-

eigenvector of A that is associated with the eigenvalue at one.

We normalize the entries of p to add up to one. Then, we

also know from the properties of left-stochastic and primitive

matrices that the entries of p are strictly positive and less than

one. Hence, the eigenvector p so defined satisfies

Ap = p, 1Tp = 1, 0 < pk < 1, k = 1, 2, . . . , N (11)

Let w̃k,i denote the weight-error vector at agent k at time i:

w̃k,i
Δ
= wo −wk,i (12)

Let further sk,i(·) denote the gradient noise random process

that is introduced into the distributed algorithms when the true

gradient vector, ∇wJk(·), is replaced by the approximation,

∇̂wJk(·), as is the case with the consensus and diffusion im-

plementations. From expressions (6) and (8)–(9), we conclude

that for these implementations, the gradient noise process

is defined by either of the following expressions (the first

expression applies to the consensus and ATC updates, while

the second expression applies to the CTA update):

sk,i(wk,i−1)
Δ
=

(
∇̂wJk(wk,i−1)−∇wJk(wk,i−1)

)T
sk,i(ψk,i−1)

Δ
=

(
∇̂wJk(ψk,i−1)−∇wJk(ψk,i−1)

)T
We denote the asymptotic covariance matrix of the gradient

noise process, when evaluated at w = wo, by

Rs,k
Δ
= Esk,i(w

o)sTk,i(w
o), i→∞ (13)

where we are assuming that, asymptotically, the process sk,i(·)
is wide-sense stationary with zero mean and bounded variance

(in a manner similar to conditions (47)–(48) in [10]). We also

introduce the compact notation Hk to refer to the value of the

Hessian matrices at the optimal solution, wo, i.e.,

Hk
Δ
= ∇2

w Jk(w
o), k = 1, 2, . . . , N (14)

The {Hk} are M ×M positive-definite matrices. One useful

way to measure the performance of the distributed solutions

is to consider the mean-square-deviation (MSD) of each in-

dividual agent k, and the average MSD across the network,

which are defined as the following (steady-state) measures:

MSDdist,k
Δ
= lim

i→∞
E‖w̃k,i‖2 (15)

MSDnetwork
dist

Δ
=

1

N

N∑
k=1

MSDdist,k (16)

A second useful measure for the performance of the distributed

solutions is to consider the excess-risk (ER) of each individual

agent k, and the average ER across the network, which are

similarly defined as the following (steady-state) measures:

ERdist,k
Δ
= lim

i→∞
E {Jk(wk,i−1)− Jk(w

o)} (17)

ERnetwork
dist

Δ
=

1

N

N∑
k=1

ERdist,k (18)

It can be shown that under condition (2), and for sufficiently

small step-sizes, the MSD measures are well-approximated by

the following trace expression to first-order in the step-size

parameters (a variation of this expression holds for the more

general case in which the individual costs do not share the

same minimizers) [11]:

MSDdist,k ≈ MSDnetwork
dist ≈ (19)

1

2
· Tr

⎡⎣( N∑
k=1

μkpkHk

)−1

·
(

N∑
k=1

μ2
kp

2
kRs,k

)⎤⎦
We observe from (19) that the distributed strategies are able

to equalize the MSD levels across all agents; they essentially

attain the performance as the overall network. Moreover, the

convergence rate of the network MSD towards its steady-state

value is governed by the following factor (the smaller the value

of α ∈ [0, 1], the faster the convergence):

α ≈ 1− 2λmin

(
N∑

k=1

μkpkHk

)
(20)

With regards to the excess-risk performance measures, it can

be similarly shown that in the case when the Hessian matrices

{Hk} are uniform across the agents, i.e., when

Hk ≡ H, k = 1, 2, . . . , N (21)

then, for sufficiently small step-sizes and also under condition

(2), it holds that [11]:



ERdist,k ≈ ERnetwork
dist ≈ (22)

1

4
·
(

N∑
k=1

μkpk

)−1

· Tr

(
N∑

k=1

μ2
kp

2
kRs,k

)
The MSD and ER expressions (19) and (22) are approxima-

tions to first-order in the step-sizes. Under this condition, the

consensus and diffusion strategies lead to essentially similar

MSD and ER levels. However, if we take into account higher-

order terms of the step-sizes, then it is possible to verify that

differences in performance arise between both classes of strate-

gies and that diffusion strategies enhance the performance of

the network over consensus strategies — see, e.g., [14], [24].

IV. OPTIMAL COMBINATION RULES

We observe from (19) that the MSD performance of the

network is dependent on the choice of the combination matrix

A. There are several ways by which the matrix A can be

selected such as the Laplacian rule, the Metropolis rule, the

averaging rule, and the relative-degree rule (see, e.g., [1]

and the references therein). For instance, the Metropolis rule

selects the coefficients {a�k} as follows:

a�k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1/max{nk, n�}, if k 
= � are neighbors

1−
⎛⎝ ∑

m∈Nk\{k}
amk

⎞⎠ , k = �

0, otherwise
(23)

where nk denotes the cardinality of Nk (also called the degree

of agent k) and is equal to the number of neighbors that k has:

nk
Δ
= |Nk| (24)

Likewise, the averaging rule selects the {a�k} as follows:

a�k =

{
1/nk, if k 
= � are neighbors or k = �
0, otherwise

(25)

It is observed that in most available combination rules, the

values of the coefficients {a�k} are defined solely in terms of

the degrees of the agents; their constructions ignore the noise

profile {Rs,k} across the agents.

A. Optimizing the MSD Performance

Motivated by this observation, we return to the MSD

expression (19) and consider the case in which the Hessian

matrices {Hk} are uniform across the agents as in (21). This

scenario is common in practice as happens, for example, with

the study of networks involving the solution of mean-square-

error estimation problems (where all individual costs have the

same Hessian matrix) or with machine learning applications

where all agents minimize the same risk function so that

Jk(w) ≡ J(w). We discuss these two important cases in the

next section. We also assume that all agents employ the same

step-size:

μk = μ, k = 1, 2, . . . , N (26)

Under (21) and (26), and using the fact that the entries of p
add up to one, the MSD expression (19) reduces to

MSDdist,k ≈ MSDnetwork
dist ≈ μ

2
· Tr

(
N∑

k=1

p2kH
−1Rs,k

)
(27)

We are then motivated to consider the problem of selecting

the coefficients {a�k} optimally by solving:

Ao Δ
= argmin

A∈A
Tr

(
N∑

k=1

p2kH
−1Rs,k

)
subject to Ap = p, 1Tp = 1, pk > 0

(28)

The symbol A represents the set of all N ×N primitive left-

stochastic matrices whose entries {a�k} satisfy conditions (4).

The alternative problem of minimizing expression (19) over

A ∈ A, without conditions (21) and (26), is more challenging.

To solve (28), we introduce the nonnegative scalars

θ2k
Δ
= Tr(H−1Rs,k), k = 1, 2, . . . , N (29)

These scalars incorporate information about the gradient noise

at the various agents through their dependence on the {Rs,k}.
Based on the discussions in [27]–[29], an optimal Ao that

solves (28) is the following left-stochastic matrix (which we

refer to as the Hastings combination rule):

ao�k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θ2k

max{ nkθ2k, n�θ2� }
, � ∈ Nk\{k}

1−
⎛⎝ ∑

m∈Nk\{k}
aomk

⎞⎠ , � = k
(30)

The entries of the right-eigenvector, p, that is associated with

the eigenvalue at one for the above optimal matrix Ao = [ao�k]
are given by:

pok =
1

θ2k
·
(

N∑
�=1

1

θ2�

)−1

, k = 1, 2, . . . , N (31)

and the resulting minimum cost from (27) is:

MSDnetwork
dist,Ao ≈ μ

2
·
(

N∑
k=1

1

θ2k

)−1

(32)

B. Optimizing the ER Performance

In a similar manner, we consider the minimization of the ER

performance level (22) under the same uniformity conditions

(21) and (26). In this case, the ER expression (22) reduces to

ERdist,k ≈ ERnetwork
dist ≈ μ

4
· Tr

(
N∑

k=1

p2kRs,k

)
(33)

We are then motivated to consider the problem of selecting

the coefficients {a�k} optimally by solving instead:

Ao Δ
= argmin

A∈A
Tr

(
N∑

k=1

p2kRs,k

)
subject to Ap = p, 1Tp = 1, pk > 0

(34)



To solve (34), we now define the nonnegative scalars θ2k as:

θ2k
Δ
= Tr(Rs,k), k = 1, 2, . . . , N (35)

to arrive at the same expressions (30) and (31), while the

minimum cost from (33) is found to be:

ERnetwork
dist,Ao ≈ μ

4
·
(

N∑
k=1

1

θ2k

)−1

(36)

V. ROLE OF INFORMED AGENTS

We now examine the situation in which only a fraction
of the agents in the network are informed. Informed agents

are defined as those that are able to evaluate the gradient

vector approximations {∇̂wJk(·)} continuously and perform

the two tasks of combination and adaptation. On the other

hand, uninformed agents only participate in the combination

tasks. The presentation below extends the result of [30] to

cost functions Jk(w) that are not necessarily quadratic in w
by relying on arguments that exploit the useful MSD and ER

expressions (19) and (22). It will be seen that when the set

of informed agents is enlarged, the convergence rate of the

network becomes faster albeit at the expense of some possible

deterioration in MSD or ER performance — see Fig. 2.

We model uninformed agents by setting their step-sizes to

zero, i.e., we set μk = μ for informed agents and μk = 0
for uninformed agents. Although uninformed agents do not

perform adaptation, they still contribute to the diffusion of

information through the network. We assume a uniform step-

size for the informed agents in order not to bias the subsequent

comparisons by having agents with more powerful learning

abilities than other agents. Let the symbol NI represent the

set of indices corresponding to the informed agents in the

network; we denote its size by NI = |NI |. That is, we assume

that the network has NI informed agents, while the remaining

agents are uninformed. We further assume the network has at

least one informed agent so that NI ≥ 1. It can be verified that,

as long as the informed agents employ step-sizes μ that are

sufficiently small, then the variances E‖w̃k,i‖2 will continue

to converge for all agents (both informed and uninformed).

Now, substituting μk = μ for k ∈ NI and μk = 0 otherwise,

into expressions (19)–(20) we find that the convergence rate

and the MSD performance of the network with NI informed

agents are captured by the following relations:

α ≈ 1− 2μ · λmin

{∑
k∈NI

pkHk

}
(37)

and

MSDnetwork
dist ≈ (38)

μ

2
· Tr

⎡⎣(∑
k∈NI

pkHk

)−1

·
(∑

k∈NI

p2kRs,k

)⎤⎦

Fig. 2. Enlarging the set of informed agents improves convergence rate but
does not necessarily improve the MSD or ER performance.

Likewise, under the uniform assumption (21), the ER expres-

sion (22) reduces to

ERnetwork
dist ≈ μ

4
·
(∑

k∈NI

pk

)−1

· Tr

(∑
k∈NI

p2kRs,k

)
(39)

Expressions (37)–(39) are in terms of the entries {pk} of

the eigenvector p defined by (11). Since the entries of p are

positive for primitive left-stochastic matrices A, it is clear

from (37) that if the set of informed agents is enlarged from

NI to N ′I ⊃ NI , then the convergence rate of the network

improves. However, from (38), the network MSD and ER

levels given by (38)–(39) may decrease, remain unchanged,

or increase depending on the values of {Hk, Rs,k}. The

examples discussed in the next two subsections illustrate these

possibilities.

A. Mean-Square-Error Estimation

We consider the case studied in [30] and re-examine it in

light of the performance expressions (37)–(38). We consider a

standard network where each agent k collects streaming data

{dk(i),uk,i} that are assumed to satisfy a linear regression

model with additive measurement noise of the form:

dk(i) = uk,iw
o + vk(i), i ≥ 0 (40)

for some unknown M×1 vector wo and where the {uk,i} are

row vectors. A mean-square-error cost function is associated

with each agent, namely,

Jk(w) = E |dk(i)− uk,iw|2, k = 1, 2, . . . , N (41)

The processes {dk(i),uk,i,vk(i)} that appear in (40) are

assumed to represent zero-mean jointly wide-sense stationary

random processes that satisfy the following three conditions:

(a) The regression data {uk,i} are temporally white and



independent over space with uniform covariance matrix

so that

EuT
k,iu�,j

Δ
= Ru · δk,� · δi,j (42)

where the symbol δm,n denotes the Kronecker delta

sequence. The cross-correlation vector for the processes

{dk(i),uk,i} is denoted by

rdu
Δ
= Edk(i)u

T
k,i (43)

(b) The noise process {vk(i)} is temporally white and

independent over space so that

Evk(i)v�(j)
Δ
= σ2

v,k · δk,� · δi,j (44)

(c) The regression and noise processes {u�,j ,vk(i)} are

independent of each other for all k, �, i, j.

Now, observe that the minimizers of the individual cost

functions {Jk(w)} defined above occur at the same location

since

wo
k = R−1

u rdu, k = 1, 2, . . . , N (45)

Moreover, if we multiply both sides of the assumed linear

model (40) by uT
k,i from the left, and take expectations, we

find that the unknown wo satisfies the linear equations:

rdu = Ruw
o + 0 (46)

We therefore conclude that the desired wo is given by the same

expression as the local minimizers wo
k in (45), for any k =

1, 2, . . . , N . This conclusion means that the current problem

setting corresponds to a situation in which all individual costs

{Jk(w)} attain their minima at the same location, w = wo,

(so that condition (2) is satisfied). Furthermore, the Hessian

matrices are all equal and given by

∇2
wJk(w) = 2Ru ≡ H (47)

To describe the structure of the distributed solutions for

determining wo, we first note that the true gradient vector

of each Jk(w) is given by

∇wJk(w) = 2 (Ruw − rdu)
T

(48)

However, the data moments {Ru, rdu} are generally unknown

beforehand to the agents. In that case, the true gradient

vectors need to be approximated. One simple and effective

construction is to rely on stochastic-gradient approximations.

In this construction, each agent k uses its data {dk(i),uk,i}
to compute instantaneous approximations for the unavailable

moments as follows:

rdu ≈ dk(i)u
T
k,i, Ru ≈ uT

k,iuk,i (49)

Doing so, the resulting consensus strategy (6) will be given

by

wk,i =
∑
�∈Nk

a�k w�,i−1 + 2μku
T
k,i[dk(i)− uk,iwk,i−1] (50)

while the CTA and ATC diffusion strategies (8)–(9) will be

given by⎧⎨⎩ ψk,i−1 =
∑
�∈Nk

a�k w�,i−1, (CTA diffusion)

wk,i = ψk,i−1 + 2μku
T
k,i

[
dk(i)− uk,iψk,i−1

]
(51)

and⎧⎪⎪⎨⎪⎪⎩
ψk,i = wk,i−1 + 2μku

T
k,i [dk(i)− uk,iwk,i−1]

wk,i =
∑
�∈Nk

a�k ψ�,i, (ATC diffusion)

(52)

It is sufficient to continue the discussion by considering the

ATC update (a similar discussion applies to consensus and

CTA). It is straightforward to verify that the gradient noise

vector for ATC is given by:

sk,i(wk,i−1) = 2
(
Ru − uT

k,iuk,i

) · w̃k,i−1 − 2uT
k,ivk(i)

(53)

Consequently,

sk,i(w
o) = −2uT

k,ivk(i) (54)

and

Rs,k
Δ
= Esk,i(w

o)sTk,i(w
o)

= 4σ2
v,kRu (55)

Now assuming uniform step-sizes, i.e., μk = μ over the set of

informed agents k ∈ NI and μk = 0 otherwise, we conclude

from expressions (37) and (38) that

α ≈ 1− 4μ · λmin(Ru) ·
(∑

k∈NI

pk

)
(56)

MSDnetwork
dist ≈ μM ·

(∑
k∈NI

pk

)−1

·
(∑

k∈NI

p2kσ
2
v,k

)
(57)

It is again clear that if the set of informed agents is enlarged

from NI to N ′I ⊃ NI , then the convergence rate improves

(i.e., faster convergence with α becoming smaller). However,

from (57), the network MSD may decrease, remain unchanged,

or increase depending on the values of the noise variances

{σ2
v,k} at the new informed agents. We illustrate this behavior

by considering two selections for the combination matrix A.

Assume first that A is chosen to be a doubly-stochastic

matrix (such as the Metropolis rule (23)), i.e., it satisfies

A1 = 1, AT1 = 1 (58)

so that the entries on each of its columns and on each of

its rows add up to one. Then, pk = 1/N and the above

expressions reduce to:

α ≈ 1− 4μ ·
(
NI

N

)
· λmin(Ru) (59)

MSDnetwork
dist ≈ μM · 1

N
·
(

1

NI

∑
k∈NI

σ2
v,k

)
(60)



It is seen that if we add a new informed agent of index

k′ /∈ NI , then the convergence rate improves but the MSD

performance of the network will get worse if

σ2
v,k′ >

1

NI
·
∑
k∈NI

σ2
v,k (61)

That is, the MSD performance gets worse if the incoming

noise power at the newly added agent is worse than the average

noise power at the existing informed agents.

Let us consider next the case in which the combination

weights {a�k} are selected according to the averaging rule

(25). It can be verified that the right-eigenvector p correspond-

ing to the eigenvalue at one will be given by:

p =

(
N∑

k=1

nk

)−1

·

⎡⎢⎢⎢⎣
n1

n2

...

nN

⎤⎥⎥⎥⎦ (62)

so that expressions (56) and (57) reduce to

α ≈ 1− 4μ · λmin(Ru) ·
(∑

k∈NI
nk∑N

k=1 nk

)
(63)

and

MSDnetwork
dist ≈ (64)

μM ·
(

1∑N
k=1 nk

)
·
(

1∑
k∈NI

nk

)
·
(∑

k∈NI

n2
kσ

2
v,k

)
It is seen now that if we add a new informed agent of index

k′ /∈ NI , then the convergence rate improves but the MSD

performance of the network will get worse if

nk′σ2
v,k′ >

(∑
k∈NI

nk

)−1

·
(∑

k∈NI

n2
kσ

2
v,k

)
(65)

The condition in this case depends on both the noise powers

and the degrees of connectivity of the agents.

B. Online Learning

The second situation we consider is one that deals with

a collection of N learners, where each learner k receives a

streaming sequence of vector data samples {xk,i, i ≥ 0} that

arise from some fixed probability distribution X :

xk,i ∼ X , k = 1, 2, . . . , N (66)

The goal is to learn the vector wo that optimizes a ν−strongly-

convex risk function J(w):

wo Δ
= argmin

w
J(w) (67)

where J(w) is the average of some loss measure Q(·, ·) [31],

[32], say,

J(w)
Δ
= EQ(w,xk,i) (68)

Each agent k optimizes (67) by running any of the distributed

algorithms introduced before (consensus or diffusion). For

example, the ATC diffusion strategy would take the following

form:

ψk,i = wk,i−1 − μ · [∇wQ(wk,i−1,xk,i)]
T

(69)

wk,i =
∑
�∈Nk

a�kψk,i (70)

where the gradient of the loss function is used as an approxi-

mation for the true gradient of the risk function. The gradient

noise vector is then given by

sk,i(wk,i−1) = [∇wQ(wk,i−1,xk,i) − ∇wJ(wk,i−1)]
T

(71)

so that

sk,i(w
o) = [∇wQ(wo,xk,i)]

T
(72)

Since the data {xk,i} are sampled independently by the agents

from the same distribution X , it is reasonable to assume that

the covariance matrices of {sk,i(wo)} are uniform across the

agents so that

Rs,k
Δ
= E [∇wQ(wo,xk,i)]

T
[∇wQ(wo,xk,i)] ≡ Rs (73)

Therefore, the current network setting corresponds to a situa-

tion in which all agents are minimizing the same cost function

J(w) and where the Hessian matrices at w = wo are uniform

and given by

H
Δ
= ∇2

wJ(w
o) (74)

The MSD and ER performance levels for the distributed

solution, using NI informed agents with step-sizes μk = μ,

can be deduced from (19) and (22) as

MSDnetwork
dist ≈ μ

2
·
(∑

k∈NI

pk

)−1

·
(∑

k∈NI

p2k

)
· Tr(H−1Rs)

(75)

and

ERnetwork
dist ≈ μ

4
·
(∑

k∈NI

pk

)−1

·
(∑

k∈NI

p2k

)
· Tr (Rs) (76)

In particular, it is seen that if we add a new informed agent of

index k′ /∈ NI , then the MSD or ER performance levels will

get worse if

pk′ >

(∑
k∈NI

pk

)−1

·
(∑

k∈NI

p2k

)
(77)

This condition is in terms of the entries {pk}, which are

determined by the combination policy, A. We again consider

two choices for the combination matrices.

Assume first that A is doubly-stochastic (such as the

Metropolis rule (23)) so that pk = 1/N and condition (77)

cannot be satisfied. In other words, the addition of informed

agents cannot degrade the network performance. Indeed, in this

case, it can be readily seen that the MSD and ER expressions



(75)–(76) reduce to

MSDnetwork
dist ≈ μ

2
· 1

N
· Tr(H−1Rs) (78)

ERnetwork
dist ≈ μ

4
· 1

N
· Tr (Rs) (79)

Both of these expressions are independent of NI .

Let us consider next the case in which the combination

weights {a�k} are selected according to the averaging rule

(25). Using (62), condition (77) would then indicate that the

network MSD or ER levels will degrade if the degree of the

newly added informed agent satisfies:

nk′ >

(∑
k∈NI

nk

)−1

·
(∑

k∈NI

n2
k

)
(80)

C. Controlling Degradation in Performance

The previous arguments indicate that the MSD or ER

performance of networks need not improve with the addition

of informed agents. The deterioration in network performance

can be controlled through proper selection of the combination

weights, for example, when the matrix A is selected as the

Hastings rule (30). Using expression (31) in (37) and (38) we

find that the convergence rate and the MSD level of a network

with NI informed agents (using uniform step-sizes, μk = μ,

and with uniform Hessian matrices, Hk = H) are now given

by

α ≈ 1− 2μ · λmin(H) ·
(∑

k∈NI

1

θ2k

)
·
(

N∑
k=1

1

θ2k

)−1

(81)

MSDnetwork
dist ≈ μ

2
·
(

N∑
k=1

1

θ2k

)−1

(82)

Observe that the network MSD level is now independent of

NI , while the convergence rate continues to decrease (i.e.,

becomes faster) as the set of informed agents is enlarged (since

the expression for α depends on NI ). This result highlights

the importance of selecting the combination weights [30].

For example, under the conditions discussed in Sec. V-B for

the online learning problem, the Hastings rule (30) reduces

to the doubly-stochastic Metropolis rule (23), which explains

why the MSD and ER results (78)–(79) are independent of NI .
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