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Abstract—In this paper we investigate the self-organization
and cognitive abilities of adaptive networks when the individual
agents are allowed to move in pursuit of an objective. The
network as a whole acts as an adaptive entity with localized
processing and is able to respond to stimuli in real-time. We
apply the ensuing model to the foraging behavior of fish schools
in search of food sources and reproduce their ability to move in
remarkable coherence.

Index Terms—Adaptive networks, mobility, self-organization,
diffusion adaptation.

I. INTRODUCTION

Self-organization is observed in several physical and bio-
logical phenomena. Examples include fish joining together in
schools, birds flying in V-formation [9], and bees swarming
towards a new hive [1]. In these cases, a global pattern
of behavior emerges from localized interactions among the
individual components of the system.

One interesting behavior of animal groups is collective
motion [1][2], where animals move together in amazing coher-
ence and synchrony. There have been extensive prior studies
in the literature on the collective motion of animals. Previous
analyses [6][7][10] have been successful in emulating the har-
monious motion of animal groups by assuming that individual
agents move along the average direction of their neighbors
and use repulsion and attraction mechanisms to maintain a safe
distance from the neighbors. While these models help emulate
the coordinated motion behavior of animals, they nevertheless
do not address the combined problem of how agents can move
in synchrony while at the same time attempting to solve an
estimation problem of interest, such as tracking a target or
moving towards a food source. To do so, it is important to
study how information processing diffuses through the moving
agents and how mobility affects learning and tracking abilities.

In earlier works [4][5], we studied the problem of how to
design adaptive networks that are able to solve estimation
problems in a fully distributed manner and in real-time. In
these networks, each node has access to local information
(its local measurements) and can observe the actions taken
by its immediate neighbors. Through a diffusion process, the
nodes share information locally and cooperate in a manner
that enables the entire network to solve an estimation problem
in real-time and without the need for centralized processing
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or fusion centers. In comparison with other distributed ap-
proaches that rely on consensus-based techniques, adaptive
networks avoid the need to iterate over data and do not
require all nodes to converge to the same equilibrium. Instead,
both time- and spatial-diversity are exploited to endow the
network with learning and tracking abilities. In this paper, we
add another dimension of complexity and incorporate node
mobility into the design of adaptive networks. Our objective
is to develop what we refer to as mobile adaptive networks.
These are networks that possess adaptation abilities and can
exhibit collective patterns of motion.

II. COHERENT MOTION MODEL

Consider a set of N nodes distributed over some spatial
region in R3. Let xk,i denote the location vector of a node
k at time i relative to some global coordinate system. The
location of the center of gravity of the network at this same
time instant is denoted by xgi and is defined as

xgi =
N∑

k=1

xk,i/N (1)

That is, xgi is the average location of all nodes in the network.
In a mobile network, every node k will update its location
vector over time according to the rule:

xk,i+1 = xk,i +△t · vk,i+1 (2)

where △t represents the time step and vk,i+1 is the velocity
vector of the node. Several factors influence the determination
of the velocity by node k such as the desire to move toward
the target, the desire to move in coordination with the other
nodes, and the desire to avoid collisions.

To begin with, each node would like to move towards
the unknown location of a target, say, w◦. We translate this
objective to mean that the center of gravity of the network
should approach w◦ as time progresses, i.e.,

xgi → w◦ as i→ ∞ (3)

One way to assist with this objective is to have each node
adjust its moving direction towards the direction of the target,
w◦. Ideally, this can happen by having each node select its
velocity vector to point along the direction w◦ − xk, i.e.,

vk = α · w◦ − xk
∥w◦ − xk∥

(4)
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for some positive scaling factor α that controls the speed of
the node. In (4), we are dropping the time index for simplicity
and writing {xk, vk} instead of {xk,i, vk,i+1}. Also, nodes do
not know location w◦ and, therefore, later we shall replace w◦

in (4) by a local estimate for it at node k and time i, denoted
by wk,i (see (11)).

Additionally, the nodes in the network do not only want
to move in the direction of w◦, but they want to do so in
an organized manner. By self-organization we mean that the
nodes avoid collisions by maintaining a certain distance r from
neighbors during the motion behavior. Specifically, every node
k would like to satisfy the relation below in reference to its
neighbors:

r − ε ≤ ∥xk − xl∥ ≤ r + ε for all l ∈ Nk \ {k} (5)

where ε is a small positive number. To achieve cohesion and
to avoid collision, we introduce the following cost function:

Jk(vk) =
∑

l∈Nk\{k}

[∥(xk +△t · vk)− (xl +△t · vl)∥ − r]
2

(6)
In the above, the term xk+△t·vk refers to the updated location
of node k and the terms {xl + △t · vl} refer to the updated
locations of the neighbors of node k. The minimization of
(6) over vk is meant to ensure that the distance between the
updated locations stays close to r. As the discussion will
reveal, the above cost function also helps the nodes align their
velocities. To determine the optimal vk, we differentiate (6)
with respect to vk and get

dJk(vk)

dvk
= 2

∑
l∈Nk\{k}

△t · vk −△t · vl − (xl − xk)

+r
xl − xk +△t · (vl − vk)

∥xl − xk +△t · (vl − vk)∥

) (7)

Note that xl − xk is the relative displacement vector and
denotes the location of node l relative to node k. To solve
for vk from (7) we investigate the last term in (7). Figure
1 illustrates the current locations of nodes k and l and their
updated locations. The term, △t · (vl − vk) is a measure of
how misaligned the displacements of nodes l and k are after
the update. It is reasonable to assume that this misalignment is
small relative to the displacement distance ∥xl−xk∥ because,
in general, the velocity of node k will be close to its neighbors’
velocities. Thus, we may introduce the approximation:

xl − xk +△t(vl − vk)

∥xl − xk +△t(vl − vk)∥
≈ xl − xk

∥xl − xk∥
(8)

The result is a normalized direction vector along the direction
connecting nodes l and k. Using (8) and setting the derivative
in (7) to 0, the velocity vector by node k to achieve self-
organization is found to be:

vk =
1

|Nk| − 1

∑
l∈Nk\{k}

[
vl +

(
1− r

∥xl − xk∥

)
xl − xk
△t

]
(9)

Fig. 1. Location of node l relative to node k.

The operator |·| on a set denotes the number of elements in the
set. Expression (9) consists of two terms. The first term is the
average velocity of the neighbors of node k, excluding itself.
Doing so results in a pattern of collective motion. The second
term in (9) is an average of the displacement vectors {xl−xk};
the magnitudes of these vectors are scaled by subtracting from
them unit vectors of size r. This term suggests that nodes
should adjust their velocity direction to be consistent with the
average displacement vector in the neighborhood while main-
taining a distance r from their neighbors. A structure similar
to (9) was suggested before to induce repulsion and attraction
behavior among nodes in a network (see [10]-[11]). Here, we
arrived at (9) by starting from the optimization problem (6)
and by resorting to the geometric approximation in Fig. 1.
Actually, the final structure that we shall adopt for updating
the velocity vector appears in (11) below and is different from
(9) in two respects. First, expression (11) incorporates the
term wk,i − xk,i, which relates to the ultimate objective of
the network, namely, moving towards the unknown target w◦.
Second, expression (11) incorporates a term vgk,i, which refers
to a local estimate for the velocity of the center of gravity of
the network, vg, defined as

vg , 1

N

N∑
l=1

vl (10)

Based on (4), (9), and (10), we assume in this work that
nodes adjust their velocity vectors according to three criteria
as follows:

vk,i+1 = α
wk,i − xk,i
∥wk,i − xk,i∥

+ βvgk,i + γδk,i (11)

where {α, β, γ} are non-negative weighting factors and

δk,i =
1

|Nk| − 1

∑
l∈Nk\{k}

(
1− r

∥xl,i − xk,i∥

)
(xl,i − xk,i)

(12)
Expression (11) uses local estimates {wk,i, vgk,i} for the global
quantities {w◦, vg}. We now develop diffusion mechanisms
that evaluate these local estimates in a fully distributed manner
and in real-time.
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III. DISTRIBUTED ESTIMATION

A. Measurement Model

As Fig. 2 shows, the distance between the target w◦ and a
node k at any time i is given by the inner product

d◦k(i) = uk,i(w
◦ − xk,i) (13)

where uk,i denotes the direction of the target including the
azimuth angle, θk(i), and the elevation angle, φk(i), i.e.,

uk,i =
[
cos θk(i) cosφk(i) sin θk(i) cosφk(i) sinφk(i)

]
(14)

Each node is assumed to observe a noisy measurement of the
distance to the target, say,

dk(i) = uk,i(w
◦ − xk,i) + nk(i) (15)

where nk(i) denotes additive noise. Rearranging the above
equation, we obtain a linear regression model of the form:

d̂k(i) , dk(i) + uk,ixk,i

= uk,iw
◦ + nk(i)

(16)

B. Estimating w◦

At every time instant i, every node k is assumed to have
access to the local measurements {d̂k(i), uk,i}. Using these
local data, as well as data shared with their neighbors, the
nodes would like to estimate in a distributed manner the global
parameter w◦ that minimizes the following cost function over
these variables:

Jglob
w (w) =

N∑
k=1

E|d̂k(i)− uk,iw|2 (17)

where E denotes the expectation operator. Individual nodes
cannot optimize (17) because they do not have access to the
data across all nodes. We therefore apply the Adapt-then-
Combine (ATC) diffusion algorithm [5]. Introduce two sets
of non-negative real coefficients {cwl,k} and {awl,k} satisfying:

N∑
l=1

cwl,k =

N∑
k=1

cwl,k =

N∑
l=1

awl,k = 1

cwl,k = awl,k = 0 if l /∈ Nk

(18)

The superscript w is used to indicate that the set of coefficients
is for the estimation problem involving w◦. The coefficients
refer to the weights across the links in the network. The ATC
algorithm consists of two steps. The first step involves local
adaptation, where node k incorporates its local information
{d̂l(i), ul,i} for l ∈ Nk into the processing task. And the
second step is a combination step where the estimates from the
neighborhood are combined through the coefficients {awl,k}.
The algorithm is described as follows:

ψk,i = wk,i−1 + µk

∑
l∈Nk

cwl,ku
T
l,i[d̂l(i)− ul,iwk,i−1]

wk,i =
∑
l∈Nk

awl,kψl,i

(19)

Fig. 2. System model in R3. The node at location xk is at a distance d◦k
from the target at location wo. The figure shows the azimuth and elevation
angles, θk and ψk , respectively.

where µk is a positive step size used by node k. The resulting
estimate of node k at time i is denoted by wk,i. According
to (19), the nodes in the neighborhood of node k share their
intermediate estimates {ψl,i} and measurements {d̂l(i), ul,i}.

C. Estimating vg

The velocity of the center of gravity, vg , should be also
estimated in a distributed way. By definition, vg is the average
velocity of all nodes in the network, as in (10). However,
since the velocities of the nodes are changing and so is vg,
we need to keep track of vg over time. Introduce the global
cost function:

Jglob
v (vg) =

N∑
k=1

E∥vk,i − vg∥2 (20)

Following the derivation in (17), we can arrive at the following
diffusion algorithm for estimating vg:

ϕk,i = vgk,i−1 + νk
∑
l∈Nk

cvl,k(vl,i − vgk,i−1)

vgk,i =
∑
l∈Nk

avl,kϕl,i
(21)

where νk is a positive step size used by node k and {cvl,k} and
{avl,k} are two sets of non-negative real coefficients satisfying
the same properties as (18).

We therefore end up with two diffusion mechanisms. Equa-
tions (19) and (21) refer to the diffusion mechanisms for
estimating the unknown location, w◦, and for tracking the
velocity of the center of gravity, vg , respectively.

IV. MOBILE ADAPTIVE NETWORK

Different variants of the algorithm are possible, for example,
by selecting different weighting coefficients. The following
variant is one possibility where we set cwl,k = cvl,k = δl,k
in terms of the Kronecker delta function. In this case, the
nodes exchange only their estimates and thus the amount of
communication is reduced. The following is a summary of
the resulting algorithm
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ATC Diffusion Algorithm
Start with {wk,−1 = 0, vgk,−1 = vk,−1}. Every node k
performs the following steps for i ≥ 0:

1) The node has access to the local data:
{dk,i, uk,i, vk,i, xk,i}.

2) Perform two local adaptation steps, one for the
weight vector, w◦, and the other for the velocity
of the center of gravity, vg:

ψk,i = wk,i−1 + µku
T
k,i[dk(i)

− uk,i(wk,i−1 − xk,i)]
(22)

ϕk,i = (1− νk)v
g
k,i−1 + νkvk,i (23)

3) Perform two local combination steps using data
from neighbors: one combines weight estimates for
w◦ and the other combines velocity estimates for
vg:

wk,i =
∑

l∈Nk,i

awl,kψl,i (24)

vgk,i =
∑

l∈Nk,i

avl,kϕl,i (25)

4) Update the node velocity and its location:

vk,i+1 = α
wk,i − xk,i
∥wk,i − xk,i∥

+ βvgk,i + γδk,i (26)

xk,i+1 = xk,i +△t · vk,i+1 (27)

Note that the neighborhood of node k is now denoted
by Nk,i to indicate that the network topology may change
due to movement.

V. SIMULATION RESULTS

In this section, we simulate the motion of mobile networks
with 100 nodes. We first specify the neighbors of a node. Let
R represent the maximum distance within which two nodes
can communicate successfully. All nodes within a radius R
of one node are candidate neighbors. However, to reduce
computational and communication overhead, the number of
neighbors will be constrained, say to NB .

The simulation parameters are set as follows. The length
unit is the body length of a node. The step sizes of updates
are µk = νk = 0.5 for all k. The combination coefficients are
set as awl,k = avl,k = 1/|Nk,i| if l ∈ Nk,i. For velocity control,
the coefficients are α = 0.5, β = 1 − α = 0.5 and γ = 1.
Moreover, the time duration is △t = 0.5 sec. In addition, we
set R = 5, NB = 12, and the optimal distance between two
neighbors is r = 3.

Initially, nodes are uniformly distributed inside a cube with
length 12 and their velocities are set at random directions and
unit magnitude. In the following, we compare performance of
the ATC diffusion algorithm and a non-cooperative algorithm.
For no cooperation, we set awl,k = avl,k = δlk and use

vgk,i =
1

|Nk,i|
∑

l∈Nk,i

vl,i. (28)

Fig. 3. Transient network MSD of the target location.

Fig. 4. Transient network disagreement of velocities.

In addition, the measurement noise, nk(i), in (15) is assumed
to be zero-mean Gaussian noise. Intuitively, the noise variance,
σ2
n,k(i), should vary with the distance between the target and

the node since the measurements are noisier at farther distance.
We adopt the relation

σ2
n,k(i) = κ∥w◦ − xk,i∥2 (29)

We choose κ = 0.1 in the sequel. The model is reasonable
since we usually assume the signal power to decrease in
proportional to the square of the propagation distance.

Fig. 3 shows the network transient mean-square deviation
(MSD) for estimating w◦. The results are averaged over 100
independent experiments. As has been shown in [5], ATC
diffusion has better performance than no cooperation. The
MSD decreases with time since the network approaches to
the target and the noise variance decreases accordingly. Fig.
4 shows the network disagreement, D, of velocity, which is
defined as

Di ,
1

N

N∑
k=1

∥vk,i − vgi ∥
2 (30)

This metric measures the coherence of collective motion of
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Fig. 5. Maneuvers of mobile network in R3 over time: (a) t = 0.5 sec, (b) t = 25 sec, (c) t = 50 sec, and (b) t = 100 sec.

the network. We observe that the diffusion strategy improves
transient and steady-state performance, and helps the network
form coherent movement.

We illustrate the maneuver of mobile networks in R3 over
time in Fig. 5. The mark, “�”, denotes the target of the
network.

VI. CONCLUSIONS

In this paper, we developed a diffusion algorithm for mobile
adaptive networks such that they can move coherently towards
a target with unknown location. Simulation results showed
that the network successfully gets to the target and forms
an ellipsoid shape. With the aid of the diffusion strategy, the
network achieves lower mean-square of velocity disagreement.
This demonstrates advantage of the diffusion algorithm in
generating such coherent movement.
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