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Abstract

This paper gives an overview of a multi-modal wearable
computer system 'SNAP&TELL’' | which performs real-
time gesture tracking combined with audio-based system
control commands to recognize objects in the environment
including outdoor landmarks. Our system uses a single
camera to capture images which are then processed using
several algorithms to perform segmentation based on color,
fingertip shape analysis, robust tracking, and invariant ob-
Jject recognition, in order to quickly identify the objects en-
circled (SNAPshot) by the user’s pointing gesture. In turn,
the system returns an audio narration, TELLing the user in-
formation concerning the object’s classification, historical
facts, usage, etc. This system provides enabling technology
for the design of intelligent assistants to support ”Web-On-
The-World” applications, with potential uses such as travel
assistance, business advertisement, the design of smart liv-
ing and working spaces, and pervasive wireless services
and internet vehicles.

1. Introduction

In the future, computing technology is expected to
greatly impact our daily activities. One recent computing
trend is mobile wearable computing for the design of intel-
ligent assistants to provide location-aware information ac-
cess that can help users more efficiently accomplish their
tasks. Thus imagine a soldier using a wearable system dur-
ing a mission in a foreign country. By pointing at his/her
surroundings and snapping landmark images such as build-
ings, mountains, warning signs, billboards, etc, the wear-
able assistant could convey up to the minute recommenda-
tions about where enemy troops are located with respect to
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his current position, including which direction to proceed
to, or the language translation of foreign signs. Further-
more, a tourist using a wearable assistant while on a for-
eign trip, could point at a hotel, a landmark, or a restau-
rant, in order to obtain information concerning a hotel’s rat-
ing, room rates and availability, a landmark’s highlights and
hours of operation, a restaurant’s menu/prices and open-
ing hours, or multilingual translations of street signs. In
addition, wearable computer technologies can also provide
information about the individual that wears the computer,
and the world in which this individual interacts (situational
awareness). Fire-fighters using a wearable assistant could
be provided information concerning the temperature outside
of their suit at various positions within their surroundings,
their own body temperature and blood oxygen levels, and
the recommended direction to proceed while inside a build-
ing under low visibility conditions. Computing and sens-
ing in such environments must be reliable, persistent (al-
ways remains on), easy to interact with, and configured to
support different needs and complexities. The success of
such systems will rely upon the ability to quickly process
the sensory data captured from all sensors, and automati-
cally extract the relevant information for analyzing and un-
derstanding the objects and activities occurring within the
environment. For scene understanding within wearable en-
vironments, we have developed a real-time gesture tracking
system 'SNAP&TELL’ for recognizing objects in the scene,
where the system processes are controlled by the user using
a small set of audio commands.

Visual tracking and recognition of pointing and hand
gestures are a natural way of interacting with a wearable
system. Therefore, the "SNAP&TELL’ system uses several
computer vision algorithms to extract color-based segmen-
tations, and shape information from the machine’s camera
view in order to identify the user’s hand and fingertip posi-
tion. These algorithms, however, are complex and computa-
tionally intensive, and thus tend to slow down the response
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of the machine to a great extent. In order to perform real-
time acquisition and tracking, 'SNAP&TELL’ uses a robust
state-space estimation algorithm to predict the future posi-
tion of the user’s pointing fingertip. Then, the system uses
these predicted coordinates to center a smaller search win-
dow during the next video frame. This reduces the search
space from the full camera view to a smaller area in a dy-
namic fashion.

The need for a robust prediction algorithm arises from
the desire to control the influence of uncertain environmen-
tal conditions on our system’s performance. For a wearable
computer system, these uncertainties arise from the camera
moving along with the user’s head motion, the background
and object moving independently of each other, the user
standing still then randomly walking, and the user’s point-
ing finger abruptly changing directions at variable speeds.
All these factors give rise to uncertainties that can influence
the design of reliable trackers, therefore we have incorpo-
rated data uncertainty modeling into SNAP&TELL’s robust
tracking algorithm. Once the user has finished encircling
the object of interest, a verbal command is issued to invoke
the system’s invariant object recognition algorithm to iden-
tify the object, and provide the user with an audio narration
of all the previously stored information concerning that par-
ticular object.

2. Previous work

In the past, the applicability of computer vision algo-
rithms aimed at real-time pattern recognition and object
tracking has been hindered by the excessive memory re-
quirements and slow computational speeds. Some recent
computer vision approaches for tracking applications speed
up their computation time by reducing the image search area
into a smaller window. The window is centered around the
last known position of the moving object [1], [11]. The
main drawback of these methods is that when the object
moves faster than the frame capture rate of the algorithm,
the object will move out of the window range. This possibil-
ity leads to a loss in tracking ability and forces the algorithm
to reset the image search area to the full view of the camera
in order to recover the position of the object. The repeated
reduction and expansion of the image search area slows
down the system’s performance considerably. Some track-
ing solutions have attempted an improvement by gradually
varying the search window’s size according to the moving
object speed [1]. The faster the object moves, the larger the
search window becomes, while still centering the window
around the last known position of the object. Therefore, if
the object is moving fast, the search window is large and the
computation time for the vision algorithm increases, thus
further slowing down the system’s response time.

More advanced systems, such as in [5], use state-space
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estimation techniques to center the smaller search window
around the future predicted position of the user’s fingertip,
rather than around its current position. In this way, as the
moving object speed increases, the predicted window posi-
tion will accompany the speeding object thereby keeping it
inside the window’s view. The window size thus remains
small and centered around the object of interest regardless
of its speed. This in turn keeps the memory allocations
down to a minimum, thus freeing memory space that can
be used by other simultaneous processes. However, if the
object abruptly changes its movement patterns (which in-
troduces modeling uncertainties), such systems breakdown,
and tracking of the user’s hand is lost. Therefore, a robust
estimation algorithm such as [4], which models the uncer-
tainties created by the user’s random ego motion, is more
effective in keeping the user’s hand inside the small search
window and in reducing the number of times the image
search area has to be expanded to full view, thus increas-
ing the system’s response time.

3. SNAP&TELL system overview

At HRL, we have designed a wearable computer system
"SNAP&TELL’, which aims at providing a gesture-based
interface between the user and the mobile computer. The
system performs real-time pointing gesture tracking to al-
low the user to encircle an object of interest in the scene,
then a SNAPshot of the object is captured and passed on
to a recognition module, which TELLSs or outputs audio in-
formation concerning the object to the user through the use
of IBM’s ViaVoice speech recognition and text-to-speech
software. With this goal in mind, we have developed a ro-
bust algorithm to track the position of the tip of a user’s
pointing finger. This finger tracker acts as an interface
to our wearable computing system, which enables a user
to specify, segment, and recognize objects of interest, by
simply pointing at and encircling them with their finger-
tip. The *SNAP&TELL’ system accepts a constant video
input stream from a Toshiba color pencil camera, which is
attached to the side hinge of a Sony Glasstron see-through
personal LCD monitor. The pencil camera is positioned
pointing towards the user’s field of view. Once the user is
ready to point to the object of interest, he gives the verbal
command ”start”, which activates the finger tracking rou-
tine. While tracking the user’s fingertip, the system applies
color segmentation to the input video stream. The color
segmented image is then fed into a skin/non-skin discrim-
ination algorithm to detect likely skin toned regions, then
shape and curvature analysis is used to extract the hand and
to determine the coordinate position of the fingertip. The
sequence of successive detected fingertip positions identi-
fies the trajectory that the user’s fingertip is following while
encircling the object of interest. At the conclusion of the
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hand motion gesture, the user gives the verbal command
”stop”, which terminates the tracking algorithm. At this
point, the currently segmented object encircled by the user
is displayed on the see-through personal LCD glasses, and
the user is given the choice to either accept this segmented
object by using the command "snap”, or to "reset” the sys-
tem and ”start” a new snapshot of the object. Once the
object has been properly segmented, the user initiates the
recognition phase by issuing the verbal command “tell”.
The recognition algorithm extracts the segmented object
from the scene, by cropping the region of interest. The
segmented object is then compared against a database of
pre-stored objects, by using an invariant object recognition
algorithm which recognizes the object despite small varia-
tions in pose, scale, rotation, and translation. Once the ob-
ject is recognized, the object class is displayed and any ad-
ditional information associated with the object is described
to the user thru an audio narration. The system block dia-
gram for *SNAP&TELL’ is shown in Figure 1.

Camera View frem
Head - Mounted
Color Pencil Camera

Skin / Nen-Skin
Discrimination
Algorithm Ouiput Images

Cobor Segmentation
Algorithm

Sogrent |
Object

Object

Chject
Information it

Recegnition

Vision Algorithms
Figure 1. Block diagram of gesture-based in-
terface for the 'Snap&Tell’ system.

This problem is particularly difficult because we need to
recognize the user’s hands and objects from images taken
from head-mounted cameras in real time. When the user’s
head moves so does the camera, thus introducing image
jitters, and dramatical changes to the unrestricted back-
ground, and the lighting conditions. Therefore, in order to
track the user’s fingertip position in the presence of ego-
motion, we incorporate the knowledge of the dynamics of
human motion to create uncertainty models, which are inte-
grated into a robust estimation algorithm to make the track-
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ing model less sensitive to the random motion produced by
head/camera motion and temporary occlusions. Further-
more, we use the coordinates of the robust predicted fin-
gertip position to center a smaller image search window for
locating the hand. From this point onwards, only the input
image inside the smaller search window is analyzed by the
vision algorithms, thus speeding up the response time of the
system, and making the routine memory and computation-
ally efficient. If, for some reason, the search window fails
to display the user’s hand, the system resets back to the full
camera view.

3.1. Audio interface

For a wearable system to be practical and fully func-
tional, the user interface must be transparent to the users, as
well as easy to interact with. Therefore, the ’SNAP&TELL’
system uses a headset consisting of head phones and a mi-
crophone to verbally communicate with the user in a natural
and efficient manner. While the user wears this headset, it
enables him to give verbal commands to the computer thru
the microphone, while at the same time allows him to hear
the information communicated back to him thru audio feed-
back.

Create Dynamic Vocab

Type a unique name and a series
of wotds or pheases {one per ine)
for the new vocabulary,

Vocabulary Name:
Isnm&tell

Vorabulary Words or Pivasss:

start
stog
1eset

Wike to waed st (WOL)fe... |

Figure 2. Creating the verbal command list
using the IBM’s ViaVoice software.

As part of our wearable user interface, we incorpo-
rated a series of verbal commands into the system using
IBM’s ViaVoice software. These commands allow the user
to turn the tracking system on and off, as well as give
him/her the choice to accept or reject a captured object
before it is recognized. Figure 2 shows the ViaVoice di-
alog window used to create the dynamic vocabulary for
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the "SNAP&TELL’ system. The current list of verbal com-
mands include: “start” which enables the system to begin
tracking the user’s pointing fingertip; “stop” which signals
the end of the pointing gesture; “clear” which deletes the
partial tracking points computed at any given time thereby
allowing the user to erase defective tracking paths; "snap”
which extracts the object of interest encircled by the finger-
tip track; “zell” which activates the recognition routines and
ultimately sends the object’s audio information to the user;
and “reset” which deletes a defective snapshot and clears
all the recognition results and sets the system into the wait
for start command” mode. We expect the set of verbal com-
mands to increase as our system continues to grow. Multi-
ple users are supported by training the speech recognition
engine on each user, by having him/her say the commands
in the list. Figure 3 shows the speech recognition results of
a user speaking the various *SNAP&TELL’ commands.

| Test Dynamic Voo abs

Messages:
NAM - Recognition from vocabulary {syiegi ety ;j
TXT - ANN - Recognized: [start]

NAM - Recognition from vocabulary {sag& redy
TXT - ANN - Recognized: [stop)

NAM - Recognition from vocabulary fsrapares]
TXT - ANN - Recognized: [snap)

NAM - Recognition from vocabulary fsnapsten
TXT - ANN - Recognized: [tell]

NAM - Recognition from vocabulary {strapatetl]
TXT - ANN - Recognized: [clear]

NAM - Recognition from vocabulary fstap& ey

-

Figure 3. Voice recognition resuilts of the ver-
bal command list for the ’Snap&Tell’ system.

3.2. Skin/non-skin color segmentation

To determine the skin-like regions in the current frame,
we first perform a color segmentation based on the fast and
robust mean shift algorithm [2]. By using the mean shift al-
gorithm the number of dominant colors can be determined
automatically, unlike the k-means clustering method where
the initial number of classes must be chosen. Here, the in-
tensity distribution of each color component in the current
frame is viewed as a probability density function. The mean
shift vector is the difference between the mean of the prob-
ability function on a local area and the center of this region.
Mathematically, the mean shift vector associated with a re-
gion Sz centered on & can be written as:

Fress P = )i
Sges. P

V(@) = )
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where p(-) is the probability density function. The mean
shift algorithm states that the mean shift vector is propor-
tional to the gradient of the probability density Vp(Z), and
reciprocal to the probability density p(&), such that

(@) = 2D
p(Z)
where ¢ is a constant. Since the mean shift vector is along
the direction of the probability density function maximum,
we can exploit this property to find the actual location of
the density maximum by searching for the mode of the den-
sity. One dominant color can be located by moving search
windows in the color space using the mean shift vector it-
eratively. After removing all color inside the converged
search window, one can repeat the mean shift algorithm
again to locate the second dominant color. This process is
repeated several times to identify a few major dominant col-
ors which segment the image into like-color regions. The
dominant colors of the current frame are used as the ini-
tial guess of dominant colors in the next frame, thus speed-
ing up the computational time (adjacent frames are usually
similar). After segmenting the current frame into homoge-
neous regions, we determine whether each region is skin-
like by considering the mean hue and saturation values and
geometric properties of the region. This region-based skin
detection procedure is more robust to varying illumination
conditions than pixel-based approaches.

©))

3.3. Shape analysis

Once the skin-like regions have been segmented, we
clean up this image by applying morphological operations
to minimize the number of artifacts being considered as
having skin-like color properties. Geometric properties
(e.g., elongatedness, boundary curvature) of the skin-like
regions are used to identify the hand. Then the user’s hand
orientation with respect to the x-axis (i.e. pointing direc-
tion) is derived using central 2”¢ order moments, and the
fingertip position is determined as the point of maximum
curvature along the contour of the hand.

3.4. Robust state-space fingertip tracking

To achieve computational efficiency, memory savings
and real-time tracking, a robust state-space estimation al-
gorithm is used to reduce the search area to a smaller search
window centered around the predicted position of the fin-
gertip. This robust finger tracker [4] is based on the prin-
ciples of state-space estimation with uncertain models, see
Sayed [8]. The need for robust methods arises from the de-
sire to control the influence of uncertain environment con-
ditions on the system performance, such as the effect of ran-
dom variations in the user’s motion characteristics. The ro-
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bust tracker attempts to predict the fingertip coordinate po-
sitions {@;+1, ¥i+1} in the next video frame in terms of the
present frame fingertip pixel coordinates {z;,y;} and the

pixel-shift per frame estimated by {v;T, «r; -T;-} such as,

T2
Tip1 NI+ ’U:,;J'T + az,,‘? 3)
T‘Z
Yirr N yit oy T+ oy )
Vrivl R Vgt e T (&)
Vy,i+1 R Uy, + ay,iT (6)

where {a ;. oty s } denote the accelerations along the x and
y directions (measured in pixels per second?), {vz i, vy}
denote the speeds along these same directions during the
it" frame (measured in pixels/second), and T denotes the
frame capture rate while tracking the user’s hand, (for the
’SNAP&TELL’ wearable system, this rate is currently 1/5
seconds/frame). The previous equations motivate the fol-
lowing state-space model with state vector s; and measure-
ment vector 2;:

sio = [ @ Y Ui Uy Coi @y ]T )]
2 2 (e ow]" ®)
Si+1 = (F+6F,;)si+(G+6Gi)u,- )
zi = H5i+’Ug' (IO)
1 0 T 0 0572 0
010 T 0 0.5T2
00 1 O T 0
F=1loo001 0o T an
0 0 0 O 1 0
0 0 0 O 0 1
1 00 0 0O 1 0
010 0 0 0 01
loo1o00 0 r_ |00
G=looo1o00|" H=|oo| 1
0 00010 0 0
0 00 O0O01 00

where u; and v; denote uncorrelated zero-mean white Gaus-
sian process and measurement noises, with corresponding
covariance matrices () and R. The particular values for
these covariances are determined empirically by meeting
the 95% confidence whiteness test required by Mehra’s
method [7]. The chosen values for () and R used in the
"SNAP&TELL’ wearable system are:
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The wearable computer uncertainties are modeled by
treating the given parameters {F,G} as nominal values,
and assuming that the actual values lie within a certain set
around them. Thus the perturbations in { F, G} in equation
(9) are modeled as

[ 0F, 6Gi ] = MA;[ E; E, ] (14)
for some matrices {M, E¢, E,} and for an arbitrary con-
traction A;, ||A;|| < 1. For generality, one could allow the
quantities {M, E¢, E,} to vary with time as well. This is
useful for the case when our model is expected to change
dramatically at a particular time instance, such as when
the user starts walking, coughing, or moving his/her head
abruptly while being distracted. Then one can assign differ-
ent levels of distortion by selecting the entries of {E¢, E, }
appropriately, [4], [8]. The authors are currently investi-
gating adaptive models for modeling the uncertainties as-
sociated with user’s head motion, walking, and changes in
lighting conditions. One such case is when the user starts
walking while pointing at an object of interest. In this situ-
ation, the uncertainties 6 F; and 6G; will have larger values
than when the user is standing still. The *SNAP&TELL’
system would then detect constant movement in the camera
view indicating walking motion, and would then switch the
robust tracker’s perturbation model to the "walking” uncer-
tainty model.

Applying the time- and measurement-update form of
our robust filter to the uncertainty model (9)-(10), where
Il > 0, R > 0, Q > 0 are given weighting matrices,
yields the following equations, which attempt to minimize
the estimation error at the worst case possible created by
the bounded uncertainties 6 F; and 6G;, see Sayed [8]:

Initial conditions: Set §0|0 = P0|0HTR_120 and POIO =
(;* + HTR'H) ™.

Step 1. If HM = 0, then set XA = 0 (non robust filter).
Otherwise, select « (typically 0< a <1) and set

Mi=(+a) |MTHTR'HM)|.

Step 2. Replace {Q, R, Py;, G, F'} by:
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~ ~ ~ -1
Q7' = Q'+ AE][1+\EPLE]| E,
Ry, = R-\T'HMMTHT

~ ~ -1

Py = (Pi|—i1+)‘,-EfTEf)

= Pyi— P E](\7'T + E¢P),E} ) 'EfPy;
Gi = G-\FPuETE,

I/i = (F— X,@,@zEgEf)(I - /A\iﬁmE}“Ef)

-

If 5\1 = 0, then simply set @, =Q, I/%H-l =R, 13,;” = Py,
@i =G,andf’,» =F.

Step 3. Update {5;);, P;|; } as follows:

Sim = Fidy
Siv1lin = S+ P H'R L e,
i+1li+1 T i+1 i41]i+1 i+1€i+1
eir1 = zipn—Hséip
= o AA AT
Piy1 = FPF + GiQiG;
T p—1
Piyiyn = P —-PpH R, HP
2 T
Rejpp = Ripn+HPLH

We applied this robust algorithm to a typical user’s finger tip
trajectory and display the results in Figure 4. Note that the
reduced search window is centered around the previously
predicted fingertip position, and very closely overlaps the
actual finger position.

Reduced search window centered
at the predicted fingertip posiion

Full camera view from
Wearable computer

Figure 4. Successfully tracked fingertip using
a robust state-space Kalman filter.

3.5. Invariant object recognition

Having located the scene object or landmark of interest,
we would like to recognize it irrespective of pose, scale,
rotation, and translation variations. Our current approach
to object recognition involves a multi-dimensional indexing
scheme based on characterizing its local appearance by a

{ Learn Models of '\

Local Appearance

Baves
Decision BN l‘i})

=il
,r{} ﬂ Rule
Lex]
J

L

$oovate Salfent Heglons
af Multiple Scaley

Figure 5. Object recognition framework.

vector of features extracted at salient points. Local descrip-
tors should be stable to slight changes in viewpoint, illumi-
nation, and partial occlusion. It is also desirable that the
descriptors be highly discriminant so that objects may be
easily distinguished. Crowley et al. [3] represented physi-
cal objects by an orthogonal family of local appearance de-
scriptors obtained by applying principal component analy-
sis (PCA) to image neighborhoods. The principal compo-
nents with the largest variance were used to define a space
for describing local appearance. Recognition is achieved
by projecting local neighborhoods from newly acquired im-
ages onto the local appearance space and associating them
to descriptors stored in a database. A similar approach to
local appearance modeling was proposed by Schneiderman
et al. [9], where the pattern space was first discretized by
applying clustering using Vector Quantization (VQ), and
then a projection basis was learned for each cluster. The
approach we take improves upon these methods of mod-
eling local appearance by learning the collection of pat-
terns within a mixture of factor analyzers (MFA) frame-
work, see Keaton et al. [6]. The advantages of this ap-
proach are that the clustering and dimensionality reduction
steps are performed simultaneously within a maximum-
likelihood framework. In addition, the MFA model explic-
itly estimates the probability density of the class over the
pattern space. Therefore, it can perform object detection
based on the Bayes decision rule.

In our object recognition approach, MFA modeling is
used to learn a collection, or mixture, of local linear sub-
spaces over the set of image patches or subregions extracted
from the training set for each object class, see Figure 5. By
allowing a collection of subspaces to be learned, each can
become specialized to the variety of structures present in
the data ensemble. The cropped image containing the ob-
ject of interest is first decomposed into a set of 8 x 8 image
patches extracted at salient points in the YCrCb color space,
see Figure 6. We extract the image patches at only selected
points in the image, in order to reduce the amount of data
we must process. Salient points are local features where
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Figure 6. Detection of salient points.

the signal changes two-dimensionally. We use a technique
by Tomasi and Kanade [10] for finding salient features. In
order to detect an object at any size, we repeat the process
of extracting image patches at salient points over a range of
magnification scales of the original image.

Factor analysis is a latent variable method for model-
ing the covariance structure of high dimensional data using
a small number of latent variables called factors, where A
is known as the factor loading matrix. The factors z are
assumed to be independent and Gaussian distributed with
zero-mean unit variance, z ~ N (0,I). The additive noise u
is also normally distributed with zero-mean and a diagonal
covariance matrix ¥, u ~ N (0,¥). Hence, the observed
variables are independent given the factors, and x is there-
fore distributed with zero mean and covariance A’A + U.
The goal of factor analysis is to find the A and ¥ that best
model the covariance structure of x. The factor variables
z model correlations between the elements of x, while the
u variables account for independent noise in each element
of x. Factor analysis defines a proper probability density
model over the observed space, and different regions of the
input space can be locally modeled by assigning a different
mean y;, and index w; (where j = 1,...,.M), to each factor
analyzer.

The EM learning algorithm is used to learn the model
parameters without the explicit computation of the sample
covariance which greatly reduces the algorithm’s computa-
tional complexity:

E-Step: Compute the moments h;; = Elw;|c],
E[z|z;,wj], and E[zz'|2;, w;] for all data points i and mix-
ture components j given the current parameter values A j,
and ‘I’]'.

M-Step: This results in the following update equations for
the parameters:

Rrew = (8, by BlEles,wy))) (5, iy BIEF i, wi) 7
\TI;‘e“' = Ldiag {Z” hij(z: — K?C“E[Elhw]]).L;}

T n
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See [6] for details on the derivation of these update equa-
tions. We iterate between the two steps until the model like-
lihood is maximized.

In the context of object recognition, we are interested in
calculating the probability of the object O; given a local fea-
ture measurement z, represented by the local image patch
or subregion. Once the MFA model is fitted to each class
of objects, we can easily compute the posterior probabili-
ties for each subregion x ;. The pdf of the object class O; is
given by

M
Pi(wkégi) = Z ])imv/\/(ﬂim: 4 ;mAim + ‘Pim):

m=1

where ©; is the set of MFA model parameters for 4"
object class, and P;,, is the mixing proportion for the mt*
model of the object class O;. The posterior probability of
object class O; given iy, can be calculated by Bayes’ rule:
P(Oll‘Lk) = NPzpz(J/k:On)

Zn:l Prpn(cr; ©n)

where N is the total number of object classes and P; is the
priori probability of object class O; which is estimated from
the training set of images. Without modeling the depen-
dencies between the local subregions z, lets assume we
have extracted K independent local feature measurements
(1, ...,z k) from an image, then we can compute the prob-
ability of each object class O; given the image patches by

Pipi(x1, ... xk;O4)
Z;’:{:l Pﬂpn(wl sy Lk 6n)
_ i Pipi(zs: ©n)
[l S Papn(x: On)
Then, the optimum object class label ix for the image hav-

ing a set of local measurements (z,...cx ), is determined
by Bayes decision rule as follows:

P(O’Ll'lfl s ...,1L'k) =

ix = argmax P(O;|z1, ..., Tk).
1

Figure 7 illustrates the object recognition results obtained
with the "SNAP&TELL’ wearable system.

4. Results

Figure 8 shows the final output display of the
’SNAP&TELL’ system, after successfully tracking the
user’s fingertip, extracting the object of interest at the end
of the pointing gesture, and finally recognizing the desired
object. This figure also illustrates how the robust tracker
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Figure 7. 'Snap&Tell’ invariant object recog-
nition.

helps to reduce the search area into a small window, thereby
speeding up the processing of the vision algorithms. In this
particular simulation, the response time of our overall sys-
tem was 68% faster than the response obtained by a system
that uses a full camera view to track the user’s fingertip,
and 23% faster when compared with a system that uses a
small search window centered around the previous finger-
tip position (rather than the predicted future position). It
should be noted that the size of the reduced search window
was chosen to be at least twice the size of the maximum
estimation errors in the x and y directions, where the per-
formance of our robust Kalman tracker was estimated using
a training sequence of a typical pointing finger trajectory
(AW, > 2&maz, AWy > 2§mae). Therefore, the more
accurate our tracker is in estimating the fingertip position,
the smaller the size of the search window needed, and thus
the faster the overall system response time will be. A com-
parison of the MSE results between a plain Kalman tracker
and our robust Kalman tracker, showed over 15% improve-
ment in the estimation error by using the robust algorithm.
These performance results are encouraging and merit future
exploration. We are working on an on-line learning method
to develop multiple uncertainty models with an intelligent
switching scheme to further speed up our system perfor-
mance. Finally, our object recognition approach has been
found to be robust to small changes in illumination, view-
point, and scale. We achieved 96% correct object recogni-
tion on a small test database of 5 views of 10 objects cap-
tured at different scales and perspectives, using a database
of 10 views per object to train the classification models.
Further testing is needed to determine how well the recog-
nition algorithm performs as the number of objects in the
database increases.
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