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Abstract

This paper first investigaics a companded differen-
tial pulse-coded modulator and derives an expression
for its SNR performance. Analysis and simulations
show that the coder has superior SNR and dynamic
range performance ouver other coders of similar com-
plezity. The compunded modulator is then extended to
an adaptive differential pulse-coded modulator with high
SNR and dynamic range performance, and it is shoun
to be BIBO stable.

1. Introduction

Pulse-coded modulation (PCM), delta modula-
tion {DM), and differential pulse-coded modulation
(DPCM} have limitations in terms of their signal-to-
noise ratio and dynamic range performances. One way
to ameliorate this problem is to employ adaptive step-
size quantizers, as Is the case with adaptive delta mod-
wlators (ADM) and adaptive DPCM. Examples of de-
signs involving step-size adaptations can be found in
A

In a previous study [4], the authors developed a par-
ticular adaptation scheme for sigma-delta modulation
(SDM) that was shown to lead to improved SNR and
dynamic range performance over conventional sigma-
delta modulators, including some earlier adaptive step-
size schemes. However, the method of [4] was limited
to single-bit quantization. The purpose of this article
is to show how to develop a multi-bit adaptive version
and how to use it to design an adaptive DPCM system
with improved performance.
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Fig. 1 shows the adaptation scheme developed in
[4], with the specific adaptive step-size scheme illus-
trated inside the dashed boxed. The scheme itself has
the form of a delta modulator with an additional ex-
ponential term used to improve tracking performance.
It was shown in [4], via a suitable change of variables,
that the step-size adaptation block of Fig. 1 can be
equivalently represented in the form shown in Fig. 2.
In this equivalent form, the adapter behaves like a com-
panded delta modulator. Even more importantly, this
alternative representation suggests an extension of the
single-bit adaptation scheme to the multi-bit scenario,
as we shall now explain. In the process, we shall in-
troduce two new multi-bit converters: a companded
DPCM system and an adaptive DPCM system.
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Figure 1. Step-size adaptation scheme from [4].

2. A Companded DPCM Structure

One way to extend the adaptation scheme of Fig. 1
is to replace the delta modulator block in Fig. 2 by a
more general DPCM block. The resulting structure is
shown in Fig. 3. A scaling factor equal to 1/5 is added
before the DPCM block in order to control its tracking
performance. In the figure, z{n) is the input signal and
u{n) 1s its representation (estimate). For simplicity of
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Figure 2. An equivalent structure for the adepla-
tion scheme of Fig. 1.

presentation, we shall assume that the DPCM block
has a single delay predictor as described by Fig. {a.
The quantizer of the DPCM block is assumed to have
B — 1 bits, so that the total number of bits of the com-
panded system of Fig. 3 is B bits. Part b) of Fig. 3
shows a linearized model for DPCM, with the quan-
tization noise introduced by the quantizer denoted by
eqa{n), and modeled as uniformly distributed within the
interval [-A/2, Af2] where A = 1/28~! =2/2%. This
quantization noise will be assumed to be independent
of all other variables. In the following, we show that
the companded DPCM structure of Fig. 3 is equiva-
lent to a single random gain with known distributions.
Moreover, the SNR for this structure will be computed.
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Figure 3. Structure of the companded DPCM.

Let e.{n) = z(n) — v(n) denote the coding error.
The SNR. performance of the coder will be measured
in terms of the ratio of the input variance (¢2) to the
variance of e;(n). In order to derive an expression for
the SNR, and thereby evaluate the performance of the
system, we shall first show that the overall (nonlinear)
companded system of Fig. 3 {(which maps z(n} to v(n))
can be approximately modeled in terms of a random
gain model, i.e., as '

v(n) = K(n)z(n)

for some random scalar K {n) with known distribution.
Ouce this is done, we shall then cvaluate the system
SNR.

To begin with, from Fig. 3, the input to the DPCM
block, z4{n), is given by
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Figure 4. Simple DPCM structure. a. Original
system b. Linearized system.

i) = % log [+(n)] 1)

where z{n) is the input to the coder. The output of
the DPCM block, denoted by y4(n), is scaled by S and
decompressed by an exponential factor ¢, so that

d(n) = ove(m) (2)

The purpose of the signal d(n) is to track the ab-
solute value of z{n) in an exponential manner. The
decoded output u(n) is obtained via

v(n) = y(n)dn).

where y(n) denotes the sign of z(n).
Now from Fig. 4b, it is easy to see that yy(n) is
related to {z4(n),eq(n)} as follows

ya(n) = za(n) + ealn)
so that )
valn) = 5 log, lo(n)| + eo(n)
Substituting into (2) leads to
d(n) = fo(m)laSe

and hence

v(n) = sign{z{n)}|z(n)|eS™



Therefore, the relation between v(n) and z{n) is effec-
tively given by

[0(n) = K(n)z(n)] (3)

where the random variable K (n) is defined by

K(n) & gSeatm )

We conclude that the companded coder of Fig. 3,
which maps z({n) to v(n), can be modelled in terms of
the scalar random gain K (n); this gain is a function
of the constant § and the quantization noise eg(n).
Since the distribution of e4(n) is assumed to be uni-
form, this information can be used to compute the first
and second-order moments of K(n) and thereby eval-
uate the performance of the system. In the sequel we
shall assume that all random processes are stationary.

To begin with, it follows from the definition of the
coding error e.{n), and from the fact that es(n) is in-
dependent, of all other variables, that

e

L., Efec(n)]

= Efz(n)] - E[v(n)]
= B, — E[K(n)z(n))
= b;—ExE,

where the symbols {F,, Fi} refer to the means
Ey 2 E[z(n)], Fx £ E[K(n)].
If we assume a zero-mean input signal then E; = 0 and
®
Moreover, by using
e2(n) = z%(n) — 2e(n)v(n) + vi(n)
we have that
Eez = Epe — 2Hy, + By
Now since
Ey = B{K(n)z?(n)} = ExE,»

and
E, = E{K?*(n)e*(n)} = Ex:E.2

we get
E2 = (1-2Ek + Eg2)E,2

where Egz refers to the second moment of K{n), L.¢.,

Exz 2 B[K*(n)]

We conclude that

which provides an expression for the SNR. performance
of the coder in terms of Fg and Eg2. These moments
are evaluated as follows:

a
T 1
Ex 2 E{K} = fAEaS"dn
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Ex: = B{K*"} = f N Tdn
-£
1 (a5 am98)

2A8 In(ex) @

We thus find that the SNR expression of the com-
panded DPCM system is independent of the input sig-
nal strength, which translates into a theoretically infi-
nite dynamic range.

3. An Adaptive DPCM Structure

Besides its values as a coder in its own right,
the companded DPCM of Fig. 3 could be used as
a sub-block within a single-bit delta modulator.
Specifically, it could be used to adapt the step-size of
a delta modulator. as shown in Fig. 5. In this case,
the input to the companded DPCM system (dashed
line) is e,{n), the difference between the input signal
and ifs estimate.
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Figure 5. Structure of the proposed ADPCM
coder.

The ADPCM structure of Fig. 5 differs from stan-
dard ADPCM coders in three respects. First, it em-
ploys a new step-size adaptation scheme. Second,
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the prediction part appears herc as a single delay’.
Third, the input signal in standard DPCM and AD-
PCM coders is usually buffered and normalized before
coding. In contrast, since the proposed structure ex-
hibits a high dynamic range, the input signal can be
directly coded.

In [5], we studied the stability of the single-bit ver-
sion of the structure shown in Fig. 5 (i.e., the case in
which the DPCM block is simply a single-bit DM). The
same analysis can be extended to the present context
to establish the following result.

Lemma 1 (Stability of the ADPCM) If & is cho-
sen inside the open interval

2795 <o <258 (7)

and if the input signal x(n) has o bound A, then there
exists a finite number L such that

aSB2AL

lv(n)] < —1——L (8)

In other words, the modulator is BIBO stable under
condition (7).

Proof: The cutput signal ¥(n) can be rewritten as
v(n) = (1 - K®))e(n-1)+ Kn)z(n)  (9)

or

vin) =Y [[(1~- K@) K@) (10)

i=1 j=i

If the input signal z(n) has a bound A, then
|[K(n)a(n)| < AlK(n)| (11)
Now, if we choose
25 <o <25 (12)
then a bound L can be found such that
It K{n)<L<1 (13)
Using this result, we can now write
lw(n)| < a¥8/2A i L’ (14)
=1

which leads to (8).
&

!The proposed ADPCM can be easily extended to higher or-
der prediction. In this paper, however, the single-delay predictor
is used for simplicity of analysis.
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4. Simulations

The performance of the proposed ADPCM coder
is compared against the companded DPCM coder of
Fig. 3, as well as p—law PCM and A-law PCM coders.
All these scheines have similar complexities. In particu-
lar, they do not involve elaborate prediction operations
as in standard DPCM and ADPCM coders. Moreover,
they are all on-line (real-time) schemes meaning that
they operate on the input signal on a sample-by-sample
basis.

A speech waveform is coded at a bit rate of 32KHz
using the companded DPCM and the ADPCM coders.
The parameters «, B, and § are chosen as 1.8, 3, and
5, respectively. The SNR is used as a qualitative mea-
sure of the quality of the decoded speech. In order to
test the dynamic range of the coder, we apply different
attenuation factors s to the input speech and the SNR
is measured for each value of x. The result is shown
in Fig. 6 together with that obtained using PCM, u-
law PCM, and A-law PCM. The figure shows that the
SNR values obtained by the companded DPCM and
proposed ADPCM coders are independent of the in-
put strength. Moreover, the proposed ADPCM coder
shows improvement of about 9dB over p-law PCM in
this case.
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Figure 6. SNR performance of five coding
schemes with different attenuation factors for
B =3

In a different experiment, we investigate the effect
of the input sampling rate on the performance of the
ADPCM coder. Fig. 7 shows the SNR performance
versus sampling rate of the input speech at different
number of bits. The SNR changes approximately in a
linear fashion with respect to the sampling rate.
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Figure 7. SNR of the ADPCM coder versus sam-
pling rate for different values of B.

5. Conclusion

We investigated a companded DPCM coder and pro-
posed an adaptive DPCM coder. Analysis and simula-
tions show that the coders exhibit both high dynamic

ranges and SNR. performances.
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