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Abstract— In this paper, we propose resource allocation strate-
gies for a class of wireless networks with a clustering protocol.
The nodes are assumed stationary and establish connections with
the master node according to a priority scheme that relates
to their distances from the master node. The paper considers
bandwidth and rate allocation.

I. INTRODUCTION

In this paper, we propose an adaptive bandwidth allocation strategy
that minimizes an upper bound on the blocking probability across
cells for a class of wireless networks. We also propose a rate
allocation scheme under buffer and energy constraints assuming the
data are correlated. Both resource allocation issues are addressed for
a wireless network that adopts a clustering protocol. The protocol is
as explained in [1].

II. RESULTS

A. Bandwidth Allocation
Let N denote the number of nodes in a cell. The blocking

probability in a cell l is defined as Prob(Z̄ > Ql), where Z̄ is
the number of nodes that express a desire to connect with the master
node and Ql is the number of frequency slots available in the cell.
It can then be shown, using Azuma’s inequality, that for the protocol
described in [1], the blocking probability is bounded as
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for some given positive scalar α < 1. The result suggests that we
introduce the utility function
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and maximize it over the Ql. The second term imposes a soft
constraint on the total number of frequency slots to be Q. The
coefficients µl and νl are chosen by the designer to proportionally
scale the two terms contributing to U . A gradient ascent algorithm
can seek the equilibrium [2].

B. Rate Allocation Through Encoding of Correlated Nodes
We also propose a strategy for allocating rates to different nodes in

a cell by jointly encoding their data based on the correlation present
among them. Consider a cell with N nodes and Ql frequency slots.
Let {X i

t }∞t=1 for i = 1, 2, ....Ql be a set of stationary real Gaussian
sources. For each t = 1, 2, ...., the sources {X 1,X 2, ....,X i}
generate a random vector xi with probability density function
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where xi = (x1, x2, x3, ....., xi) for all i ≤ Ql and Λi is the
covariance matrix. Consider the simple case when the source node i
encodes its data using just one helper node j instead of Ql−1 helper
nodes. Then it is known that for an admissible rate pair (Ri, Rj) and
for some distortion Dj > 0, a lower bound on the rate distortion
region is given by [3]
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where log+ x = max {log x, 0}. As can be seen from the above
expression, the rate distortion region even for the one helper case
is complicated enough to not allow elegant optimization methods if
one seeks to maximize a given utility function in this region. We
circumvent this difficulty by introducing an alternate (convex) rate
distortion region obtained from a special encoding scheme. Since
the rate distortion region that we employ is an outer region, the
price paid is that the desired distortion measures {Di} may not be
satisfied. Hence, we also provide a worst case distortion measure for
the proposed solution. We maximize U(Ri) =
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where b is the buffer capacity, pi is the transmission power of node i,
fi is the rate of transmission of node i, and Ei is the energy constraint
per transmission of node i. We update the rates as follows:

if
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Ri ≤ b for i = 1, 2, ...Ql, then

Ri(k + 1) = [Ri(k) + αkU ′(Ri(k))]R
else Ri(k + 1) = Ri(k) − βkε

with initial conditions Ri = 1, i = 1, 2, ..Q, and where {αk} and
{βk} are positive sequences having certain properties [2], and ε is
a small positive constant. Moreover [.]R denotes projection onto the
set R defined by

R = {Ri | Ripi/fi ≤ Ei, Ri ≥ 1

2
log+

(
|Λi|/

i−1∏
j=1

σ2
j Di

)

for i = 1, 2, ...Ql}
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