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Abstract— This article provides an overview of an energy-
based approach to the study of the steady-state and tran-
sient performances of adaptive filters. The analysis employs
energy-conservation arguments and is based on studying
the energy flow through each iteration of an adaptive fil-
ter. Among other results, the approach characterizes the
transient behavior of adaptive filters in terms of a linear
time-invariant state-space model. The stability and steady-
state behavior of the model then translate into stability
and mean-square performance results for the adaptive filter.
In addition to deriving earlier results in a unified manner,
the approach does not restrict the regression data to being
Gaussian or white.

I. Introduction

The study of the steady-state and transient performances
of adaptive filters can be facilitated by resorting to energy-
conservation arguments. These arguments are based on
studying the energy flow through each iteration of an adap-
tive filter, and on showing that the energies of certain a-
priori and a-posteriori errors maintain a balance for all time
instants [1]–[3]. When examined under expectation, the en-
ergy balance leads to a variance relation that characterizes
the dynamics of the filter. An advantage of the energy
framework is that it does not necessitate an explicit recur-
sion for the covariance matrix of the weight-error vector
[4]–[8]; a step that can be cumbersome for adaptive filters
with error and data nonlinearities. The energy approach
also does not restrict the input data to being Gaussian or
white. In this article, we review some of the basic ideas
pertaining to this method of analysis and study adaptive
filters that employ data nonlinearities in their update equa-
tions. A more detailed overview can be found in [9], which
also considers adaptive filters with error nonlinearities.

As with most adaptive filter analyses, progress is usu-
ally difficult without relying on simplifying assumptions.
This is because adaptive filters are, by their very nature,
nonlinear and stochastic systems and, therefore, studying
their performance can be a formidable task [10]–[12]. The
assumptions that we employ tend to be reasonable for suf-
ficiently small step-sizes and for longer filters; both of these
conditions are common in applications.
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II. The Data Model

Consider reference data {d(i)} and regression data {ui}
satisfying a linear regression model of the form

d(i) = uiw
o + v(i) (1)

for some M × 1 unknown column vector wo that we wish
to estimate. While all vectors in our notation are column
vectors, the regressors ui in (1) are taken as row vectors so
that the inner product between ui ad wo is simply written
as uiw

o, with no transposition signs.
In (1), v(i) denotes measurement noise. Observe that

we are using boldface letters to denote random quantities,
while the deterministic quantity wo is written in normal
font. In the model (1), the variables {d(i),ui,v(i)} are
random and they are assumed to satisfy the following con-
ditions:

(a) {v(i)} is a zero-mean, independent and identically
distributed sequence with variance Ev2(i) = σ2

v .
(b) v(i) is independent of uj for all i, j.
(c) The regressor ui is zero-mean and has covariance

matrix EuT
i ui = Ru > 0.

(2)
We focus in this paper on data-normalized adaptive filters
for estimating wo, viz., filters with updates of the form

wi = wi−1 + µ
uT

i

g[ui]
e(i), i ≥ 0 (3)

where
e(i) = d(i)− uiwi−1 (4)

is the estimation error at iteration i, and g[ui] > 0 is some
function of ui. Typical choices for g are g[u] = 1 (LMS),
g[u] = ‖u‖2 (NLMS), and g[u] = ε + ‖u‖2 (ε-NLMS). The
initial condition w−1 of (3) is assumed to be independent
of all {d(j),uj ,v(j)}.

Our first step towards examining the steady-state, con-
vergence and stability behavior of (3) is to establish an
energy-conservation relation that holds for a large class of
adaptive filters.

III. Energy-Conservation Relation

Let w̃i = wo − wi denote the weight-error vector at it-
eration i, and define the a-priori and a-posteriori errors:

ea(i) = uiw̃i−1, ep(i) = uiw̃i (5)
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It turns out that the errors {w̃i, w̃i−1, ea(i), ep(i)} satisfy
a fundamental energy-conservation relation. To see this,
we subtract both sides of (3) from wo to get

w̃i = w̃i−1 − µ
uT

i

g[ui]
e(i) (6)

and then multiply (6) by ui from the left to conclude that

ep(i) = ea(i)− µ
‖ui‖2
g[ui]

e(i) (7)

where the notation ‖ui‖2 denotes the squared Euclidean
norm of ui, viz., ‖ui‖2 = uiuT

i . Relation (7) can be used
to eliminate e(i)/g[ui] from (6). Doing so leads to the
equality

‖ui‖2 · w̃i + uT
i ea(i) = ‖ui‖2 · w̃i−1 + uT

i ep(i) (8)

By equating the weighted Euclidean norms of both sides of
this equation, we arrive, after a straightforward calculation,
at the equality:

‖w̃i‖2 +
(‖ui‖2

)† · (ea(i))2 = ‖w̃i−1‖2 +
(‖ui‖2

)† · (ep(i))2

(9)

in terms of the pseudo-inverse1 of the scalar quantity ‖ui‖2.
This energy relation is an exact result that shows how the
energies of the weight-error vectors at two successive time
instants are related to the energies of the a priori and a
posteriori estimation errors.

The result (9) was developed in [1] and subsequently used
in a series of works to study the robustness of adaptive
filters (e.g., [2], [3], [13], [14]). It was also used in [4]–
[6] to study the steady-state and tracking performances of
adaptive filters, as we proceed to explain.

IV. Mean-Square Error Performance

In performance analysis we are interested in evaluating
the steady-state mean-square error of the filter, defined by

MSE = lim
i→∞

Ee2(i)

Now since

e(i) = d(i)− uiwi−1 = ea(i) + v(i)

it follows that

Ee2(i) = Ee2
a(i) + σ2

v

so that
MSE = EMSE + σ2

v

where EMSE refers to the filter excess-mean-square error,
defined as the limiting value of Ee2

a(i). In other words,
it is enough for performance evaluation to focus on com-
puting the EMSE. The ratio EMSE/σ2

v is called the filter
misadjustment.

1For a scalar a, a† = 1/a when a 6= 0 and a† = 0 when a = 0.

Assuming filter operation in steady-state, the energy re-
lation (9) can be used to estimate the filter EMSE. Indeed,
taking expectations of both sides of (9), we get

E‖w̃i‖2+E
[
(‖ui‖2)†e2

a(i)
]

= E‖w̃i−1‖2+E
[
(‖ui‖2)†e2

p(i)
]

and since, in steady-state,

E‖w̃i‖2 = E‖w̃i−1‖2 as i →∞
we find that the following equality must hold as i →∞,

E
[
(‖ui‖2)†e2

a(i)
]

= E
[
(‖ui‖2)†e2

p(i)
]

If we replace ep(i) by (7) in terms of {ea(i),v(i)} and ar-
range terms, and if we assume that the event ‖ui‖2 = 0
has zero probability, we arrive at the following steady-state
variance identity:

2E
(

e2
a(i)

g[ui]

)
= µE

( ‖ui‖2
g2[ui]

e2
a(i)

)
+ µσ2

vE
( ‖ui‖2

g2[ui]

)

(10)
This relation is an exact result for filters operating in
steady-state. It provides an equation in terms of ea(i),
which can be used to estimate Ee2

a(i). It is at this stage
that we need to resort to some simplifying assumptions be-
cause (10) is hard to solve analytically even for the simplest
of algorithms.

A. Application to LMS

As an illustration, consider the LMS filter for which
g(ui) = 1, i.e.,

wi = wi−1 + µuT
i e(i) (11)

In this case, relation (10) gives

2ζ = µE
(‖ui‖2e2

a(i)
)

+ µσ2
vTr(Ru) (12)

where we are using the symbol ζ to denote the filter EMSE,
ζ = Ee2

a(∞). Eq. (12) requires that we evaluate the limit-
ing value of E‖ui‖2e2

a(i). This evaluation is simplified by
resorting to some approximations.

For instance, when the step-size µ is sufficiently small,
we may ignore the effect of E

(‖ui‖2e2
a(i)

)
to get

ζ ≈ µσ2
vTr(Ru)

2
(13)

which is a famous result for LMS. For larger step-sizes, we
can resort to the separation assumption:

At steady-state, ‖ui‖2 is independent of ea(i) (14)

which allows us to write

E
(‖ui‖2e2

a(i)
)

=
(
E‖ui‖2

) · (Ee2
a(i)

)
i →∞

so that (12) gives

ζ ≈ µσ2
vTr(Ru)

2− µTr(Ru)
(15)
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which is another famous expression for LMS.
The separation assumption (14) is reasonable for longer

filters. It can be exact in some scenarios, e.g., when the
entries of the regressor belong to a finite alphabet. Assume
for instance that ui possesses shift-structure, say,

ui =
[

u(i) u(i− 1) . . . u(i−M + 1)
]

and that each u(i) is a binary random variable, i.e.,
it assumes the values ±1 with probability 1/2. Then
‖ui‖2 = M for all i and is clearly independent of ea(i).
In this case, the filter EMSE will be exactly equal to
ζ = µσ2

vM/(2− µM).

B. Application to NLMS

Consider now the NLMS filter for which g(ui) = ‖ui‖2,

wi = wi−1 + µ
uT

i

‖ui‖2 e(i) (16)

In this case, relation (10) gives

(2− µ)E
(

e2
a(i)
‖ui‖2

)
= µσ2

vE
(

1
‖ui‖2

)
(17)

Using the separation assumption (14) again we have

E
(

e2
a(i)
‖ui‖2

)
= Ee2

a(i) · E
(

1
‖ui‖2

)

so that the filter EMSE is given by

ζ ≈ µσ2
v

2− µ
(18)

Alternatively, if we use the approximation

E
(

e2
a(i)
‖ui‖2

)
≈ Ee2

a(i)
E‖ui‖2 =

Ee2
a(i)

Tr(Ru)

then the filter EMSE is approximated by

ζ ≈ µσ2
v

2− µ
Tr(Ru)E

(
1

‖ui‖2
)

(19)

which is a known result for NLMS. Again, when the entries
of ui arise from a finite alphabet, so that ‖ui‖2 is equal
to a constant, the filter EMSE is exactly given by ζ =
µσ2

v/(2− µ).

C. Application to RLS

The energy-conservation approach can be extended to
handle more general update recursions. Thus consider now
the RLS algorithm,

wi = wi−1 + Pi uT
i [d(i)− uiwi−1], i ≥ 0 (20)

Pi = α−1

[
Pi−1 − α−1Pi−1uT

i uiPi−1

1 + α−1uiPi−1uT
i

]
(21)

with initial condition P−1 = ε−1I and where 0 ¿ α ≤ 1
is the forgetting factor. Compared with recursion (3), the

RLS update includes the matrix factor Pi multiplying uT
i

from the left. Moreover, Pi is a function of both cur-
rent and prior regressors. Still, the energy arguments of
Secs. III–IV can be extended to deal with this case. In
particular, it is straightforward to verify that (9) is now
replaced by

‖w̃i‖2
P−1

i

+
(
‖ui‖2Pi

)†
e2

a(i) = ‖w̃i−1‖2
P−1

i

+
(
‖ui‖2Pi

)†
e2

p(i)

(22)

where the notation ‖x‖2Σ stands for ‖x‖2Σ = xT Σx.
The presence of the matrices {P−1

i ,Pi} makes the subse-
quent performance analysis rather challenging; this is be-
cause {P−1

i ,Pi} are dependent not only on ui but also
on prior regressors {uj , j ≤ i}. For this reason, we shall
approximate and replace the random variables {P−1

i ,Pi}
in steady-state by their respective mean values. From the
relation

P−1
i = αi+1εI +

i∑

j=0

αi−ju∗juj

we find that

lim
i→∞

E
(
P−1

i

)
=

Ru

1− α

∆= P−1

The evaluation of EPi, on the other hand, is harder and
we shall resort to the approximation

EPi ≈
[
EP−1

i

]−1
= P, as i →∞

Now setting

E‖w̃i‖2P−1
i

≈ E‖w̃i‖2P−1 , E‖w̃i−1‖2P−1
i

≈ E‖w̃i−1‖2P−1

and using, in steady-state,

E‖w̃i‖2P−1
i

= E‖w̃i−1‖2P−1
i

we find that the energy-relation (22) leads to

E
[ (‖ui‖2Pi

)†
e2

a(i)
]

= E
[(‖ui‖2Pi

)†
e2

p(i)
]

as i →∞

Using ep(i) = ea(i) − ‖ui‖2Pi
e(i) and e(i) = ea(i) + v(i),

we then arrive at the steady-state variance relation:

2Ee2
a(i) = σ2

vE‖ui‖2Pi
+ E‖ui‖2Pi

e2
a(i) (23)

If we now invoke the separation assumption

At steady-state, ‖ui‖2Pi
is independent of ea(i) (24)

replace Pi by its assumed mean value, and use

E‖ui‖2Pi
≈ Tr(RuP ) = (1− α)M

we find that

ζ ≈ σ2
v(1− α)M

2− (1− α)M
Usually, the value of α is close to one and, hence,

ζ ≈ σ2
v(1− α)M

2
(25)
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D. Application to APA

Consider now the APA algorithm,

wi = wi−1 + µUT
i (UiU∗

i )
−1 ei, i ≥ 0 (26)

ei = di −Uiwi−1 (27)

where

Ui =




ui

ui−1

...
ui−1+K


 , di =




d(i)
d(i− 1)

...
d(i− 1 + K)




The energy-conservation relation (9) can also be extended
to this case, which involves a vector-valued error ei. In
particular, it is straightforward to verify that (9) is now
replaced by

‖w̃i‖2 + eT
a,i

(
UiU

T
i

)−1
ea,i = ‖w̃i−1‖2 + eT

p,i

(
UiU

T
i

)−1
ep,i

(28)

where the a-priori and a-posteriori error vectors are defined
by

ea,i = Uiw̃i−1, ep,i = Uiw̃i

Using the steady-state condition

E‖w̃i‖2 = E‖w̃i−1‖2 as i →∞
and the relations

ep,i = ea,i − µei, ei = ea,i + vi

where vi = col{v(i),v(i−1), . . . ,v(i−K+1)}, we find that
(28) reduces under expectation to the following steady-
state variance relation:

2E
[
eT

a,i(UiUT
i )−1ea,i

]
=

µE
[
eT

a,i(UiUT
i )−1ea,i

]
+ µE

[
vT

i (UiUT
i )−1vi

]

(29)
To proceed we resort to the separation assumption,

At steady-state, Ui is independent of ea,i

and Eea,ieT
a,i =

(
Ee2

a(i)
) · b0b

T
0 , where

b0 = col{1, 0, . . . , 0}
(30)

which is reasonable at low noise levels, so that

E
[
eT

a,i(UiUT
i )−1ea,i

]
= αEe2

a(i)

where α denotes the expected value of the (0, 0) entry of
(UiUT

i )−1. Likewise,

E
[
vT

i (UiUT
i )−1vi

]
= σ2

vETr
[
(UiUT

i )−1
]

E
[
eT

a,i(UiUT
i )−1ea,i

]
= αEe2

a(i)

as i →∞. It then follows that

ζ ≈ µσ2
v

(2− µ)α
ETr

[
(UiUT

i )−1
]

(31)

A related expression can be obtained by using the approx-
imation α ≈ 1/Tr(Ru), which leads to

ζ ≈ µσ2
v

(2− µ)
Tr(Ru) ETr

[
(UiUT

i )−1
]

(32)

If we further use

ETr
[
(UiUT

i )−1
] ≈ E

(
K

‖ui‖2
)

then

ζ ≈ µσ2
vK

(2−µ) Tr(Ru) E
(

1
‖ui‖2

)
(33)

V. Tracking Performance

Besides enabling us to evaluate the steady-state perfor-
mance of the adaptive filters (3) in stationary environ-
ments, the energy-conservation approach of Secs. III–IV
can also be used to characterize the performance of such fil-
ters (and of more general filters) under nonstationary con-
ditions.

Thus consider reference data {d(i)} and regression data
{ui} satisfying the linear relation

d(i) = uiwo
i + v(i) (34)

where the model wo
i is assumed to vary according to the

rule
wo

i = wo + θi

θi = αθi−1 + qi
(35)

where θi denotes a first-order auto-regressive disturbance
around wo, and |α| ≤ 1.2 The sequence {qi} is zero mean,
independent of all {v(j),uj} and has covariance matrix Q.
Observe that the model (35) can also be rewritten as3

(wo
i − wo) = α(wo

i−1 − wo) + qi (36)

Now define the error quantities

w̃i = wo
i −wi

ea(i) = uiwo
i − uiwi−1

ep(i) = uiwo
i − uiwi

It is then easy to verify, by repeating the arguments of
Sec. III, that the energy relation (9) is replaced by

‖w̃i − ci‖2 + (‖ui‖2)†e2
a(i) = ‖w̃i−1‖2 + (‖ui‖2)†e2

p(i) (37)

where
ci = (α− 1)θi−1 + qi

2Although unnecessary, we shall assume for simplicity of presenta-
tion in this paper that α is real — see [6] for the general case.

3It is often assumed in the literature that α = 1; a choice that is
not physically meaningful since the covariance matrix of wo

i would
grow unboundedly.
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Taking expectations of both sides of (37), and using

ep(i) = ea(i)− µ
‖ui‖2
g[ui]

e(i)

we find that (37) leads to the steady-state variance relation

2E

(
e2

a(i)

g[ui]

)
= µE

( ‖ui‖2
g2[ui]

e2
a(i)

)
+ µσ2

vE

( ‖ui‖2
g2[ui]

)

+ µ−1Tr(Q) + µ−1|1− α|2Tr(Θ)

− 2µ−1

[
(1− α)E

(
θT

i−1

(
w̃i−1 − µ

uT
i

g[ui]
e(i)

))]

where

Θ ∆= lim
i→∞

Eθiθ
T
i =

Q

1− |α|2

A. Application to LMS

Consider again the LMS algorithm for which g(ui) = 1.
Then the above variance relation becomes

2Ee2
a(i) = µE

(‖ui‖2e2
a(i)

)
+ µσ2

vE
(‖ui‖2

)

+ µ−1Tr(Q) + µ−1|1− α|2Tr(Θ)

− 2µ−1
[
(1− α)E

(
θT

i−1

(
w̃i−1 − µuT

i e(i)
))]

(38)

If we now assume that

At steady state, w̃i−1 is independent of ui

then it can be verified that

E w̃i = 0 and E w̃iθi
T =

[
αI − (I − µRu)−1

]−1
C

where
C = α(1− α)Θ−Q

Substituting into (38), and assuming the step-size is suf-
ficiently small so that the term E(‖ui‖2e2

a(i)) can be ne-
glected, we can solve for Ee2

a(i) and find that

ζ =
µσ2

v

2
Tr(Ru) +

µ−1β

2

where

β = Tr [(I + 2(1− α)Xα)Q]

Xα = (I − µRu)
[
αI − (I − µRu)−1

]−1

For larger values of µ, we can again resort to the separation
assumption (14) to get

ζ =
µσ2

vTr(Ru) + µ−1β

2− µTr(Ru)

VI. Transient Analysis

The energy arguments can also be used to study the
transient behavior of adaptive filters of the form (3)–(4),
viz.,

wi = wi−1 + µ
uT

i

g[ui]
e(i), i ≥ 0 (39)

where
e(i) = d(i)− uiwi−1 (40)

In order to illustrate this fact, we shall focus on stationary
environments of the form (1)–(2), viz.,

d(i) = uiw
o + v(i) (41)

where {d(i),ui,v(i)} satisfy (2). It turns out that for tran-
sient analysis it is useful to rely on a weighted energy rela-
tion instead of (9).

VII. Weighted Energy-Conservation Relation

Let w̃i = wo − wi denote the weight-error vector at
iteration i, and choose any M × M symmetric positive-
definite matrix Σ. Define further the weighted a-priori and
a-posteriori errors:

eΣ
a (i) ∆= uiΣw̃i−1, eΣ

p (i) ∆= uiΣw̃i (42)

As we shall see, the freedom in selecting Σ is useful in
characterizing the dynamic behavior of the filter, as well as
its steady-state performance [7]–[9].

It turns out that the errors {w̃i, w̃i−1, eΣ
a (i), eΣ

p (i)} sat-
isfy an energy-conservation relation similar to (9). By re-
peating the arguments of Sec. III we can verify that

w̃i = w̃i−1 − µ
uT

i

g[ui]
e(i) (43)

eΣ
p (i) = eΣ

a (i)− µ
‖ui‖2Σ
g[ui]

e(i) (44)

and

‖ui‖2Σ · ‖w̃i‖2Σ +
(
eΣ

a (i)
)2

= ‖ui‖2Σ · ‖w̃i−1‖2Σ +
(
eΣ

p (i)
)2

(45)

This energy relation is an exact result; it is simply the
weighted version of (9). In addition, it follows from e(i) =
uiw̃i−1 + v(i), and from (43), that

w̃i =
(

I− µ
uT

i ui

g[ui]

)
w̃i−1 − µ

uT
i

g[ui]
v(i) (46)

VIII. Weighted Variance Relation

In transient analysis we are interested in studying the
evolution of E‖w̃i‖2Σ, for some Σ of interest (usually, Σ = I
or Σ = Ru). In particular, the evolution of E‖w̃i‖2 corre-
sponds to the filter mean-square deviation while the evolu-
tion of E‖w̃i‖2Ru

relates to the filter mean-square error (or
learning) curve since

Ee2(i) = Ee2
a(i) + σ2

v = E‖w̃i−1‖2Ru
+ σ2

v
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In the sequel, we focus on the evolution of E‖w̃i‖2Σ for
arbitrary Σ.

To study such evolutions by means of the energy relation
(45), we replace eΣ

p (i) by (44) and expand to find

‖ui‖2Σ · ‖w̃i‖2Σ = ‖ui‖2Σ · ‖w̃i−1‖2Σ +
µ2(‖ui‖2Σ)2

g2[ui]
‖w̃i−1‖2uT

i ui
+

µ2(‖ui‖2Σ)2

g2[ui]
v2(i) −

µ‖ui‖2Σ
g[ui]

‖w̃i−1‖2ΣuT
i ui+uT

i uiΣ
+

2µ2 (‖ui‖2Σ)2

g2[ui]
v(i)ea(i) −

2µ
‖ui‖2Σ
g[ui]

v(i)eΣ
a (i) (47)

Taking expectations of both sides leads to the variance re-
lation

E‖w̃i‖2Σ = E
(‖w̃i−1‖2Σ′

)
+ µ2σ2

vE
(‖ui‖2Σ

g2[ui]

)
(48)

where

Σ′ = Σ− µ

g[ui]
ΣuT

i ui − µ

g[ui]
uT

i uiΣ +
µ2‖ui‖2Σ
g2[ui]

uT
i ui (49)

Observe that Σ′ is a random matrix due to its dependence
on the data. In contrast to the steady-state variance rela-
tion (10), the result (48) holds at every iteration i.

A. Independent Regressors

Relations (46), (48), and (49) describe the dynamic be-
havior of adaptive filters. However, recursion (48) is par-
ticularly hard to propagate. This is because it requires the
evaluation of

E
(‖w̃i−1‖2Σ′

)
= E

(
w̃T

i−1Σ
′w̃i−1

)

and the weighting matrix Σ′ is dependent on ui. Not only
that, but w̃i−1 is also dependent on prior regressors. For
this reason, at this stage, we shall resort to the indepen-
dence assumption:

The {ui} are independent and identically distributed
(50)

Under (50), it holds that

E
(‖w̃i−1‖2Σ′

)
= E

(
‖w̃i−1‖2E [Σ′]

)

with the weighting matrix Σ′ now replaced by its mean,
which we denote by Σ′. In this way, the variance recursion
(48) becomes

E‖w̃i‖2Σ = E‖w̃i−1‖2Σ′ + µ2σ2
vE

(‖ui‖2Σ
g2[ui]

)
(51)

with deterministic weights {Σ,Σ′} and where, from (49),

Σ′ = Σ − µΣE
(

uT
i ui

g[ui]

)
− µE

(
uT

i ui

g[ui]

)
Σ

+ µ2E
(‖ui‖2Σ

g2[ui]
uT

i ui

) (52)

Finally, taking expectations of both sides of (46), and
using (50), we also find that

E w̃i =
(

I− µE
(

uT
i ui

g[ui]

))
· E w̃i−1 (53)

Expressions (51)–(53) show that studying the transient
behavior of an adaptive filter requires evaluating the mul-
tivariate moments:

E
(‖ui‖2Σ

g2[ui]

)
, E

(
uT

i ui

g[ui]

)
and E

(‖ui‖2Σ
g2[ui]

uT
i ui

)

which are only functions of ui.

IX. Mean-Square Behavior

Let σ denote the M2× 1 column vector that is obtained
by stacking the columns of Σ on top of each other, written
as σ = vec(Σ). Likewise, let σ′ = vec(Σ′). Now using the
Kronecker product notation, and the following property,
for arbitrary matrices {X, Y, Z},

vec(XY Z) = (ZT ⊗X)vec(Y )

we can verify that relation (52) for Σ′ transforms into the
vector relation

σ′ = Fσ

where F is M2 ×M2 and given by

F = I − µA + µ2B (54)

in terms of the symmetric matrices:

A = (P ⊗ IM ) + (IM ⊗ P ) > 0

B = E

(
uT

i ui ⊗ uT
i ui

g2[ui]

)
≥ 0

P = E
(

uT
i ui

g[ui]

)
> 0

(55)

Using the column notation σ, and the relation σ′ = Fσ,
we shall rewrite (51)–(52) as

E‖w̃i‖2σ = E‖w̃i−1‖2Fσ + µ2σ2
vE

(‖ui‖2σ
g2[ui]

)
(56)

in terms of weighting vectors rather than weighting matri-
ces.

From (56) we see that in order to evaluate E‖w̃i‖2σ we
need E‖w̃i‖2Fσ, with weighting vector Fσ. This term can
be deduced from (56) by writing it for σ ← Fσ, i.e.,

E‖w̃i‖2Fσ = E‖w̃i−1‖2F 2σ + µ2σ2
vE

(‖ui‖2Fσ

g2[ui]

)
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The term E‖w̃i‖2F 2σ can in turn be deduced from (56) by
writing it for σ ← F 2σ. Continuing in this fashion, for
successive powers of F , we arrive at

E‖w̃i‖2F M2−1σ
= E‖w̃i−1‖2F M2σ

+ µ2σ2
vE

(
‖ui‖2F M2−1σ

g2[ui]

)

in terms of the M2-power of F (recall that F is M2×M2).
Fortunately, this procedure terminates. Let p(x) =

det(xI −F ) denote the characteristic polynomial of F , say

p(x) = xM2
+ pM2−1x

M2−1 + pM2−2x
M2−2 + . . .+ p1x+ p0

with coefficients {pi}. Then, since p(F ) = 0 in view of the
Cayley-Hamilton theorem, we have

E‖wi‖2F M2σ
=

M2−1∑

k=0

−pkE‖wi‖2F kσ

Putting these results together, we conclude that the
transient behavior of the filter is described by an
M2−dimensional state-space model of the form:

Wi = FWi−1 + µ2σ2
vY (57)

where the M2 × 1 vectors {Wi,Y} are defined by

Wi =




E ‖w̃i‖2σ
E ‖w̃i‖2Fσ

...
E ‖w̃i‖2

F M2−2σ
E ‖w̃i‖2

F M2−1σ




, Y =




E
(‖ui‖2σ/g2[ui]

)
E

(‖ui‖2Fσ/g2[ui]
)

..

.

E
(
‖ui‖2

F M2−2σ
/g2[ui]

)

E
(
‖ui‖2

F M2−1σ
/g2[ui]

)




(58)

and the M2 ×M2 coefficient matrix F is given by

F =




0 1
0 0 1
0 0 0 1
...
0 0 0 1
−p0 −p1 −p2 . . . −pM2−1




(59)

The learning curve of the filter can be characterized more
explicitly as follows. Let r = vec(Ru) and choose σ = r.
Iterating (56) we find that

E‖w̃i‖2r = ‖w̃−1‖2F i+1r + µ2σ2
vE

[‖ui‖2(I+F+···+F i)r

g2[ui]

]

that is,
E‖w̃i‖2r = ‖w̃−1‖2ai

+ µ2σ2
vb(i)

where the vector ai and the scalar b(i) satisfy the recursions

ai = Fai−1, a−1 = r

b(i) = b(i− 1) + E

[
‖ui‖2ai−1

g2[ui]

]
, b(−1) = 0

Usually, w−1 = 0 so that w̃−1 = wo. Using the definitions
for {ai, b(i)}, it is easy to verify that

Ee2
a(i) = Ee2

a(i− 1) + ‖wo‖2F i−1(F−I)r +

µ2σ2
vE

(‖ui‖2F i−1r

g2[ui]

)

which describes the learning curve of a data-normalized
adaptive filter.

X. Mean-Square Stability

Recursion (57) shows that the adaptive filter will be
mean-square stable if, and only if, the matrix F is a sta-
ble matrix, i.e., all its eigenvalues should lie inside the unit
circle. But since F and F have identical eigenvalues, we
conclude that F must be stable. It can be verified that
matrices F of the form (54), for arbitrary {A > 0, B ≥ 0},
are stable for any step-size µ in the range:

0 < µ < min

{
1

λmax(A−1B)
,

1
max

{
λ(H) ∈ IR+

}
}

(60)

where the second condition is in terms of the largest posi-
tive real eigenvalue of the block matrix,

H
∆=

[
A/2 −B/2
IM2 0

]

when it exists. Since H is not symmetric, its eigenval-
ues may not be positive or even real. If H does not have
any real positive eigenvalue, then the upper bound on µ is
determined by 1/λmax(A−1B) alone. Likewise, the mean-
stability of the filter, as dictated by (53), requires

µ < 2/λmax(P ) (61)

XI. Steady-State Performance

In Sec. IV we evaluated the steady-state performance of
filters (3) by relying on the variance relation (10). Obvi-
ously, steady-state results can also be deduced from (56)
by letting i →∞, as we show below. However, it is worth
pointing out that any steady-state result that is obtained
from (56) would be bound by the same assumptions that
were used to establish (56), such as the independence as-
sumption (50). In contrast, the steady-state results de-
duced earlier in Sec. IV were derived under weaker condi-
tions on the data.

To see how steady-state results can be obtained from
(56), assume filter operation in steady-state. Then recur-
sion (56) gives in the limit

lim
i→∞

E‖w̃i‖2(I−F )σ = µ2σ2
vE

[‖ui‖2σ
g2[ui]

]
(62)

Now recall that the filter excess mean-square error is de-
fined by

EMSE = lim
i→∞

Ee2
a(i) = E‖w̃i−1‖2Ru
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This suggests that we should select σ in (62) as

σemse = (I − F )−1vec(Ru)

On the other hand, the filter mean-square deviation, de-
fined as

MSD = lim
i→∞

E‖w̃i‖2

is obtained by choosing

σmsd = (I − F )−1vec(I)

Let {Σemse, Σmsd} denote the weighting matrices that cor-
respond to {σemse, σmsd}. Then we conclude that

EMSE = µ2σ2
vTr(QΣemse)

MSD = µ2σ2
vTr(QΣmsd)

(63)

XII. Small Step-Size Approximation

A simplification is possible when the step-size is suffi-
ciently small. Observe that the matrix F in (54), as well
as the filter EMSE and MSD in (63), are defined in terms of
the matrices {A,B, P,Q}. These moments are hard to eval-
uate for arbitrary input distributions and arbitrary func-
tions g. However, for small step-sizes, we may ignore the
quadratic term in µ2 that appears in (52), and approximate
the variance relation (51)–(52) by

E‖w̃i‖2Σ = E‖w̃i−1‖2Σ′ + µ2σ2
vE

(‖ui‖2Σ
g2[ui]

)

Σ′ = Σ − µΣP − µPΣ
(64)

where P = E
(
uT

i ui/g[ui]
)
. Moreover, since now F =

I − µA, we can also approximate the EMSE and MSD
performances (63) of the filter by

EMSE ≈ µσ2
vTr(QΣemse)

MSD ≈ µσ2
vTr(QΣmsd)

(65)

where {Σemse, Σmsd} denote the weighting matrices that
correspond to the vectors

σemse = A−1vec(Ru), σmsd = A−1vec(I)

For example, in the special case of LMS, for which g[ui] = 1
and P = Ru = Q, the above expressions give for small step-
sizes:

EMSE ≈ µσ2
vTr(Ru)

2
, MSD ≈ µσ2

vM

2
(LMS) (66)

Actually, using the simplified variance relation (64), we
can describe the dynamic behavior of the mean-square de-
viation of the filter by means of an M−dimensional state-
space model, as opposed to the M2-dimensional model
(57). To see this, let P = U∆UT denote the eigen-
decomposition of P > 0, and introduce the transformed
quantities:

wi = UT w̃i, ui = uiU, Σ = UT ΣU, Q = UT QU

Then the variance relation (64) can be equivalently rewrit-
ten as4

E‖wi‖2Σ = E‖wi−1‖2Σ′ + µ2σ2
vE

(‖ui‖2Σ
g2[ui]

)

Σ
′
= Σ − µΣ∆ − µ∆Σ

(67)

The expression for Σ
′
shows that it will be diagonal as long

as Σ is diagonal. Therefore, since we are free to choose Σ
(and, consequently, Σ), we can assume that Σ

′
is diagonal.

In this way, {Σ, Σ
′} will be fully characterized by their

diagonal entries. Thus let {σ, σ′} denote M × 1 vectors
that collect the diagonal entries of {Σ, Σ

′}, i.e.,

σ = diag(Σ), σ′ = diag(Σ
′
)

Then from (67) we find that

σ′ = Fσ

where F is M ×M and given by

F = I − µA, A = 2∆

Repeating the arguments that led to (57) we can then es-
tablish that, for sufficiently small step-sizes, the evolution
of E‖wi‖2σ is described by the following M−dimensional
state-space model:

Wi = F Wi−1 + µ2σ2
vY (68)

where the M × 1 vectors {Wi,Y} are defined by

Wi =




E ‖wi‖2σ
E ‖wi‖2Fσ

..

.
E ‖wi‖2

F
M−2

σ
E ‖wi‖2

F
M−1

σ




, Y =




E
(‖ui‖2σ/g2[ui]

)

E
(
‖ui‖2Fσ

/g2[ui]
)

.

..

E
(
‖ui‖2

F
M−2

σ
/g2[ui]

)

E
(
‖ui‖2

F
M−1

σ
/g2[ui]

)




(69)

and the M ×M coefficient matrix F is given by

F =




0 1
0 0 1
0 0 0 1
...
0 0 0 1
−p0 −p1 −p2 . . . −pM−1




(70)

where the {pi} are the coefficients of the characteristic
polynomial of F . If we select σ = vec(I) then

‖wi‖2σ = ‖wi‖2 = ‖w̃i‖2

since U is orthogonal. In this case, the top entry of the
resulting state vector Wi will describe the evolution of the
filter MSD.

4Usually, g[·] is invariant under orthogonal transformations, i.e.,
g[ui] = g[ui].
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XIII. Fourth-Order Moment Approximation

Besides the small-step size approximation of Sec. XII, we
could have instead chosen to approximate the fourth-order
moment that appears in the expression for Σ′ in (52) as

E
(‖ui‖2Σ

g2[ui]
uT

i ui

)
≈ E

(
uT

i ui

g[ui]

)
·E

(‖ui‖2Σ
g[ui]

)
= PTr(ΣP )

where P = E(uT
i ui/g[ui]). In this way, expression (52) for

Σ′ would become

Σ′ = Σ − µΣP − µPΣ + µ2PTr(PΣ) (71)

which is fully characterized in terms of the single mo-
ment P . If we now let P = U∆UT denote the eigen-
decomposition of P > 0, and introduce the transformed
quantities

wi = UT w̃i, ui = uiU, Σ = UT ΣU

Then the variance relations (51) and (71) can be equiva-
lently rewritten as

E‖wi‖2Σ = E‖wi−1‖2Σ′ + µ2σ2
vE

(‖ui‖2Σ
g2[ui]

)

Σ
′
= Σ − µΣ∆ − µ∆Σ + µ2∆Tr(Σ∆)

(72)

Again, Σ
′
will be diagonal as long as Σ is. Thus let

σ = diag(Σ), σ′ = diag(Σ
′
)

Then from (72) we find that σ′ = Fσ, where F is M ×M
and given by

F = I − µA + µ2B, A = 2∆, B = µ2δδT

where δ = diag(∆). Repeating the arguments that led
to (57) we can establish that, under the assumed fourth-
order moment approximation, the evolution of E‖wi‖2σ is
described by an M−dimensional state-space model similar
to (68).

XIV. Transient Behavior of APA

As with the steady-state analysis of Sec. IV, the transient
analysis of Secs. VI–XIII can also be extended to treat more
general adaptive updates than (3), e.g., the APA algorithm
(26)–(27). To illustrate this fact, define the weighted a-
priori and a-posteriori error vectors,

eΣ
a,i = UiΣw̃i−1, eΣ

p,i = UiΣw̃i

Then it follows from the APA recursion that the weight-
error vector satisfies

w̃i =
(
I − µUT

i (UiUT
i )−1Ui

)
w̃i−1 − µUT

i (UiUT
i )−1vi

while the energy relation (28) extends to

‖w̃i‖2Σ +
(
eΣ

a,i

)T (
UiΣUT

i

)−1
eΣ

a,i =
‖w̃i−1‖2Σ +

(
eΣ

p,i

)T (
UiΣUT

i

)−1
eΣ

p,i

If we assume the sequence {Ui} is iid, and follow the argu-
ments of Sec. VIII, we can verify by taking expectations of
both sides of the above equality that the variance relation
(48) is replaced by

E‖w̃i‖2Σ = E‖w̃i−1‖2Σ′ + µ2E
(
vT

i AΣ
i vi

)

Σ′ = Σ− µΣEPi − µPiΣ + µ2E [PiΣPi]

Pi = UT
i (UiUT

i )−1Ui

AΣ
i = (UiUT

i )−1UiΣUT
i (UiUT

i )−1

(73)

Moreover,

E w̃i = (I − µE(Pi)) E w̃i−1

As in Sec. IX, we can now conclude that the transient be-
havior of APA is described by the M2-dimensional recur-
sion

Wi = FWi−1 + µ2σ2
vY

where F is the M2×M2 companion matrix associated with

F
∆= I − µ(E [Pi]⊗ I)− µ(I ⊗ E[Pi]) + µ2E[Pi ⊗Pi]

Also,

Wi
∆=




E‖w̃i‖2σ
E‖w̃i‖2Fσ

E‖w̃i‖2F 2σ
...

E‖w̃i‖2F (M2−1)σ




and the k−th entry of Y is

[Y]k = γTF kσ, k = 0, . . . ,M2 − 1

where γ = vec(EUT
i (UiUT

i )−2Ui). It follows that APA is
mean-square stable for step-sizes in the range

0 < µ < min

{
2

λmax(EPi)
,

1

λmax(A−1B)
,

1

max
{
λ(H) ∈ IR+

}
}

where

A = (E [Pi]⊗ I) + (I ⊗ E[Pi]), B = E(Pi ⊗Pi)

and

H =
[

A/2 −B/2
I 0

]

Moreover, the MSD and EMSE of APA can be obtained
from the limiting behavior of the variance relation in (73)
as

MSD = µ2σ2
vγT(I − F )−1vec(I)

EMSE = µ2σ2
vγT(I − F )−1vec(Ru)
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Fig. 1. Geometric interpretation of the energy relation (9).

XV. Geometric Interpretation

We end our discussions with a geometric interpretation
of the energy relation (9). Observe from (6) that

w̃i−1 − w̃i =
(

µe(i)
g[ui]

)
uT

i

This means that the difference vector (w̃i−1−w̃i) is always
parallel to the transposed regression vector, uT

i , as shown
in the figure. Therefore, the distances from the vertices of
{w̃i, w̃i−1} to uT

i should coincide.
Let {θi−1, θi} denote the acute angles between

{w̃i−1, w̃i} and uT
i . Then the squared norm of the pro-

jection of w̃i onto the vertical direction is given by

‖w̃i‖2 sin2(θi) = ‖w̃i‖2
[
1− (uiw̃i)2

‖w̃i‖2 · ‖ui‖2
]

Likewise, the squared norm of the projection of w̃i−1 onto
the vertical direction is given by

‖w̃i−1‖2 sin2(θi−1) = ‖w̃i−1‖2
[
1− (uiw̃i−1)2

‖w̃i−1‖2 · ‖ui‖2
]

Equating these norms we have

‖w̃i‖2
[
1− e2

a(i)

‖w̃i‖2 · ‖ui‖2
]

= ‖w̃i−1‖2
[
1− e2

p(i)

‖w̃i−1‖2 · ‖ui‖2

]

which, after expanding, agrees with the energy relation (9).
Note further that the equality of the vertical norms implies
that

‖w̃i−1‖2 sin2(θi−1) = ‖w̃i‖2 sin2(θi)

and this result brings forth a connection between the energy
relation (9) and Snell’s law in optics.

XVI. Concluding Remarks

This article described an energy-conservation approach
to the analysis of adaptive filter performance. By studying
the energy balance at each iteration, the dynamic behavior
of an adaptive filter can be characterized in terms of a
variance relation (e.g., (51)) and, subsequently, in terms of
a state-space model (e.g., (57)). The approach does not
restrict the input data to being Gaussian or white. Besides
providing information about the stability and convergence

behavior of the filter, the energy-conservation arguments
also help characterize the steady-state performance of the
filter. While the transient analysis of Secs. IX–XIII relies
on the independence assumption (50), steady-state results
can be obtained without relying on this assumption, as
shown in Secs. IV.
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