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Abstract—Clock timing jitter refers to random perturbations in the

sampling time in analog-to-digital converters (ADCs). The perturbations

are caused by circuit imperfections in the sampling clock. This paper
analyzes the effect of sampling clock jitter on the acquired samples

in the midst of quantization noise and random Gaussian noise. The

paper proposes a method for estimating the jitter for cognitive radio
architectures at high sampling rates. The paper also examines the fixed-

point implementation of the algorithm and its theoretical performance.

Index Terms—Clock jitter, analog-to-digital conversion (ADC), noise,

quantization

I. INTRODUCTION

An analog-to-digital converter (ADC) is a basic building block

of modern communication systems. Certain applications of modern

radios, such as cognitive radios and UWB radios, may require ADCs

to operate at high sampling rates due to the use of wide frequency

bandwidths. At high rates, signal distortion is introduced by clock

jitter. The jitter causes the ADC to sample the input signal along a

non-uniform sampling grid and introduces distortion that limits the

signal fidelity and degrades the signal-to-noise ratio (SNR) [1]. In

cognitive radio applications, the jitter degrades the spectrum sensing

performance [2].

In general, clock jitter can be reduced at the analog circuitry level

by improving the PLL design. Digital recovery of the jitter, however,

allows the circuit constraints to be relaxed in favor of slightly greater

load on the signal processor. It is known that clock jitter is correlated

and tends to have a spectrum that falls as f−2 [3], [4]. This fact

enables digital recovery methods that exploit the spectral properties

of clock jitter, such as the training tone injection method [1]. In this

work, we first examine the effect of sampling clock jitter on the SNR

of the sampled signal when the signal is sampled with quantization

and random noise. We then propose a method to estimate the jitter

for cognitive radio architectures where the signals of interest lie in

the low-frequency range. The method is implemented in fixed point

and the performance is examined for initial jitter RMS of 1% of the

sampling period.

II. EFFECT OF CLOCK JITTER

The effect of sampling jitter on a sampled ideal low-pass signal was

studied in [1]. The analysis did not include the effect of quantization

noise and other noise sources such as random noise at the ADC. In

order to expand the analysis, let us examine the SNR performance of

a b-bit ADC (including the sign bit) with jitter, quantization noise, and

random noise, when it is fed with an ideal low-pass signal d(t) with

baseband bandwidth of B Hz. The sampled signal can be expressed

as:

r(n) = d(t+ e(t))|
t=nTs

+ q(n) + v(n)

≈ d(n) + e(n)ḋ(n) + q(n) + v(n)

This work was supported in part by DARPA contract N66001-09-1-2029.

where

ḋ(n) , ḋ(t)
∣

∣

∣

t=nTs

d(n) is the desired signal, q(n) is the quantization noise for the

n-th sample, v(n) is zero-mean white Gaussian random noise with

variance σ2
v , and e(n) is the jitter noise at the n-th sample. In this

paper, we assume that the jitter has the following properties:

1) e(n) is Gaussian distributed with variance σ2
e .

2) e(n) is correlated with passband bandwidth of fe Hz.

3) e(n) is independent of d(n) and other noise sources.

It is well known that the quantization noise power is given by [5]

E
[

q(n)2
]

=

(

R

2b

)2

12

=
1

3 · 4b (Assuming R = 2)

where R is the range of the ADC and the jitter q(n) is assumed to

be uniformly distributed with zero-mean and is white.

A. Wideband Signal Model

In [1], [6], the variance of e(n)ḋ(n) for the ideal lowpass signal

was approximated as:

E

[

(

e(n)ḋ(n)
)2

]

≈ 1

3
(2πBσdσe)

2

so that the signal-to-noise ratio at the output of the ADC can be

expressed as:

SNR =
σ2
d

1
3
(2πBσdσe)

2 + 1
3·4b

+ σ2
v

(1)

Throughout the analysis, we set σ2
e as:

σ
2
e = (αTs)

2

This allows the variance of the jitter to be defined in terms of the

sampling period. The above implies that the jitter noise dominates

the SNR expression when

1

3
(2πBσdσe)

2 ≫ 1

3 · 4b + σ
2
v

or, equivelently,

σe ≫
√

4−b + 3σ2
v

2πBσd

B. Sinusoidal Signal Models

In the special case when

d(t) = A · cos(2πfdt+ θs)

we get

E

[

(

e(n)ḋ(n)
)2

]

≈ 1

2
(2πfdAσe)

2
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Fig. 1. SNR vs. σe for fs = 1GHz, B = 250MHz, and σd ≈ 0.388

and the SNR equation (1) becomes

SNR =
A2

2
1
2
(2πfdAσe)

2 + 1
3·4b

+ σ2
v

(2)

In order to illustrate the SNR relationship derived for both signal

models, the ADC range is assumed to be [−1, 1] and the signal d(n)
is assumed to be Gaussian with baseband bandwidth of 250MHz
in the wideband case (1) and a sinusoid at frequency 250MHz and

amplitude A = 1 in the sinusoidal case (2). The sampling frequency

is fixed at fs = 1GHz. The signal d(n) is assumed to overflow the

ADC at most 1% of the time in the wideband signal case, and hence

σd = 1
Q−1(0.005)

where Q−1 (·) is the inverse Q function defined by

Q
−1(z) ,

1√
2π

∞
∫

z

exp

(

− t

2

)

dt

Figure 1 illustrates this relationship for fs = 1GHz, B = 250MHz,

A = 1, and σd ≈ 0.388.

III. ESTIMATION OF CLOCK JITTER

A. Superheterodyne Receiver

In a superheterodyne receiver, the desired signal is a passband

signal and is located at high frequencies. If a low-frequency tone

is injected into the system, it is possible to examine this tone after

sampling and to estimate the jitter e(n). This technique was proposed

in [1]. Here, we examine the optimal estimator for the jitter e(n)
in the presence of quantization noise, q(n), and Gaussian noise,

v(n). For this purpose, we examine the performance of the algorithm

presented in [1], which recovers the jitter e(n) as – see Figure 2:

ê(n) = LPF

{

r(n) sin (2πfwnTs + θw)

−πfwδ

}

= e(n) + ν(n)

where

ν(n) ≈ LPF

{

q(n) sin (2πfwnTs + θw)

−πfwδ
+

v(n) sin (2πfwnTs + θw)

−πfwδ

}

is approximately Gaussian if a FIR filter of sufficient length is used

(LPF denotes a low-pass filtering operation). If no further filtering

sin(2¼fwnTs+µw)
¡¼fw±

sin(2¼fwnTs+µw)
¡¼fw±

r(n)r(n) d(n)d(n)LPFLPF

µwµw

Fig. 2. Block diagram for jitter estimation for Superheterodyne receiver
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Fig. 3. Theoretical RMS of remaining jitter assuming fs = 1GHz and
fe = 5MHz.

takes place, then the RMS of the remaining jitter will be dictated by

the power in ν(n). More specifically,

σν · fs · 100 =
√

E [ν(n)2] · fs · 100

≈

√

√

√

√

(

2fe
fs

)

2 (−πfwδ)
2 · (E [q(n)2] + E [v(n)2]) · fs · 100

=

(

1

πfwδ

)

·
√

fefs ·
√

1

3 · 4b + σ2
v · 100

where the factor 2fe
fs

scales the power of the white processes q(n) and

v(n) after being filtered by an ideal low-pass filter with baseband cut-

off frequency at fe. In fact, since the noise is approximately Gaussian,

the filter that minimizes the remaining jitter is known to be linear [7].

This is left to Section III-C. Figure 3 shows the performance of the

estimation for fs = 1GHz, fe = 5MHz and for varying values

of δ and fw. The power of the Gaussian random noise is assumed

to be the same as that of the quantization noise, i.e., σ2
v = 1

3·4b
.

The number of bits used in the quantization (and, hence, the power

of the noise) is swept from b = 10 to b = 16. Note that in this

simulation, δ represents the amplitude of the injected tone (which

limits the dynamic range of the received data).

B. High Frequency Signal Injection

As indicated before, a method for estimating the jitter of a high

frequency tone was introduced. In this paper, we propose an algorithm

that achieves a lower error variance. The same tone injection method

will be used as in [1]. Consider the injected tones before the ADC:

p(t) = 2δw(t) · y(t)
= 2δ cos(2πfwt+ θw) · cos(2πfy(t+ τ (t)) + θy)
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= δ cos(2π(fy − fw)t+ 2πfyτ (t) + θy − θw)+

δ cos(2π(fy + fw)t+ 2πfyτ (t) + θy + θw)

where τ (t) is the jitter of the high frequency oscillator resonating at

frequency fy . After the ADC, the received samples become:

r(n) = (1− 2δ)
(

d(n) + ḋ(n)e(n)
)

+ q(n) + v(n)+

δ cos(2π(fy − fw)(nTs + e(n)) + 2πfyτ (n) + θy − θw)+

δ cos(2π(fy + fw)(nTs + e(n)) + 2πfyτ (n) + θy + θw)

= (1− 2δ)d̃(n) + q(n) + v(n)+

δ cos(2π(fy − fw)(nTs + e(n) +
fyτ (n)

fy − fw
) + θy − θw)+

δ cos(2π(fy + fw)(nTs + e(n) +
fyτ (n)

fy + fw
) + θy + θw)

where e(n) is the jitter of the ADC. Downconversion of the two tones

at fy − fw and fy + fw can be verified to yield

x(n) = LPF {r(n) sin(2π(fy − fw)nTs + θy − θw)}

=
−δ

2
sin

(

2π(fy − fw)

(

e(n) +
fy

fy − fw
τ (n)

))

+

LPF {q(n) sin (2π(fy − fw)nTs + θy − θw)}+
LPF {v(n) sin (2π(fy − fw)nTs + θy − θw)}

≈ −δπ(fy − fw)

(

e(n) +
fy

fy − fw
τ (n)

)

+ q1(n) + v1(n)

= −δπ(fy − fw)g(n) + ν1(n)

and

z(n) = LPF {r(n) sin(2π(fy + fw)nTs + θy + θw)}

=
−δ

2
sin

(

2π(fy + fw)

(

e(n) +
fy

fy + fw
τ (n)

))

+

LPF {q(n) sin (2π(fy + fw)nTs + θy + θw)}+
LPF {v(n) sin (2π(fy + fw)nTs + θy + θw)}

≈ −δπ(fy + fw)

(

e(n) +
fy

fy + fw
τ (n)

)

+ q2(n) + v2(n)

= −δπ(fy + fw)h(n) + ν2(n)

where the last approximation assumes that the argument of sin(·) is

small and

g(n) = e(n) +
fy

fy − fw
τ (n)

h(n) = e(n) +
fy

fy + fw
τ (n)

q1(n) = LPF {q(n) sin (2π(fy − fw)nTs + θy − θw)}
q2(n) = LPF {q(n) sin (2π(fy + fw)nTs + θy + θw)}
v1(n) = LPF {v(n) sin (2π(fy − fw)nTs + θy − θw)}
v2(n) = LPF {v(n) sin (2π(fy + fw)nTs + θy + θw)}
ν1(n) = q1(n) + v1(n)

ν2(n) = q2(n) + v2(n)

Finally,

ê(n) =
x(n)− z(n)

2πfwδ

≈ e(n) +
1

2πfwδ
(ν1(n)− ν2(n))

= e(n) + ν(n)

sin(2¼(fy¡fw)nTs+µy¡µw)
2¼fw±

sin(2¼(fy¡fw)nTs+µy¡µw)
2¼fw±

r(n)r(n) d(n)d(n)LPFLPF

µy ¡ µwµy ¡ µw

¡

sin(2¼(fy+fw)nTs+µy+µw)
2¼fw±

¡

sin(2¼(fy+fw)nTs+µy+µw)
2¼fw±

µy + µwµy + µw

Fig. 4. Block diagram representation of the recovery algorithm in (3).

Note that the LPF {·} operation is a linear operation and hence the

algorithm can be simplified to

ê(n) = LPF

{

r(n) sin(2π(fy − fw)nTs + θy − θw)

2πfwδ
−

r(n) sin(2π(fy + fw)nTs + θy + θw)

2πfwδ

} (3)

The algorithm is illustrated in Figure 4. If a FIR low-pass filter of

sufficient length is used, then it is reasonable to expect that ν(n) will

be Gaussian and an optimal linear estimation filter can be derived –

see Section III-C. If no further filtering takes place, the error in the

estimation will be determined by the power in ν(n). Specifically, if

an ideal low-pass filter is used in (3), then:

E
[

ν(n)2
]

=

(

1

2πfwδ

)2
(

E
[

ν1(n)
2
]

+ E
[

ν2(n)
2
])

≈
(

1

2πfwδ

)2

·
(

E
[

q1(n)
2
]

+E
[

v1(n)
2
]

+

E
[

q2(n)
2
]

+ E
[

v2(n)
2
])

Since E
[

q1(n)
2
]

= E
[

q2(n)
2
]

and E
[

v1(n)
2
]

= E
[

v2(n)
2
]

, we

have

E
[

ν(n)2
]

≈
(

1

2πfwδ

)2

· 2 ·
(

E
[

q1(n)
2
]

+ E
[

v1(n)
2
])

≈
(

1

2πfwδ

)2

·
(

2fe
fs

)

·
(

E
[

q(n)2
]

+ E
[

v(n)2
])

=

(

1

2πfwδ

)2

·
(

2fe
fs

)

·
(

1

3 · 4b + σ
2
v

)

where the factor 2fe
fs

scales the power of the white processes q(n)
and v(n) after being filtered by an ideal low-pass filter with baseband

cut-off frequency of fe. It can be shown that the method proposed

in [1] achieves a noise variance of

E
[

ν
[1]

(n)2
]

≈
(

1

πfwδ

)2

·
(

2fe
fs

)

·
(

1

3 · 4b + σ
2
v

)

and

E
[

ν
[1]

(n)2
]

≈ 4E
[

ν(n)2
]

Hence, the RMS of the remaining jitter as a percent of the sampling

time after perfect compensation will be

RMS {ẽ(n)} =
√

E
[

(ê(n)− e(n))2
]

· fs · 100

≈
√

(

1

2πfwδ

)2

·
(

2fe
fs

)

·
(

1

3 · 4b + σ2
v

)

· fs · 100
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Fig. 5. Theoretical RMS of remaining jitter assuming fs = 1GHz and
fe = 5MHz

≈
(

1

2πfwδ

)

·
√

2fefs ·
√

1

3 · 4b + σ2
v · 100

Figure 5 shows the performance of the estimation for fs = 1GHz,

fe = 5MHz and for varying values of δ and fw . The power of

the Gaussian random noise is assumed to be the same as that of

the quantization noise, i.e., σ2
v = 1

3·4b
. The number of bits used in

the quantization (and, hence, the power of the noise) is swept from

b = 10 to b = 16. It is important to note that δ in this simulation

represents half the amplitude of the injected tones as each tone

has amplitude δ and hence the maximum amplitude of the training

tones is 2δ. This would mean that a fair comparison between the

high-frequency injection algorithm and the low-frequency injection

algorithm must take the value of δ into account. In fact, this implies

that the remaining jitter RMS value of the high frequency recovery

is
√
2 times the RMS value of the low-frequency recovery for the

same values of fe,fs, fw, and equivalent values of δ.

C. Optimum Estimator

In the previous two sections, an estimate of the jitter was found

by extracting it from the training tones injected into either the low-

frequency region or the high-frequency region. The problem can be

cast into the estimation framework as follows. Let

ê = e+ ν

where ê, e, and ν are vectors of length N containing

[d(0), d(1), · · · , d(N − 1)]⊤, [e(0), e(1), · · · , e(N − 1)]⊤, and

[ν(0), ν(1), · · · , ν(N − 1)]⊤ respectively. If a FIR low-pass filter

of sufficient length was used in the computation of x(n), z(n), then

the central-limit theorem suggests that ν(n) will be approximately

Gaussian. This implies that the optimal mean-square-error estimator

of e is the linear estimator [7]:

êopt = RedR
−1
d ê = Re (Re +Rν)

−1
ê

where the covariance matrix Rd depends on the LPF filter used. The

MMSE matrix is then:

MMSE =
(

R
−1
e +R

−1
ν

)−1

The m.m.s.e. in estimating e from d is 1
N
Tr [MMSE], where Tr[·]

is the trace operator. The spectrum of the jitter has been found to be

Lorentzian in shape which falls as f−2 [3], [4], [8] while the noise

spectrum is shaped by the low-pass filter. This implies that further

filtering will improve the MSE of the estimation procedure.

IV. IMPLEMENTATION

The algorithm presented in (3) has been implemented in fixed

point with Mathworks Simulink and the Synopsys SynDSP toolbox.

One bottleneck that drives the performance of the algorithm is the

low-pass filter. The low-pass filter in the Simulink implementation

was designed as an “Accumulate-downsample-upsample” filter which

accumulates 50 samples, downsamples to the sum of 50 samples each

and finally upsamples using a linear interpolator. This design is not a

direct FIR filter, however, its architecture stills requires summing 50
samples of the noise which works to satisfy the central limit theorem

once again. The low-pass filter block is illustrated in Figure 6.

50P
# 50

" 50

" 50

z
¡1

Â

ramp

?

reset

¡

+

+

+

In

Out

Fig. 6. Lowpass filter structure implemented in fixed-point simulation.

The design was implemented using Synopsys Premier on a Xilinx Vir-

tex5 board (XC5VLX20T). The design requires a total of 544 Look-

up-tables. Two tones located at fw = 40MHz and fy = 410MHz are

injected into the system. The Gaussian processes e(n) and the jitter

τ (n) are both assumed to have the same statistical characteristics,

namely 5MHz bandwidth and standard deviation 1
100

Ts. δ is set at

δ = 2−4, b = 10, and Ts = 1ns. Simulation shows that the fixed

point model is able to reduce the jitter from 1% to 0.5% of Ts. With

an improved low-pass filter, the performance closely tracks that of

Figure 5.
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