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Abstract—In a non-ideal PLL circuit, leakage of the reference signal

into the control line produces spurious tones. When the distorted PLL

signal is used in an analog-to-digital converter (ADC), it creates spurious

tones in the sampled data as well. In spectrum sensing applications,
the presence of spurious tones can lead to false detection of signals in

otherwise empty channels. In a typical spectrum sensing application,

there usually exists a Fourier transform block. We propose an algorithm
to use this block to estimate the jitter errors from the spurious sidebands

and to compensate the distorted samples in the digital domain.

Index Terms—PLL, sideband suppression, spurious tones

I. INTRODUCTION

In the design of a phase-locked loop (PLL) frequency synthesizer,

an important impairment is the presence of spurious tones. The

spurious tones result from leakage of the reference signal into the

control line of the voltage-controlled oscillator (VCO). When the

sampling clock with spurious tones is used in the ADC, spurious

sidebands are introduced into the sampled data. In applications like

spectrum sensing in cognitive radios, spurious tones from primary

signals might give a false positive detection on actual free channels.

Conventional ways to mitigate the problem include improving the

linearity of the charge pump and using large capacitors in the loop

filter. Other approaches [1]–[3] include increasing the complexity

of the circuit design. For example, reference [1] proposed using

multiple phase frequency detectors (PFD) and charge pumps that

operated in delay with respect to one another. Reference [2] pro-

posed adding another PFD, integrators and voltage-controlled current

sources. Moreover, to improve the performance of a fractional-N PLL,

reference [3] used a quantizer to replace the delta-sigma modulator

that is usually used and added components for charge pump offset

and sampled loop filter.

These techniques are done mainly in the circuit domain. We

propose a solution that relies on using digital signal processing

techniques. There already exist works that handle various types

of distortions in the ADC via the digital signal processing route.

For example, in [4], a technique was proposed to remove jitter in

narrowband signals with the help of a reference signal. This method

was improved in [5] and used to handle jitter errors in OFDM

signals. References [6], [7] extended the method to bandpass signals

with an input reference signal. Reference [8] proposed a technique

that shifts a training signal up to a suitable band to perform jitter

estimation and data compensation. Reference [9] analyzed the effects

of finite aperture time and sampling jitter in wideband data acquisition

systems. Furthermore, reference [10] solved a problem in front-end

ADC circuitry involving nonlinear frequency-dependent errors using

calibration signals.

Our previous work on reducing the effects of PLL sideband

distortions was described in [11]. This paper extends the work

from using a sinusoidal reference signal to using a general periodic
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reference signal and proposes a jitter estimation method that relies

on the use of a Fourier transform block (a common building block

in wideband applications like spectrum sensing). The paper proposes

a modification to a spectrum sensing architecture by first performing

jitter estimation on a training sinusoidal signal and then switching to

compensating the distorted samples to obtain the dejittered samples

for spectrum sensing.

II. EFFECTS OF LEAKAGE ON CLOCK SIGNAL

In [12], [13], a voltage-controlled oscillator (VCO) is described as

a circuit that generates a periodic clock signal, s(t), whose frequency

is a linear function of a control voltage, Vcont. Let the gain of the

VCO and its “free running” frequency be denoted by Kvco and fs,

respectively. The generated clock signal is described by

s(t) = As sin

(

2πfst+Kvco

∫ t

−∞

Vcontdt

)

(1)

To attain some desired oscillation frequency, Vcont is set to some

constant value. However, the generated signal, s(t), may not be an

accurate tone. To attain good frequency synthesis, a down-sampled

version of the clock signal is fed into a block that consists of a

phase-frequency detector (PFD), a charge pump (CP) and a low-

pass filter (LPF) as shown in Figure 1. The PFD/CP/LPF block

Fig. 1. Block diagram of a PLL

compares the down-converted frequency clock signal with a low-

frequency reference signal at fref and makes adjustments to Vcont. Due

to imperfections in the circuitry, the reference signal leaks into the

control line of the VCO. For simplicity, we assume that the desired

clock signal at fs is obtained when Vcont is 0. The reference signal

is assumed to be some periodic signal with fundamental frequency

fref [14]. A periodic signal can be described by its Fourier series

representation. For illustration purposes, we assume that the periodic

signal is a triangular waveform whose Fourier series representation

is

Vr(t) =
8

π2

∞
∑

k=0

(−1)k

(2k + 1)2
sin((2k + 1)2πfreft) (2)

Now, suppose there is leakage and Vcont is

Vcont =

∞
∑

k=0

Vk cos (2πfkt+ θk) (3)
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where

θk = 2πfref(2k + 1)τ −
π

2

Vk = V0
(−1)k

(2k + 1)2

fk = (2k + 1)fref

(4)

for some {V0, τ}. Then the output of the VCO becomes

s(t) = As sin

(

2πfst+

∞
∑

k=0

Ck sin (2πfkt+ θk) + φs

)

(5)

where φs is some unknown phase offset and

Ck =
Kvco

2πfk
Vk (6)

We will be analyzing the signal model with respect to an arbitrary

reference time. Using a change of variables, let t = t′ − φs

2πfs
,

and substitute t into equations (3) and (5). The new equations are

similar to the original equations except that φs is 0. Therefore, we

can let φs = 0 without loss of generality. Applying a first order

approximation to (5), some analysis gives

s(t) ≈ As sin(2πfst) +
∞
∑

k=0

[

AsCk

2
sin(2π(fs + fk)t+ θk)

−
AsCk

2
sin(2π(fs − fk)t− θk)

]

(7)

This expansion shows that the distorted sampling clock signal con-

tains multiple sidebands at fs±fk. Now the actual sampling instants

of an ADC that uses a clock signal of the form of (5) are the zero-

crossings of s(t). Using (5) and defining Ts = 1/fs, the sampling

instants, tn, of the ADC must satisfy the condition:

tn +
∞
∑

k=0

Ck

2πfs
sin (2πfktn + θk) = nTs (8)

Some analysis will show that the zero-crossings occur at times tn =
nTs + e(n), where

e(n) ≈ −
∞
∑

k=0

Ck

2πfs
sin (2πfknTs + θk) (9)

We omit the derivation for brevity. Let us analyze the effect of this

distorted sampling on a pure sinusoidal training tone. Let the input

signal to the ADC be

w(t) = Aw cos(2πfwt+ φw) (10)

Then the sampled signal, w̌(n), is approximated as

w̌(n) ≈ w (nTs + e(n))

≈ w(n) + e(n) ẇ(n)
(11)

where w(n) = w(t)|t=nTs and ẇ(n) = ẇ(t)|t=nTs . The term

e(n) ẇ(n) in (11) can be verified to be of the form

e(n)ẇ(n) =
∞
∑

k=0

fwAwCk

2fs
[cos(2π(fw − fk)nTs + φw − θk)

− cos(2π(fw + fk)nTs + φw + θk)]
(12)

The above shows that the sampled data consists of the input signal

and multiple frequency components at fw ± fk. If the Fourier series

coefficients of the reference signal in the PLL decreases rapidly, then

the higher frequencies components in (9) and (12) can be ignored.

Moreover, it is possible to relate the power of the sidebands in the

sampled data (12) to the sidebands in the sampling clock (7). For

example, suppose the power ratio of the sideband at fs + f0 of the

clock, s(t), to the tone at fs is -50dBc, then C0 is 6.32 × 10−3.

Thus, the power of the sideband at fw + f0 of the sampled data

can be derived. As an example, the reference signal is simulated as

a triangular wave with a fundamental frequency of 20MHz and is

approximated using the first 4 fourier series coefficients. A training

signal at 45MHz is distorted by the sampling distortions and its power

spectral density (PSD) is shown in fig. 2. From the plot, only the

sidebands at 25MHz, 65MHz and 105MHz are detected (ie the effects

from the first 2 fourier series coefficients).
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Fig. 2. The plot shows the PSD of the distorted training signal.

III. PROPOSED SOLUTION

In a typical spectrum sensing application, there is usually a module

that performs Short Time Fourier Transformation (STFT) with win-

dowing functions. To save computation and hardware complexity, we

will use this module as a building block in our proposed solution.

Figure 3 shows the proposed architecture. We assume that the PLL

is in tracking mode (when the loop is in lock) and the distortions to

the sampled data due to the PLL sidebands can be estimated from a

sinusoidal training tone w(t). The distorted sampled data w̌(n) are

used with the STFT module to estimate the sampling jitters. Once the

jitters (9) are estimated, the circuit switches and starts sampling the

desired input signal and the sampled data is de-jittered in the digital

domain before the spectrum sensing application.

A. Jitter estimation

We can use the results in (12) to evaluate the sampling offsets’

parameters {Ck, θk} in (9) from the sidebands present in w̌(n). First,

we express (10) as

w(n) = Aw cos(2πfwnTs + φw) (13)

Let us assume we have estimated the amplitude and phase of the

tones in (12). Let Z(f) = Aejθ denote the complex representation

of the estimated amplitude A and phase θ at frequency f . Then, using

(13) and (12), Ck can be estimated from the relation

Ĉk =
2fs
fw

∣

∣

∣

∣

Z(fw − fk)

Z(fw)

∣

∣

∣

∣

=
2fs
fw

∣

∣

∣

∣

Z(fw + fk)

Z(fw)

∣

∣

∣

∣

(14)

Let ∗ denote complex conjugation. The phase θk can be estimated as

θ̂k = arg [Z(fw)Z
∗(fw − fk)]

= arg
[

Z∗(fw)Z(fw + fk)e
−iπ
] (15)

The question now is how to estimate the sinusoidal sidebands to

enable evaluation of {Ĉk, θ̂k} through (14) and (15). As mentioned

before, in spectrum sensing applications, there is a module that per-

forms STFT with windowing. Essentially, this module splits the data
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Fig. 3. Proposed architecture for reducing the effects of PLL sideband reductions in spectrum sensing applications.

into different frequency bins for further processing. The operation of

the STFT is as follows [15].

In the m-th iteration of STFT, an N -point Fast Fourier Transform

(N -FFT) is applied on an N -point data sequence with a windowing

function w1(n). Let us assume that data sequences do not overlap

and let us denote the data sequences by x(n+Nm). Thus, the STFT

output is

X(m, k) =

N−1
∑

n=0

w1(n)x(n+Nm)e−j2π k
N

n
(16)

where k is a particular frequency bin in the N -FFT. Suppose we

want to estimate the amplitude and phase of a sinusoid at frequency

fp in a signal of the form:

x(n) =

P
∑

i=0

Ai cos(2πfinTs + θi)

=
P
∑

i=0

Ai

2

[

ej(2πfiTsn+θp) + e−j(2πfiTsn+θp)
]

(17)

and only the sinusoid lies in the p-th frequency bin, then the STFT

output of the bin is

X(m, p) = Xp(m,p) +Xn(m,p) (18)

where

Xp(m,p) = Ap

[

ape
j(2πfpTsNm+θp) + bpe

−j(2πfpTsNm+θp)
]

ap =
1

2

N−1
∑

n=0

w1(n)e
j2π(fpTs−

p
N

)n

bp =
1

2

N−1
∑

n=0

w1(n)e
−j2π(fpTs+

p
N

)n

(19)

The Xn(m, p) are nuisance terms involving the rest of the frequency

components in x(n) that are out of the p-th frequency band of the

FFT. Using proper windowing functions w1(n), we can attenuate the

effect of Xn(m,p). As an example, a STFT using 1024-pt FFT is

applied on the training signal shown in Fig. 2. The STFT output in the

frequency bin that contains the sideband tone at 65MHz is extracted

and its frequency spectrum is plotted in Fig. 4. The left and right

plots show the result when no windowing is used, i.e., w1(n) = 1 and

when a Blackman-Harris window is used, respectively. As shown, the

window function reduces the spectral leakage of out-of-band signals

into the frequency channel.

Thus, manipulating X(m,p) yields

dp(m) ,
1

|ap|2 − |bp|2
[

a∗

p −bp
]

[

X(m, p)
X(m, p)∗

]

= Ape
jθpej2πfpTsNm + ν(m)

= Z(fp)e
j2πfpTsNm + ν(m)

(20)
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Fig. 4. The plots show the frequency domain output of a frequency channel
in the STFT when no windowing is used (left) and windowing is used (right).

where ν(m) is some noise residual in terms of Xn(m,p). Thus, we

can estimate Z(fp) from the data dp(m) using M samples. The jitter

estimation algorithm can be summarized as:

Jitter Estimation Algorithm

1) Evaluate the STFT (16) of the distorted training signal w̌(n).

2) Use (20) on the channels that contains the training signal and

its sidebands to obtain the data dp(m).

3) Use M samples of dp(m) to estimate the parameters of each

sideband Z(fp).

4) Use (14) and (15) to estimate {Ĉk, θ̂k}.

5) Use (9) to estimate e(n).

B. Jitter compensation

We use a similar method to our previous works [8], [11] to dejitter

the sampled data. The desired data, r(n), can be expressed as:

r(n) , r(nTs)

= r (nTs + e(n)− e(n))

≈ r(nTs + e(n))− e(n)ṙ(nTs + e(n))

= ř(n)− e(n)ṙ(nTs + e(n))

(21)

where ř(n) are the distorted samples, e(n) are the estimated sampling

errors (see (9)), and ṙ(nTs + e(n)) are the derivatives of r(t) at

t = nTs + e(n). A block diagram showing the de-jittering process

is illustrated in Fig. 5. The derivatives can be approximated using a

discrete filter applied to r̃(n). In this current paper, a 15-tap filter is

derived using a norm-1 criterion. The frequency response is shown

in fig. 6.

IV. SIMULATIONS

Some simulations are done to illustrate the performance of the

proposed solution. The simulation parameters are as follows. The
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Fig. 5. Block diagram of the sideband suppression scheme.
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Fig. 6. The plot shows the frequency response of the derivative filter.

sampling frequency fs is 500MHz and the reference signal in the

PLL is assumed to be a triangular wave with fundamental frequency

fref of 20MHz. C0 is set to 6.32 × 10−3 so that the power ratio

of the spurious sideband at fs ± fref to the signal at fs is -50dB.

The Fourier series representation of the triangular wave is truncated

to the first 4 coefficients. Since the coefficients decrease rapidly, the

effects of the 3rd and above coefficients are not observable in both

the training signal in Fig. 2 and even when the input signal frequency

is high (see Fig. 7 ahead). The frequency of the training tone, fw,

is 45MHz. We first estimate the spurious sidebands that are 20MHz

and 60MHz from the distorted training signal. Then, we switch to

sample the input signal and compensate the sampled data to obtain

the dejittered samples. The input signal is simulated as a sinusoidal

tone ranging from 25MHz to 200MHz in steps of 25MHz and the

distortion suppression performance are averaged over 50 runs. The

amplitude of the training signal and the input signal is set to 0.9 and

white Gaussian noise with standard deviation of 1 × 10−3 is added

to the input of the ADC. Finally, the STFT uses a 1024-pt FFT with

a Blackman-Harris windowing function and the length of the data

dp(m), M , is chosen from the set {64, 128, 256, 512, 1024}.

Figure 7 shows a realization where the desired input signal’s

frequency is 200MHz. The left plot shows the PSD of the signal

before compensation and the right plot shows the result using the

proposed method. It can be seen that the spurious sidebands are

reduced by 11 to 34 dB.
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Fig. 7. The plot shows the PSD of a 200MHz input signal before and after
compensation.

Figure 8 shows the sideband performance. From Fig. 7, the PLL

sideband induces sidebands that are 20MHz and 60Mhz away from

the input tone. The left plot in Fig. 8 shows the the reduction of the

sideband power at 20MHz and 60MHz away from the input signal

using M=1024 samples of dp(m). The right plot shows the average

sideband performance when M is varied. The simulations show that

when M=1024, the algorithm reduces the sideband distortions at

20MHz and 60MHz from the input tone by an average of 35dB and

8dB respectively.
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Fig. 8. The plots show the sideband suppression performance at 20MHz and
60MHz away from the input frequency signal and when M is varied.
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