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In a previous study [I], we proposed an adaptive sigma delta mod- 
ulator with improved dynamic range. The modulator adapts the 
step size of the quantizer from estimates of the quantizer input in- 
stead of the modulator input. In this study, we conduct an error 
variance analysis of the new modulator and derive expression for 
the SNR. The derived expression shows that the SNR is indepen- 
dent of the input signal strength, which supports the simulation 
results. 

1. INTRODUCTION 

Adaptive Sigma Delta Modulation (ASDM) attempts to increase 
the dynamic range of sigma delta modulators by scaling either the 
input signal or the step-size of the quantizer through an estimation 
of the input signal strength. This estimation can be done from the 
input signal itself or from the modulator output, and there have 
been several studies in the literature on this issue (e.g.. [2]-[6]). 

In a previous study [ I ] ,  we proposed an adaptation scheme 
whereby the step-size of the quantizer is adapted based on analy- 
sis of the input signal to the quantizer. This structure was shown in 
[ 1, 71 to lead to significant improvement in the dynamic range of 
the modulator. In this paper we investigate the SNR performance 
of the modulation structure by conducting a variance analysis of 
the modulation error. The analysis will lead to a closed-form ex- 
pression for the SNR and will show that the SNR is independent 
of the input signal power. 

Figure I shows the basic structure of the proposed adaptive 
SDM, with a one bit quantizer. The modulation and demodulation 
blocks are shown in parts a and b, respectively. The adaptation 
scheme is shown in Figure 2.  

The equations describing the behavior of this modulator are: 

e,(n)  = z ( n )  - v ( n - 1 )  ( 1 )  

p ( n )  = p ( n - 1 )  +e, (n ) ,  ~ ( 0 )  = O  ( 2 )  
Y(n) = s i g n b ( n ) l  (3)  
q(n) = sign [IP(n)I - 4 n  - 111 (4) 
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Figure 1 : Block diagram of the proposed structure. a. Modulator 
b. Demodulator. 

Figure 2: Adaptation scheme of the proposed modulator. 

2. ANALYSIS OF THE NEW MODULATOR 

The analysis of the proposed modulator is restricted to the case 
where H(z)  is an integrator. The variance of the modulation er- 
ror, e, (n) ,  is computed, from which an expression for the SNR is 
derived. 

2.1. Equivalent Structure of the Modulator 

d ( n )  = aq(’l)d ( n -1) ( 5 )  Taking the logarithm of both sides of equation ( 5 )  we get, 
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Using the fact that the logarithm is an increasing function, we can Substituting the expression for z d ( n )  from equation (9). we get 

This dynamic equation characterizes a delta modulator as illus- 
trated in Figure 3 part a. Its linearized version is shown in part b. 
Therefore, we can redraw the adapter utilizing equations (9)-( 11) 

Figure 3: A Delta Modulator. a. Typical b. Linearized 

as shown in Figure 4. The adaptation block together with the quan- 
tizer of the modulator now look like a log-PCM [8], except that the 
PCM block is replaced by a delta modulator. The delta modulator 
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Finally, if we denote 

Figure 4: Equivalent form of the ASDM. 

can be linearized by replacing its quantizer by an additive quan- 
tization noise erl(n),  as shown in Figure 3b. The noise e d ( n )  is 
assumed to be uniformly distributed in an interval [-A, A] (usu- 
ally A = 1 for single bit DM). Then, yd(n) is given by 

~ ( n )  = ~ ( n )  + ed(n) .  (12) 

Using equation (10). we have 

d ( n )  = o w ( 7 1 ) + e d ( l L )  (13) 

I I 

This result shows that we can model the adapter and quantizer in 
the main loop of Figure l a  as a time varying gain h'(n). Figure 
5 shows the resulting equivalent structure of our ASDM. Since 
the distribution of the random error signal ~ ( n )  is known, the 
distribution of the variable gain K ( n )  can be defined. Our further 
analysis is based on the basic assumptions: 

1 .  All random processes are stationary. 
2. The variable gain K ( n )  is independent of everything else. 

Figure 5: The ASDM as a linear time variant (LTV) system. 

2.2. Variance Analysis 

In this section we evaluate the variance of the error signal, eL(n).  
which can be shown to be zero mean. From the equivalent struc- 
ture shown in Figure 4, we can write 

+2 1 - K(n - 1) p ( n  - l ) z (n) .  ( 1 
Based on the independence and stationarity assumptions, the sec- 
ond moment of p ( n )  is 

1 - K ( n  - l ) ) ' } E { p ' ( n  - 1) 

+E{za(n ) }  -t 2E { (1 - K ( n  - l ) ) } E { p ( n  - l ) r ( n ) }  

Therefore, 

E,,. = (1 - ~ E K  + EKc?)Ey,? + E32 + 2 ( 1  - E K ) E ] , ~  (18) 

where the notation E,,2 and refers to E { p ' ( n ) }  and E{p(n -  
l)z(n)}. The term E,, can be shown to be equal to (the proof is 
omitted for brevity): 
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where E K  = E { K ( n ) }  and EZs = E { x 2 ( n ) } .  Substituting 
back into equation ( 1  8) and collecting terms, we get 

Finally, we have 

with 
Ep2 = *EZ2, (21) 

(22) 
~ - E K  

E K ( ~ E K  - EK2)' 
\ k=  

Also, from the relation between ~ ( n )  and p ( n ) ,  we get 

Elr2 = EK2Ep2 = rkE,2E22 (23) 

To obtain an expression for the error variance c&, we make use of 
the fact that (the proof is also omitted for brevity) 

(24) uea = U, - U = .  

Since the means of v(n) and z (n )  are equal (recall that the mean 
of e,(n) is zero), we get 

2 2 2  

oza = E,,? - E,- 

D,", = (\kEK- - l)E,z. 

(25) 

so that 
(26) 

If the input is zero mean, then 

= (9EK2  - 1 ) ~ : .  (27) 

The first and second moments of K ( n )  can be shown to be 

where c = log, e. 

2.3. SNR Computation 

At the receiver side, the signal U(.) is filtered using a low-pass 
filter with cut-off frequency fc, which is chosen to be equal to the 
input signal band frequency f ~ .  The modulation error is computed 
by comparing the filtered signal to the input signal z(n), as shown 
in Figure 6a. 

Since fc = f ~ ,  we can introduce an identical filter at the 
summer end connected to the input s(n) in Figure 6a assuming 
ideal filtering. Using linearity, the two filters are moved after the 
summer resulting in the equivalent form shown in Figure 6b. This 
form is useful in computing the SNR performance of the modulator 
as follows. 

The SNR is defined as the ratio between the input signal vari- 
ance and the filtered error variance ef (n) ,  shown in Figure 6, i.e., 

The variance of the filtered error e r ( n )  is computed by in- 
tegrating the spectrum of the error e,,(n) over the input signal 

" 

U 

b. 

Figure 6: Modulation error. Two equivalent forms. 

band. To do so, we need to obtain the autocorrelation sequence 
of ea(n)  as follows. Since e,(n) = z(n) - v ( n  - 1) and w(n) = 
K(n)p(n) ,  then the dynamics of the error G (n) is given by 

(29) e,(n) = z(n) - K ( n  - l ) p ( n  - 1). 

LFrom equation (2), we can write 

,=O 

Substituting back into equation (29), we get 

a = n - 1  

ea(n)  = x(n) - ~ ( n  - 1) ea( i ) .  (31) 
a=O 

Multiplying both sides by ~ ( m ) ,  m < n, yields 

i=O 

Since the input signal x ( n )  is independent of the previous erron: 
e,(m),m < n, then 

E{z (n )e , (m)}  = 0. (33)  

Thus, equation (32)  becomes 

a=n-1 

E{ea(n)e,(m)}  = - E { K ( n  - 1)) E{ea( i )ea(m)} .  
t = O  

(34) 
Since the process is stationary, the autocorrelation sequence of the 
error e a ( n ) ,  denoted by r e ( . ) ,  is 

2=n-l 

r,(n - m) = -EK re( i  - m). (35) 
E =O 
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In matrix form, we can write 

A r  = -1& 

where 

A =  

1+p 1 1 .. 1 
2 1+p 1 .. 1 
2 2 1+p .. I 

. .. . 

. .. . 
2 2 2 .. 1+p 

(37) 
1 = [ 1  1 1  . . .  1]T; ( M x l )  (38) 

1 
EK 

p = - ;  

and r is the vector containing the autocomelation sequence re. 
Solving for r, we get 

r = -A-’1cZa.  (39) 

By definition, the spectrum of the error e, (n) is 
oc’ 

I n = - %  

The sequence r,. is real and symmetric. Therefore 
3i. 

S,.(W) = 2 r,(m)cos(wm) + re(0) .  (41) 
I ,L=l  

Finally. the variance of the filtered error ef (n) is obtained by inte- 
grating the spectrum of e ,  (n) over the input frequency band WB , 
i.e.. 

r w s  

The following result can now be proven (the proof is omitted for 
brevity ). 

Lemma Based on rlie assurnprim rlzat 

r,(m) = O  f o r  m >  M ,  

If we substitute equation (27) into (43), we get 

crCzf = 2 f s  (1 - 2S,TA-’l) (@E,? - 1)o: 

so that 
R 

( i - -? . s?~- ’ i ) (  * E ~ ,  - 1) 
S N R  = 

where R is the oversampling ratio (OSR). The theoretical SNR is 
clearly independent of the input variance. Figure 7 shows a com- 
parison between the theoretical and simulated SNR. The figure 
shows a close relation between them for input amplitudes as far 
down as -90dB. 

Figure 7: Comparison between the theoretical and simulated 
SNR. 

3. CONCLUSION 

The performance of the adaptive sigma delta modulator of [ I ]  has 
been analyzed. The modulator is shown to be equivalent to a lin- 
ear time-variant system with randomly varying gain. An expres- 
sion for the SNR has been derived, and the result is shown to be 
independent of the input strength. 

4. REFERENCES 

[I] Aldajani. M. and Sayed, A. H., “An adaptive structure for 
sigma delta modulation with improved dynamic range,” Proc. 
43rd Midwest Symposium on Circuits and Systems, Lansing, 
MI, Aug. 2000. 

[2] Chakravarthy, C., “An amplitude controlled adaptive delta 
sigma modulators.” Radio aiid Electroriic Engineering, Vol. 
49, No. 1, pp. 49-54, Jan. 1979. 

[3] Jaggi, M. and Chakravarthy, C., “Instantaneous adaptive delta 
sigma modulator,” Carzadian Electrical Erigirieering Jounial, 
Vol. 11, No. 1, pp. 3-6, Jan. 1986. 

[4] Yu, J., Sandler, M., and Hwaken, R.. “Adaptive quantiza- 
tion for one bit delta sigma modulation,” IEEE Proceedings 
G (Circuits, Devices and Svstems), Vol. 139, No. I ,  pp. 39-44, 
Feb. 1992. 

[5 ]  Dunn. C. and Sandler, M., “Fixed and adaptive sigma-delta 
modulator with multibit quantizers,” Applied Signal Process- 

[6] Ramesh, M. and Chao, K., “Sigma delta analog to digital con- 
verters with adaptive quantization,” Proceedings of Midwest 
Symposium on Circuits and Sys~ems. IEEE, Vol. 1.2, pp. 22- 
25, 1998. 

[7] Aldajani, M. and Sayed, A. H., “Stability analysis of an adap- 
tive structure for sigma delta modulation,” Proc. 7th IEEE b z -  
terrinrioiinl Cor fererice 011 Electronics, Circuits, and System, 
LEEE, Vol. 1, pp. 129-32, Kaslik, Lebanon, Dec. 2000. 

[8] Proakis. J. and Manolakis, D., Digital Sigrial Processing, 
Pririciples. Algorithms, and Applicrrrioru, Prentice-Hall, Inc., 
NJ, 1996. 

;rig, Vol. 3, NO. 4, pp. 212-222, 1996. 

1-395 


