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ABSTRACT 

This paper develops lattice structures for RLS Laguerre adaptive 
filtering including error-feedback and array-based lattice versions. 
All structures are efficient in that their computational cost is pro- 
portional to the number of taps. Although these structures are the- 
oretically equivalent, their performance can differ under practical 
considerations, such as finite-precision effects and regularization. 
Simulations are included to illustrate this point. 

1. INTRODUCTION 

In the work [I] ,  the authors addressed the problem of deriving lat- 
tice (i.e., order recursive) RLS filters for Laguerre networks. One 
of the benefits of working with a Laguerre network is that fewer 
parameters can be used to model long impulse responses in a stable 
manner (see, e.g., [3 ,  41). In such networks, however, successive 
regression vectors are not shifted versions of each other. Still. the 
authors showed in [ I ]  that a more general form of data structure 
exists and that it can be exploited to derive a fast order-recursive 
filter. Figure I illustrates the Laguerre network, where 

z - l -  a 
1 - az-1 and L ( z )  = ~ , 0 < Jal < 1. 

dl - a2 Lo(z)  = ___ 
1 - az-1 

( I )  

Figure 1 : A frmsiwsal Lugiterre stri(ctiirefOr adaptive filtering. 

Now, the RLS lattice algorithm that was derived in [ l ]  ap- 
pears in a form that is based on a-posteriori errors and it does not 
involve an error feedback mechanism. Although it is a common 
lattice form, several other equivalent forms can be derived. While 
all these implementations are theoretically equivalent, they tend to 
differ in performance under different operating conditions (such as 
in finite-precision implementations and regularization - see, e.g., 
[5 ,6]) .  Such variants generally present good numerical properties 
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and are better suited for fixed point implementations (some forms 
are better suited than others) and for very large scale integration. 
These facts motivate us to derive in this paper the related lattice 
variants for Laguerre structures. 

2. THE A-PRIORI ERROR FEEDBACK FILTER 

Consider a data matrix H M + 2 . N  (whose rows are (A4 + 2)-dimen- 
sional) and partition it as 

H M + z . N  = [ H M + I , N  Z M + l , N  ] 
= [ xO,N RM,N Z M + ~ . N  3 

The last column of H M + S . N  is denoted by X M + I , N  and its first 
column by Z O , N .  Note that while in the case of regressors with 
shift structure, there exists a simple relation between RM.N and 
H M . N .  this relation is less obvious in the Laguerre case (see [ 11). 
Let further C N  denote the column vector 

C N  fi J1-a2[ ( p - 1  . . .  a 1 1' 
which is defined in terms of the pole a of each section L ( z ) ,  and 
let Y N  = [ d(0)  d (1 )  . .. d ( N )  1'. Table 1 lists an order- 
recursive algorithm for updating the a-posteriori errors, and which 
arises from the problems of projecting (in a regularized manner) 
the vectors { Z O , N ,  Z M + ~ . N }  onto H M , N  and H M + I , N  and simi- 
larly, the vectors { y ~ ,  C N }  onto H M , N  (see [I]) .  These projection 
problems involve the following error vectors: 

A 

b M + l , N  = X M + I . N  - H M + ~ . N W L + ~ , N  

b M . N  = Z M + l , N  - H M , N W ! V ~ . N  

f M f 1 . N  = Z 0 , N  - H M  N W L , N  

e M . N  = Y N  - H M , N W M . N  
C M , N  = C N  - HM,NW&.N 

where. for example, wL,, is the solution to 

This problem projects the first column X ~ . N  onto H M . N .  Similarly 
we define { w L , ~ , w & . ~ , w M . N ) .  The last entries of the above 
error vectors are denoted by 
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2.1. A-Priori Estimation Erro,rs 

The a-priori, as opposed to a-posteriori, estimation errors can be 
defined similarly. Introduce 

P M + l , N  = 2M+l , iV - HM+l ,NW&+l ,N- l  (3) 

B M , N  = XM+l,iV - H M , N W L , N - ~  (4) 

a ~ + i , N  = x 0 , N  - H M , N w L , N P 1  

E M , N  = Y N  - I~M,NWM,N-I  

Initialization 

For M = 0 ro M - 1 set 

p is a smdl positive number. 
bnf ( - l )  = p&r( - l )  = T n r ( - l )  = 0 

Altemative order-updates: 

Table 1 : The CI posteriori Lngiierre Intticejlter. 

where W L , ~ - ~ .  for example, is the solution to a problem similar 
to (2) with all N's replaced by N - 1. Comparing the expressions 
for the a-priori error vectors with the expressions above for the a- 
posteriori error vectors, the on1,y differences lie in the use of the 
prior weight vector estimates. Similarly, the last entries of the a- 
priori error vectors are denoted by 

i P ~ ~ s . 1  (W,  BM (W,  a ~ + i ( N ) ,  E M ( N ) I  

By following the same argument as in Sec. 111 of [ I], it can be ver- 
ified that these errors satisfy similar order-update relations, which 
are listed in Table 2 .  The expression for V M + I ( N )  also has an 
additional factor a. 

2.2. Time-Updates for the Rellection Coefficients 

Unlike conventional derivations 'of error-feedback lattice algorithms 
for tapped-delay line structures, we shall obtain time-update rela- 
tions for the reflection coefficients in a more direct way, by exploit- 
ing the fact that these coefficients can be regarded as solutions to 
least-squares problem of first order [2]. For instance, K M ( N )  in 
Table 1 is defined as 

K M ( N )  = ( p  + b ' t , N b ' M . N ) - ' b ' t , N e ' M , N  ( 5 )  

are vectors of angle normal- where the quantities {bh,N, 
ized prediction errors. For instance. 

where ~ M ( N )  is a conversion factor. Equation ( 5 )  can be in- 
terpreted as the regularized 1eas.t-squares solution of a first-order 
least-squares problem, namely that of projecting (in a regularized 
manner) the vector eh,N onto the vector bh,N. This simple ob- 
servation shows that K M ( N )  can be time-updated via a standard 
RLS recursion of the form: 

In a similar fashion, we can justify the time-update for the remain- 
ing reflection coefficients, by simply using their corresponding 
RLS recursions. Figure 2 illustrates the resulting RLS-Laguerre 
lattice structure that is based on a priori errors. The corresponding 
recursions are listed in Table 2. 

3. THE ARRAY-BASED LATTICE ALGORITHM 

We can also derive another equivalent lattice form, albeit one that 
is described in terms of compact arrays. This form involves only 
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initialization 

For M = 0 fo M - 1 se:: 

p is a small positive number. 
t&,(-l) = &-1) = t&-l) = K i f ( - 1 )  = K . , , ( - l )  = 0 

C . L - 1 )  = C L - 1 3  = C L - 1 )  = /J 
C L - 1 )  = 1 

Table 2: Error-feedback Lagiterre lattice filter based 011 a 
priori errors. 

. . .  

. . .  

. . .  

Figure 2: Lugiterre larrice iietwork based 011 a-priori ei-1-ors with 
ei-i-or feedback. 

orthogonal rotations and tends to exhibit good numerical proper- 
ties. For this purpose, we first need to define the following quanti- 
ties: 

The second step is to rewrite all the recursions in Table 2 in terms 
of these quantities, and in terms of the angle normalized prediction 
errors { b h ( N ) ,  e h ( N ) ,  & ( N ) , & ( N ) }  defined before, e.g., 

T M ( N )  = ~ T M ( N  - 1) + i G ( N ) b L ( N )  (6) 

C$(N) = u2C$(N - 1) + IEM(N)12 (7) 

CLW) = CL(N - 1) + lbh(N)I2 ( 8 )  

Caw = CLW) - tqL(N)l2 (9)  

The third step is to implement a unitary transformation matrix 0 
that lower triangularizes the following pre-array of numbers: 

I Q = [ :  3 1 q E ( N  - 1) b ' L ( N )  
a C g ( N  - 1) & ( N )  

for some {m,  n, p } .  Squnring both sides of the above equation, we 
get, using equations (7)-(8), 

m = C ~ ' ( N ) ,  n = q & ( N ) ,  p = $ & ( N ) .  

Proceeding similary we can derive three additional array transfor- 
mations, all of which are listed in Table 4. The resulting algo- 
rithm is also represented schematically in Fig. 3. The matrices 
{ ~ ~ , ( N ) , o ~ M ( N ) , ~ ~ ( N ) , o ~ M ( N ) }  are 2 x 2 unitary trans- 
formations that introduce the zero entries in the post-arrays at the 
desired locations. 

4. SIMULATIONS 

Table 3 sumarizes the computational cost of these algorithms for 
a least-squares problem of order M .  We see that some forms 
are more costly in terms of multiplications while others are more 
costly in terms of divisions. 

Table 3: Cornparisoil of the conzputntioiinl cost of the different 
Lnguerre lattice nlgoritlzins forjl ters of order M .  

Although all the Laguerre lattice variants studied here are the- 
oretically equivalent, they differ in computational cost and perhaps 
more importantly in robustness to finite-precision effects. For ex- 
ample, for 15 bits and a small regularization factor p, the array 
lattice algorithm seems to exhibit the best performance among all 
lattice variants. The other algorithms can breakdown due to divi- 
sion by small numbers (especially for longer filters). We observed 
this behavior in simulations. The break-down is a consequence 
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Initialization 

For N -> 0. mxai:  

u(N) = a u ( N  - 1) + -$(NI 

For AI  = 0 IO M - 1. r?pcnl: 

Table 4: The array-based kguerre  latrice filter: 

of the fact that, in the absence of regularization, the initial least- 
squares problems become rank-deficient. In the array form, no 
regularization is needed. In Fig. 4 we compare the performance of 
the different lattice implementations for the same filter order and 
quantized at 15 bits, when an impulsive disturbance is introduced 
at N = 200. A similar simulation example was performed in [6], 
in order to illustrate the recovery of the MSE convergence under 
a sudden nonstationarity. We used zero regul‘arization for the ar- 
ray form ( p  = 0) and p = 0.1 for the other versions. For a 10 
bit-wordlength we observed that the standard lattice form breaks 
down after the impulsive disturbance. The error feedback form can 
still recover its final MSE, while the array form achieves a higher 
MSE value. For 15 bits wordlength, the array form returns to its 
final MSE faster than the a priori error feedback form, while the 
standard lattice form achieves a higher final MSE. 

I .,:is, 

Figure 3: Scl~eniatic repr-esentatiori of the array-based Lugurrre 
lattice filte I :  

50 100 150 200 250 3W 350 4W 
ITEqATION I 

Figure 4: MSE decay of the various Lugurrre lattice forms under 
finite precision. 

We have also noticed that for high order Laguerre lattices fil- 
ters, the regularization factor has to be high in order to avoid break- 
down of the algorithm (in a 15 bit quantization). The array form 
has shown the best performance in this sense. which is independent 
of the regularization. 

5. CONCLUDING REMARKS 

In this article we described several lattice (order-recursive) variants 
for Laguerre adaptive filtering. In [7] we describe several fixed- 
order variants as well. 
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