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ABSTRACT

Conventional derivations of fast fixed-order RLS filters rely on the
shift structure that is characteristic of regressors in a tapped-delay
line implementation. In this paper, we study adaptive Laguerre
networks, where shift structure no longer holds. We show that fast
fixed-order updates are still possible.

1. INTRODUCTION

Fast RLS adaptive schemes are efficient algorithms for up-
dating the least squares solution for growing-length data.
While conventional RLS requires O(M?) computations per
sample, where M is the filter order, its fast versions require
only O(M) operations. Examples of such fast schemes in-
clude fast fixed-order filters (e.g., [1, 2, 3]) and also order
recursive filters.

The low complexity that is achieved by these algorithms
is a consequence of the shift structure that is characteristic
of regression vectors in FIR adaptive implementations. Re-
cently, the authors showed that the input data structure that
arises from more general networks, such as Laguerre filters,
can be exploited to derive fast order-recursive [4] and fast
fixed-order implementations [6]. In this paper, we show
that fast fixed-order adaptive algorithms can also be derived
in explicit form for Laguerre networks. One of the benefits
of working with a Laguerre basis is that fewer parameters
can be used to model long impulse responses in a stable
manner (see e.g., [7, 8]).

2. THE EXTENDED FAST TRANSVERSAL FILTER

Given a column vectoryy € €N+ and a data matrix H N €

CWVHIXM pe exponentially-weighted least squares prob-
lem seeks the column vector w € CM that solves

min [\ wl W 2~ Hxw)lP] )

The matrix II is a positive-definite regularization matrix,
and W = (AN @ AN~1 @ .- @ 1). The symbol % denotes
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complex conjugate transposition. The individual entries of
y~ will be denoted by {d(4)}, and the individual rows of the
matrix Hy will be denoted by {u;}. The RLS algorithm
computes the optimal solution of problem (1) recursively as
follows:

w41 = WN + gn4a[d(N +1) — unprwn] (2)
gn+1 = AT Prujyr(N +1) 3)
YN+ = 142 'uny1Pvuig (4)
Pvii = A 'Py—gna1y '(N+1Dghvg: 5

with w_; = 0 and P_; = II. When the regression vectors
possess shift structure, it is well known that these recursions
can be replaced by more efficient ones. Now, consider the
Laguerre network of Fig. 1 where
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Figure 1: A rransversal Laguerre structure for adaptive filtering.

The input to the Laguerre filter at time N is denoted by
s(N), and the coefficients that combine the outputs of the
successive sections { Lo(z), L(z)} are denoted by {wy, }. Us-
ing (6) we can relate two successive regression vectors uy
and un 41 as
umtr,n = [u(N+1,0) un]=[uvsr u(N,M-1)]P

= Um+1,n+1P . (N

where ® is the (M + 1) x (M + 1) matrix

1 a” 0 0 0 0
0 (1-.a? a’ 0 0o o
0 —a(l-w?) (1 —ia'?) a* 0 0
P = 2 2 2 2 B
0 a“(l —ia'") —a(l—a'") (1—.a”) o 0
0 —a a? —a 1 0
0 a* —a® a® —a 1
(8)
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Note that the regression vectors are not shifted versions
of each other anymore. Still, we shall show that a fast RLS
algorithm is possible.

Before proceeding, we should remark that since in the
paper we also deal with some order-recursive relations, it
becomes important to indicate the order of all quantities in-
volved (in addition to a time index). For example, we shall
write wyy, i instead of wy to indicate that it is a vector of
order M that is computed by using data up to time N.

2.1. Forward Estimation Problem

Consider the input data matrix H »s, v and define the coeffi-
cient matrix

Pyl = NG+ Hy nWNHuN).

Now suppose that one more column is appended to H s v
from the left, i.e.,

Hpyqi,n = [ zon Hum.n ] )
and let

-1 N —1
Pypn = (A Mty + Hip nWWN Hag,n)

where HX,,IH = (u @ II;;'). Then it is straightforward to
verify that

P pANTY - of NWzon  mo N WNHuM,N
M+1.N Hj‘v[,’NWNfo,N PI\TI,IN
Inverting both sides we get

Pyian =

o 0 1 1 .
[ 0 Pun J T [ ~wiy n ] [1 —wlin ]
(10)

where w{k,  is the solution to the least-squares problem:

min [AV I 2wl 1P+ (WA (2o — Huvwh) Il

Wiy

whose minimum cost we denote by £ {,, (N). This problem
projects zo, ; onto R(H n). Let

fun =zoN — Hu,nwly

denote the resulting (forward) estimation error vector. Then,
the optimal solution for the forward prediction problem ad-
mits an RLS recursion of the form

w}ftl.N:wl{/!,N—l"-kMnyM(N) (1)

where kar,n = gum.nvyy (IV) is the normalized gain vec-
tor for a problem of order M, and far{N) is the last entry

of fa,n. We also define the quantity ¢ (N) = pAV+! 4+

gL ().
Substituting Eq. (10) into (3), it is immediate to see that
we obtain an order update for kpr v as well,

0 ]+—C‘—M—(NL[ ; ](12)

kyvyi,N = [
. ku.n A (N =1) | ~wyn-1

where a(N) is the a priori forward prediction error, de-
fined via far(N) = ap(N)ym (V). A similar order-update
can be obtained for the v (IV'), by substituting (10) into (4):

_ | far ()2
ym+1(N) =y (N) - % (13)

Combining this recursion with the following time update for
the ¢1, (V) (see [4]):

G =ML W - 1) + ok (N)fu(N) (14
we obtain an alternative update for ya (N):
AR (N —1)

Y41 (N) = yu{N) )

2.2. Backward Estimation Problem

Similarly to the forward estimation problem, assume that
one more column is appended to H ps, n from the right, i.e.,
Hyiinv =[] Hun zun | (15)

and define the correspondent coefficient matrix as

Py = (WP + Hypy nWNHMta,N)
where
= n;} ¢
., = M 16
M+1 [ ¢ 5] ( )

for some constant vector ¢ and scalar § to be specified. In-
verting both sides, we obtain:

_ P, 0 1 —q «
psa=| 757 3 | | U 1)
7

This equation has two main differences with respect to the
definition of the variables w, 5 and ({;(IV), for the for-
ward prediction problem. First, the vector gy is the sum of
two quantities,

an =wfv’w.N+tN (13)

where t is given by
tn = AV Py ne (19)

The first term of (18) is the solution to the least-squares
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problem:

min [\ 2whel” + (W (@aew = Hae o) |]
Wt

where £3,(N) is the corresponding minimum cost. This

problem projects z a7, ;v onto R(H ar,n). The resulting (back-

ward) estimation error vector is given by

b
bun =zmN — Hunwy N

Substituting Eq. (5) into (19), we obtain a recursive relation
for ¢n (which is analogous to the time-update for w’,’w, N
and it implies the following time-update for gn:

gy = gn-1 +qm(N)km,n
where 9 (N) = em(N)ym(N), and
eEm(N)=Bm(N) —up ntN-1
In addition, the quantity (%, (V) is defined by
Chi(N) £ e (N) + AV (6 — "t — cwiyn — wlit we)

Although the update of these terms may look complicated,
using the time-update for w’}w’ n and ty, we obtain after
some manipulations

Cr(N) = A (N = 1) + em(N)nu(N) . (20)

Also, multiplying (17) from the right by @}, ; n. . We Ob-
tain, similar to the forward estimation problem,

{ km,N

F ‘w?w N-1
0 = km41,n — vm(N) : (21)

1
where var(N) = e (N)/ A4, (N —1). The quantity vas (N)
is referred to as the rescue variable and can be directly ob-
tained as the last entry of kps41,n (to be computed further
ahead).

Proceeding similarly to the derivation of (13), we also
obtain

Sat41(N) = yar (N) — MT}ZIAXVT))' 22)

Combining Eqgs. (20) and (22), it can be shown that

Fum+1(N)

v (N) = 1= Am1(N)em(N)vm(N) -

Note that the variables £7(N) and 7 (V) play roles
similar to the a priori and a posteriori backward prediction
problems. Moreover, although all the quantities related to
the backward prediction problems satisfy identical recursive
equations, here they have different interpretations.

2.3. Exploiting Data Structure

We still need to evaluate ks n. For this purpose, we need to
identify the variable that is affected by the input data struc-
ture. Thus, consider any invertible matrix ¢ such as in (8).
From Eq. (7), it follows that

_ 0 1
H = ®
M+1,N+1 [ HM+1,N ]

where Hprq1,nv and Jij M+1,N+1 are the corresponding aug-
mented input data matrices. We then get

pM+1,N+1 = (XN+ZI_IIT,11+1 +];’1*144-1,N+1VVN+1HM+1,N+1)_1
= AWV, + @ Hy o nWNHu v @)

Note that if we could choose
Mty = A1 I, 870 (23)

we obtain a simpler relation between {Pys1,n+1, Puyin )

PM+1,N+1 = ®Pr41,n " ‘ 24)

In order for this relation to hold, we need to show how
to choose I, ¢, and § in order to satisfy (23). Substituting
(16) into (23), we get

[1—1;!1 C]—__)\»]Q—n[ll 0

_1 ,
R 0 n;;]q’ Y

Now, the matrix & ~* can be defined blockwise as
W [o T
=[5 n]

m=[0 00 0 1]

where

and
1’)=[a4 —a® a? —a l]T

Expanding (25), we find that
My - T T = pov™ . (26)

Hence, if |a| < v/), this Lyapunov equation admits a unique
positive definite solution IT ;. This is because all the eigen-
values of T are either a* or 0, and the pair (A\™1/2T, ) is
controllable. From (25), we then obtain

AT m? (27)

= MNl'mIy'm* = )\__I[H_I]M—l,M—l

[

From (24), we can now obtain similar relations between
{gm+1,5, Grm+1,n+1} and {ym+1(N), ¥m41(N + 1)}. Thus,
multiplying both sides of (24) by 4%, from the right, we
get

gMm+1.N+1 = Pgmi1N - (28)
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If we further multiply (28) by @1 from the left and sub-
tract 1 from both sides, we have that

Am+1(N +1) = yar+1(N)

which implies the following relation for the normalized ex-
tended gain vectors:

|7EM+1,N+1 = ‘I)kM-f-l,NJ 29

Initialization

p is a small positive number; II is the solution to (26);
c is given by (27).

Cr(=1) = /X

Chr(0) = AT T Mpro 1, m—1 — c*Tle

WM,0 = Wy _, = 0

g-1= mie

For N > 0, repear:

w(N) = au(N ~ 1) + VT — aZs(N)

aM(N - 1) = U(N) _UM=N_1w1'f\/[,N—2

fM(N - 1) = ’YM(N - l)aM(N — 1)
0 at, (N-1) 1

k —— M

(N = 1) = AL (N = 2) + @b (N = 1)fu (N = 1)

Wy N-1= waI/I,N—2 +kuN-1fu(N -1)

7
Tar41(N) = yar (N — 1) 20082
T +1(N) = ya( e AT

kymi1,8 = ®kapyi,n-1

v (N) = (last entry of kar+1,n)
kvn = kivn +vm(N)gv-1
em(N) = A3(N — vpe(N)

— Ia141(N)
7M(N) T 1-Aa41(N)ear(N)vag (N)

nu (N) =y (N)er (N)
Ce(N) = A3 (N — 1) + €3 (N)nm (V)
an =gn-1 + km,nnm(N)

em(N) =d(N) —um,Nwpm,N-1
em(N) = v (N)em(N)
wWM,N = WwM,N-1 + km,nem (N)

Table 1: The extended fast fixed-order RLS filter for La-
guerre networks.

This relation shows that the time update of the gain vec-
tor ks, v, wWhich is necessary to update the optimal solution

wam,N+1 = WMmN + ks, vr1em (N + 1)

can be efficiently performed in three main steps:

1) Order update kar,n — kars1,~ [Eq. (12)];
2) Time update kM-tliN — kap+1,N+1 [Eq (29)],
3) Order downdate kpr41,84+1 = km,n+1 [Eq. 21)].

Note that when a = 0, we have & = I and therefore
EM+1,N+1 = kum+1,~. in which case the recursions col-
lapse to the FTF algorithm [2]). Equation (29) is the only
recursion that uses the fact that the input data has structure.
For example, for Laguerre-based filters, this multiplication
is essentially a convolution, which can be performed with
O(M) operations. The cost of the usual FIR FTF algorithm
is known to be O(7M) operations. The overall cost for the
Laguerre case simply amounts to O(8 M) operations. Table
1 shows the resulting generalized FTF algorithm.

We should mention that the general algorithm proposed
here can face some stability problems just like the standard
FTF algorithm [2]. A stabilization procedure can be pursued
along the lines of [9], and this will be developed elsewhere.
In addition, array algorithms are developed in [5, 6].
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