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ABSTRACT 

Conventional derivations of fast fixed-order RLS filters rely on the 
shift structure that is characteristic of regressors in a tapped-delay 
line implementation. In this paper, we study adaptive Laguerre 
networks, where shift structure no longer holds. We show that fast 
fixed-order updates are still possible. 

1. INTRODUCTION 

Fast RLS adaptive schemes are efficient algorithms for up- 
dating the least squares solution for growing-length data. 
While conventional RLS requires O ( M 2 )  computations per 
sample, where M is the filter order, its fast versions require 
only O ( M )  operations. Examples of such fast schemes in- 
clude fast fixed-order filters (e.g., [l, 2, 31) and also order 
recursive filters. 

The low complexity that is achieved by these algorithms 
is a consequence of the shift structure that is characteristic 
of regression vectors in FIR adaptive implementations. Re- 
cently, the authors showed that the input data structure that 
arises from more general networks, such as Laguerre filters, 
can be exploited to derive fast order-recursive [4] and fast 
fixed-order implementations [6]. In this paper, we show 
that fast fixed-order adaptive algorithms can also be derived 
in explicit form for Laguerre networks. One of the benefits 
of working with a Laguerre basis is that fewer parameters 
can be used to model long impulse responses in a stable 
manner (see e.g., [7, 81). 

2. THE EXTENDED FAST TRANSVERSAL FILTER 

Given a column vector y~ E CN+l and a data matrix H N  E 
C(N+l )  M ,  the exponentially-weighted least squares prob- 
lem seeks the column vector w E C M  that solves 

iniii [ ~ ~ + l l l ~ ~ - l / ~ w l l ~  + I I W $ ' ~ ( ~ ~  - H N W ) I ~ ~ ]  ( 1 )  

The matrix II is a positive-definite regularization matrix, 
and W = ( A N  @ @I ... @ 1). The symbol * denotes 
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complex conjugate transposition. The individual entries of 
YN will be denoted by { d ( i ) } ,  and the individual rows of the 
matrix H N  will be denoted by {u i } .  The RLS algorithm 
computes the optimal solution of problem (1  ) recursively as 
follows: 

wN+1 = W N  + gN+l[d(N + 1) - uN+lwN] ( 2 )  
gN+1 = A-lPN'uh+ly(N + 1)  (3) 

y - l ( N  + 1) = 1 + A-l~uN+lPN,uh+l  (4) 

PN+l = x-'PN - gN+ly-l(N + 1)gh+1 ( 5 )  

with w-1 = 0 and P-1 = II. When the regression vectors 
possess shift structure, it is well known that these recursions 
can be replaced by more efficient ones. Now, consider the 
Laguerre network of Fig. 1 where 

2 - 1  - a *  
and L ( z )  = ~ (a1 < 1. 

Jiqp 
1 - az-1 1 - az-1 ' Lo(r)  = 

( 6 )  

Figure 1 : A tmiisveisal Lnguerre sti.iictiire,for adaptive jifilteriiig. 

The input to the Laguerre filter at time N is denoted by 
s ( N ) ,  and the coefficients that combine the outputs of the 
successive sections {Lo( z ) ,  L ( z ) }  are denoted by {wk}. Us- 
ing (6) we can relate two successive regression vectors U N  
and UN+1 as 

U M + l , N  = [.u(N + 1 , O )  .UN] = [UN+l n ( N ,  M - l)]@ 

= f i M + l . N + l @  (7) 

where is the ( M  + 1) x (A4 + 1) matrix 
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Note that the regression vectors are not shifted versions 
of each other anymore. Still, we shall show that a fast RLS 
algorithm is possible. 

Before proceeding, we should remark that since in the 
paper we also deal with some order-recursive relations, it 
becomes important to indicate the order of all quantities in- 
volved (in addition to a time index). For example, we shall 
write W M , N  instead of W N  to indicate that it is a vector of 
order M that is computed by using data up to time N .  

2.1. Forward Estimation Problem 

Consider the input data matrix H M , N  and define the coeffi- 
cient matrix 

PGtN = ( X N + ' I I & '  + H *  M , N W N H M , N  ). 

Now suppose that one more column is appended to H M , N  
from the left, i.e., 

HM+I ,N  = [ X O . N  HM.N ] (9 )  

and let 

- (~Nfln-1 
' i ! f l , N  - ~ + i  + H L + I , N W N H M + ~ , N )  

where l-IGil = (,U @ II&'). Then it is straightforward to 
verify that 

1 [ H,&.N WNXO.N PGfN 
pXNfl + X&NWNXO,N x G . N W N H M , N  

pi\I.N = 

Inverting both sides we get 

PM+I.N = 

(10) 

where wL,,  is the solution to the least-squares problem: 

Inill [pXN+'llni1''whll2 + \ ~ ~ $ " ( X O . N  - H M , N W ~ ) I / ' ]  
4, 

whose minimum cost we denote by E L ( N ) .  This problem 
projects Q , N  onto R ( H M , N ) .  Let 

f M . N  = x 0 , N  - H M . N W f  M . N  

denote the resulting (forward) estimation error vector. Then, 
the optimal solution for the forward prediction problem ad- 
mits an RLS recursion of the form 

wLf ,N  = w L , N - l  + k h . I , N f k f ( N )  ( 1 1 )  

where k M , N  = gM,NYG1(N) is the normalized gain vec- 
tor for a problem of order M ,  and f M ( N )  is the last entry 

of f M , N .  w e  also define the: quantity < L ( N )  = p ~ ~ + l  + 

Substituting Eq. (10) into (3), it is immediate to see that 
5L" 
we obtain an order update for k M , N  as well, 

where a ~ a ( N )  is the a priori forward prediction error, de- 
fined via f~ ( N )  = CXM ( N ) ? M  ( N ) .  A similar order-update 
can be obtained for the Y M  ( N  ), by substituting (10) into (4): 

Combining this recursion with the following time update for 
the <k ( N )  (see [4]): 

C L ( N )  = X L ( N  -. 1) + a h ( N ) f ~ ( N )  (14) 

we obtain an alternative update for Y M ( N ) :  

2.2. Backward Estimation Problem 

Similarly to the forward estimation problem, assume that 
one more column is appended to H M , N  from the right, i.e., 

and define the correspondent coefficient matrix as 

p i y l : N  = (~~+ln&',1+ N ~ + ~ , N w N H M + ~ , N )  

where 

for some constant vector c and scalar 6 to be specified. In- 
verting both sides, we obtain: 

(17) 

This equation has two main differences with respect to the 
definition of the variables W L , ~  and < k ( N ) ,  for the for- 
ward prediction problem. First, the vector q N  is the sum of 
two quantities, 

q N  = W!$.N + tN (18, 

where t N  is given by 

The first term of (18) is the solution to the least-squares 
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2.3. Exploiting Data Structure 

We still need to evaluate K M , N .  For this purpose, we need to 
identify the variable that is affected by the input data struc- 
ture. Thus, consider any invertible matrix 9 such as in (8). 
From Eq. (7), it follows that 

problem: 

min [ ~ ~ + ~ l l r 1 k ~ / ~ u r k 1 / ~  + I I W ~ ' ~ ( ~ M , N  - ~ M , , v w k ) l l ~ ]  

where ( h ( N )  is the corresponding minimum cost. This 
problem projects X M , N  onto R ( H M , N ) .  The resulting (back- 
ward) estimation error vector is given by 

w t  

b 
b M , N  = X M , N  - H M , N W M , N  

Substituting Eq. ( 5 )  into (19), we obtain a recursive relation 
for t~ (which is analogous to the time-update for w L , ~ ) ,  
and it implies the following time-update for q N :  

QN = QN-i  + V M ( N ) k M , N  

where ~ M ( N )  = E M ( N ) Y M ( N ) ,  and 

E M ( N )  = P M ( N )  - U M , N ~ N - I  

Note that if we could choose 

fiG1+l = X-l@-*n-I M+1 9 - 1  (23) 

we obtain a simpler relation between { ~ M + I , N + I ,  P M + I , N } :  

In addition, the quantity [L ( N )  is defined by 

& ( N )  2 & ( N )  + A N + ' ( &  - C * t N  - C * W $ , N  - W g , N C )  . 

Although the update of these terms may look complicated, 
using the time-update for w L , ~  and t N ,  we obtain after 
some manipulations 

In order for this relation to hold, we need to show how 
to choose IIM, c, and b in order to satisfy (23) .  Substituting 
(16) into (23 ) ,  we get 

&+(N) = X&(N - 1) + & & ( N ) V M ( N )  . (20) 
Now, the matrix W* can be defined blockwise as 

Also. multiplying (17) from the right by ii~+,,,+,, we ob- 
tain, similar to the forward estimation problem, 

where V M ( N )  = E M ( N ) / A & ( N - ~ ) .  Thequantity V M ( N )  
is referred to as the I%SCLK variable and can be directly ob- 
tained as the last entry of ~ M + I , N  (to be computed further 
ahead). 

Proceeding similarly to the derivation of ( 1  3 ) ,  we also 
obtain 

Combining Eqs. (70) and ( 2 2 ) ,  it can be shown that 

( 2 2 )  

@-'=[" O m  1 
where 

m = [ o  o o o 1 1  
and 

v =  [ a* -a3 u2 -a 1 3' 
Expanding (25), we find that 

xn-1 M - q+n-lT* M = puv* . (26)  

Hence, if la1 < a, this Lyapunov equation admits a unique 
positive definite solution IIM. This is because all the eigen- 
values of T are either U* or 0, and the pair (A-'I25?,ij) is 
controllable. From (75), we then obtain 

c = X-lTnG1m* (27) 
6 = X-lmnh1m* = A - '  [ n - ' ] M  - l , M  - 1 

From (24), we can now obtain similar relations between Note that the variables E M ( N )  and ~ M ( N )  play roles 
similar to the and a posteriori backward prediction 

the backward prediction problems satisfy identical recursive 
equations, here they have different interpretations. 

{ g M + 1 , N , g M + i , N + l }  and { Y M + ~ ( N ) , Y M + ~ ( N  + 1)) .  Thus, 

get 
problems. Moreover, although all the quantities related to both sides Of (24) by ';+I from the right, we 

g ~ + i . ~ + i  = @ ~ M + I . N  . (28) 
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If we further multiply (28) by i i j ~ + ~  from the left and sub- 
tract 1 from both sides, we have that 

?M+l(N + 1) = YM+l(N) 

which implies the following relation for the nomialized ex- 
tended gain vectors: 

I kM+l ,N+l  = @ k M + l , N  1 (29) 

Tic 

initialization 

p is a small positive number; II is the solution to (26); 
c is given by (27). 
C L ( 4  = P / X  
CL(0) = X-‘[n-1]M-l,M-l - c*rIc 

q-1 = n-’c 
f w M , O  = = 0 

For N 2 0, repeat: 

U ( N )  = au(N - 1)  + d F ? S ( N )  

e I :  The extended f i s t  fixed-order RLS filter f o r  Ln- 
guerre networks, 

This relation shows that the time update of the gain vec- 
tor k M , N ,  which is necessary to update the optimal solution 

WM,N+I = W M . N  + kM,iv+leM(N + 1) 

can be efficiently performed in three main steps: 

1) Order update kM,N -+ ~ M + ~ , N  [Eq. (1211; 
2 )  Time update ~ M + I , N  + ~ M + I , N + ~  [Eq. (2911; 
3) Order downdate ~ M + ~ , N + I  + ~ M , N + I  [Eq. (21)l. 

Note that when a = 0, we have = 1 and therefore 
k ~ + ~ , j ~ + . 1  = ~ M + I , N ,  in which case the recursions col- 
lapse to the FTF algorithm [2]. Equation (29) is the only 
recursion that uses the fact that the input data has structure. 
For example, for Laguerre-based filters, this multiplication 
is essentially a convolution, .which can be performed with 
O ( M )  operations. The cost of the usual FIR FTF algorithm 
is known to be O ( 7 M )  operations. The overall cost for the 
Laguerre case simply amounts to O(8M) operations. Table 
1 shows the resulting generalized FTF algorithm. 

We should mention that the general algorithm proposed 
here can face some stability problems just like the standard 
FTF algorithm [ 2 ] .  A stabilization procedure can be pursued 
along the lines of [91, and this will be developed elsewhere. 
In addition, array algorithms are developed in [S, 61. 
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