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ABSTRACT 

The steady-state performance of adaptive filters can significantly 
vary when they are implemented in finite precision arithmetic, whi- 
ch makes it vital to analyze their performance in a quantized en- 
vironment. Such analyses can become difficult for adaptive al- 
gorithms with nonlinear update equations. This paper develops a 
new feedback approach to the steady-state analysis of quantized 
adaptive algorithms that bypasses many of the difficulties encoun- 
tered in traditional approaches. In so doing, we not only re-derive 
several earlier results in the literature, but we often do so under 
weaker assumptions, in a more compact way, and we also obtain 
new results. 

1. INTRODUCTION 

This paper develops a new approach to the rounoff error analysis 
of adaptive filtering algorithms. The approach is based on show- 
. ing how a generic quantized adaptive filter can be represented as 
a cascade of elementary sections, with each section consisting of 
a lossless system in the feedforward path and a feedback intercon- 
nection, with roundoff errors acting as disturbances to the system. 
By studying the energy flow through the cascade, we are able to 
establish a fundamental error variance relation. Using this rela- 
tion, for quantized and infinite precision algorithms, we are able to 
extend the results of the infinite precision case to that of the quan- 
tized case with minimal calculations. We also derive new results. 

Thus consider noisy measurements {d(i)} that arise from the 
linear model 

d(2) = uiwo + v(2), (1) 

where WO is an unknown column vector of N coefficients that we 
wish to estimate, v(i) accounts for measurement noise and model- 
ing errors, and U, denotes a nonzero mow input (regressor) vector. 
Many adaptive schemes have been developed in the literature for 
the estimation of WO in different contexts (e.g., echo cancelation, 
system identification, channel equalization). In this paper, we fo- 
cus on the following general class of algorithms: 

wi+i = Wi + p U,* F ( e ( i ) ) ,  (2) 

where wz is an estimate for wo at iteration a, p is the step-size, and 
F(e(i)) is a (linear or nonlinear) function of the so-called output 
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estimation error, defined by 

e ( i )  = d ( i )  - uiw; . (3) 

Different choices for F ( e ( i ) )  result indifferent adaptive algorithms. 
For example, Tab. 1 defines F(e(i)) for several famous special 
cases of (2). In the table, 6 is a constant.' 

An important peiformance measure for an adaptive filter is its 
steady-state mean-square-error (MSE), which is defined as 

MSE = lim E le(i)I2 = lim E Iv(i) + u,+Jz12 , 
,-io0 I - + ,  

where + J i  = W O  - wi denotes the weight error vector. Under the 
realistic assumption that (see, e.g., [ 1]-[3]): 

- A.l  The noise sequence {v ( i ) }  is iid and statistically inde- 
pendent of the regressor sequence {ui}, 

we find that the MSE is equivalently given by 

MSE = a: + lim E lu,wi12. (4) 

Now the standard way for evaluating (4), and which dominates 
most derivations in the literature, is the following. First, one as- 
sumes, in addition to A.l, that the regression vector U, is indepen- 
dent of +J8. Then the above MSE becomes 

I - + M  

MSE = 0: + lim T r @  C), (5 )  
1-+m 

where C ,  = E\?ri\?rf denotes the weight error covariance ma- 
trix and R = E U: ui is the input covariance matrix. As is evident 
from (5 ) ,  this method of computation requires the determination of 
the steady-state value of C;, say C,. In quantized environments, 
finding C ,  is a burden, especially for adaptive schemes with non- 
linear update equations. The following are the novel contributions 
of this work: 

'In this article we assume realLv6lued data for compactness. 
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1. We develop a feedback approach for evaluating the M S E  
of a large class of adaptive schemes when implemented in 
finite precision. This approach bypasses the need for work- 
ing directly with Ci or with its limiting value, and it extends 
the results in [4] to the finite precision case. 

2. The approach further establishes the significant conclusion 
that the finite precision analysis of an adaptive scheme can 
be obtained almost by inspection from the results in the in- 
finite precision case for a large class of algorithms. In con- 
trast, analyses for both cases have always been carried out 
separately in the literature. 

3. The feedback approach not only allows us to re-derive sev- 
eral earlier results in literature in a unified manner, but it 
does so with less effort and often under weaker assump- 
tions. 

4. The approach also allows us to derive several new results, 
especially for adaptive filters with nonlinear updates for 
which approaches that require Ci are not easily applicable. 

2. A MATHEMATICAL MODEL 

Figure 1 shows the quantized model used in the paper, and which 
is widely used in the context of finite precision analyses of adap- 
tive algorithms (see, e.g., [5]-[8]). In this figure, Q[z] denotes 
the fixed point quantization of the value z, and the superscript q 
distinguishes quantized quantities from infinite precision quanti- 
ties. Throughout the paper, rounding quantization is considered. 
It is also assumed that the saturation thresholds of the quantiz- 
ers are properly chosen such that saturation errors are negligible. 
Thus, only rounding errors are considered. The variance 2 of the 
rounding error is related to the quantizer saturation threshold L 
according to 

where it is assumed that the quantizer uses B bits in addition to 
a sign bit. The values of B and L considered for quantization of 
the data (ui, d ( i ) ,  and y(i)) will be denoted by Bd and L d  and 
the ones considered for quantization of the filter coefficients will 
be denoted by B, and L,. The corresponding values of U' will be 
denoted by ci and U:, respectively. We can write 

d q ( i )  = d ( i )  + p ( i ) ,  yq(i) = uSwS + ~ ( i ) ,  (6 1 
where p ( i )  is the system output quantization error with variance 
t~:, and ? ( a )  is the quantization error that occurs in computing the 
term U:,:. The variance of y(i), U:, depends on the procedure 
by which yq((i)  is computed. If all N products involved in qw: 
are computed with high precision, summed, and the final result is 
quantized to Bd bits, then 0: is approximately equal to 0:. If each 
one of the N products is quantized to, say 8 bits, and the sum is 
then quantized to Bd bits with B, being significantly greater than 
B d ,  U$ is equal to U: + N u t .  The quantized estimation error eq((i) 
is given from (6) by 

eq(i) = d q ( i )  - yq(Z) = e(i) + ((i), (7 )  

where t(i) = p(i) - y ( i ) .  Obviously, ((2) is a zero-mean se- 
quence with variance ut = U: + t~:. In general, the quantized 
error function F q ( e q ( i ) )  can be written as 

F"(e*(i)) = F(eq(i)) + q( i ) ,  (8) 

where q(i)  is the error in calculating F4(eq(i)) from eq(i). The 
variance of q(i) depends on the adaptive algorithm used. For e:x- 
ample, U: is equal to 0, U:, 2u:, and 0 for the LMS,  LMF, LMMN, 
and SA, respectively. 
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Figure 1 : Quantization model. 

Taking the above quantizations into consideration, the adap- 
tive algorithm recursion (2) becomes 

w:+~ = wp + Q [ p  up: Fq(eq(i))] 

(9) = w: + p U:* F4(eq(i)) - m,, 

where m, is a vector of multiplication quantization errors in the 
update term puy * F4 ( eq (i)), each entry of which has variance 0:. 
The weight error vector is now defined as 

(10) \ir, = W O  - w;. 

3. QUANTIZED ENERGY RELATION 

We start by defining the following so-called a-priori and a-posteriori 
estimation errors, 

e,(i) = uqw,, ep(i) = us (+;+I -mi) .  

Using (3) and (7), it is easy to see that the errors {eq((i), ea(,i)] are 
related via eq(z) = e,(i) + v( i )  + ( ( a ) .  If we further subtract WO 

from both sides of (9) and multiply by from the left, we also 
findthat the errors {ep(i),ea(i),eq(i)} arerelatedvia: 

where we defined, for compactness, p(i) = l / ~ ~ ~ ~ ~ z .  Substitut- 
ing (1 1) into (Y), we obtain the update relation 

+;+I = +; - P(i)uY'[e.(i) - ep(i)] +mi 

By evaluating the energies of both sides of this equation we obtain 

Il\iri+l - mill2 + p(i)lea(i)12 = IJ+i11' + p(i)lep(i)Iz . (12) 

This energy conservation relation, first established in [Y, lo], holds 
for 4 adaptive algorithms whose recursions are of the form given 
by (2). No approximations or assumptions are needed to estab- 
lish (12); it is an exact relation that shows how the energies of 
the weight error vectors at two successive time instants are re- 
lated to the energies of the a-priori and a-posteriori estimation 
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errors. The relation also has an interesting system-theoretic inter- 
pretation. It establishes that the mapping from { Gi, m e , ( ; ) }  

to *;+I- mi, m e , ( i ) }  is energy preserving (or lossless). 
Furthermore, combining (12) with (ll), we see that both rela- 
tions establish the existence of the feedback configuration shown 
in Fig. 2, where 7 denotes a lossless map and q-' denotes the unit 
delay operator. Here we can see that the multiplication quantiza- 
tion error acts as a disturbance input to the system. Such a distur- 
bance mainly plays the same role as that of system nonstationarity 
111, 12, 131. 

{ 

Figure 2: Lossless mapping and a feedback loop. 

Relation (12) has several ramifications. It was used in 19, IO] 
to study the robustness and &-stability of adaptive filters and in 
[4, 1 1, 12, 131 to study the steady-state and tracking performances 
of various adaptive algorithms. Here we show its significance to 
finite precision analyses of adaptive algorithms. 

- A.2 Quantization errors are zero-mean, mutually indepen- 
dent, and independent of all other signals. 

First, we impose the following modeling assumption: 

This assumption is typical in the context of finite precision 
analysis of adaptive algorithms (see e.g., [5]-[8]), and it enables 
the derivation of closed-form expressions for the steady-state MSE. 
A more sophisticated nonlinear model for treating quantization er- 
rors, which takes into account the quantizer underflow effects, has 
been used in [I41 for the LMS algorithm; though it does not lead 
to closed-form expressions. 

Imposing the equality E [[*,+111' = E [[+ii,((' in steady-state, 
and using ( I  1) and A.2, it is straightforward to verify that the en- 
ergy relation (1 2) leads to 

Efi(i)[e,(i)( '  = Tr(M) + Ep(i)  lea(z) - 

where M = E m,m:. For iid multiplication errors, T r w )  = 
Nu:. Using (7), (8). and A.2, we obtain the following fundamen- 
tal error variance relation in terms of e,(i) and G ( i )  e w ( i ) + [ ( i ) :  

Efi(i)[ea(i)lZ = Tr(M) + p20iTr(Rq) 

jl +EP( i )  Iea(2) - pji)F(e,(i) P + $i)) , (13) 

where Tr(Rq) = Eua'uY = T r p )  + Nu:. This equation 
can now be solved for the steady-state excess mean-square-error 
(EMSE): 

A C = lim E[e,(i)['. 
1 4 0 0  

Observe from (4) that the desired MSE is given by MSE = 2 +C, 
so that finding C is equivalent to finding the MSE. Moreover, for 
the infinite precision case, equation (13) is given by [4]: 

Ep(i ) [e , ( i ) l '  = E@(i) e,(i) - r F ( e , ( z )  P + w ( i ) ) / z .  (14) I 
Thus comparing (13) with (14), we can observe that two new terms 
exist on the RHS in the quantized case. Furthermore, using A.2, 
we can see that the LHS and the last term on the RHS of (13) are 
the same as those in (14) if we replace w ( i )  by $2) and llul[[' by 
l[up 11'. This is a significant observation in the context of finite pre- 
cision analysis of adaptive algorithms, as it shows how to extend 
the results of the infinite precision case to those of the quantized 
case with minimal effort. In the literature, both cases have gener- 
ally been studied separately. 

Example. We now apply the above general procedure to the LMS 
algorithm. We solve both the infinite and finite precision energy 
equations (14) and (13), and show how to extract the results of 
the quantized case from those of the infinite precision case. Later 
we directly apply our general procedure to other algorithms. The 
reader will soon realize the convenience of working with such a 
procedure. 

For LMS we have F(e( i ) )  = e(i) = e,(i) + w ( i ) .  Substitut- 
ing into (14) and using A. l ,  it follows immediately that 

To solve for CLMS we consider two cases: 
1. For sufficiently small p, we can assume that the teim p2 E lluj 11' 
[e,(i)I' is negligible relative to the second term on the right-hand 
side of (Is), so that 

CLMS = 110; Tr(R). 
2 

2. For larger values of p, equation (15)  can be solved by imposing 
the following assumption [4]: 

- A.3 At steady state, p'((ui(1' is statistically independent of 
le, (ill2. 

Using A.3, and (15), we directly obtain 

Now for the quantized case, substituting in (13) and using A.l 
and A.2, we directly obtain 

2pCLMS = p2 E ([luY[1' le,(i)[') + p'u: T r F q )  

For small enough values of p,  we have 

1 CLMS = (p- l  T r w )  + pu: Tr(R4)) , 

where U," = U: + U:. For larger values of p,  using A.2 and A.3, 
we obtain 

CLM5 = p- l  Tr(M) + po," Tr(Rq) 

This example shows that the finite precision results could be easily 
obtained from the infinite precision results. 

2-pTr@q) ' 
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Following the same procedure, we can extend the infinite pre- 
cision results given in [4] to obtain the corresponding quantized 
results for the algorithms given in Tab. 1. The expressions are 
shown in Tab. 2. In this table, 6 = 1 - 6, E: = E I v ( Z ) ) ~ ,  = 
E )v ( i ) l6 ,  (," = E )C( i )14 ,  (: = E /C(Z)l6, A = f i p  T re), and 
B = 6 ( p - l  Tr(M) + p T r e q ) ) .  For the case of the SA we 
used the assumption that the quantization of the estimation error 
does not introduce any errors in its sign [8 ] .  

Here we may add that the results obtained for the LMF and 
LMMN algorithms are new as no finite precision analysis exists for 
them in the literature. The results for the SA are the same as those 
obtained in [8] by using the independence assumptions. Here we 
have shown that the same result holds without the independence 
assumptions. Moreover, by differentiating the EMSE expressions 
in Tab. 2 with respect to p, we obtain several new expressions 
for the optimum step-sizes that achieve the lowest EMSE. Due to 
space limitations, we do not list these expressions here. 

4. SIMULATION RESULTS 

Figure 3 compares the simulation and theoretical results of the 
steady state MSE of the LMMN algorithm, with 6=0.5, for a large 
range of p and two values of the wordlength. In the simulations, 
the unknown system weight vector Up is of length 10 and the ele- 
ments of the input vector, U,, are white Gaussian of unit variance. 
The plant noise is chosen to be a linear combination of normally 
and uniformly distributed independent random variables of vari- 
ances U: = and U; = 10-'/12, respectively. Each simula- 
tion result is the steady state statistical average of 50 runs, with up 
to 20,000 iterations in each run. We can see from the figure that 
the theoretical and experimental MSE are in good match. 
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