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ABSTRACT

We describe a simple and straightforward recursive
(and global) approach for the solution of rational inter-
polation problems. The derivation is based on a simple
and well known matrix identity, namely the Schur (or
Jacobi) reduction procedure, and exploits connections
with structured matrices. We use the interpolation
data to construct a convenient structure and then ap-
ply a recursive triangularization procedure. This leads
to a transmission-line cascade of first-order J-lossless
sections that makes evident the interpolation property.
We also give state-space descriptions for each section
and for the entire cascade.

1. INTRODUCTION

MANY signal processing, circuit theory and control
application problems admit a formulation in terms
of a rational interpolating function. The solution
of such interpolation problems has been studied ex-
tensively in the literature. The recursions of Schur
and Nevanlinna-Pick have been around for a long
time (see, e.g. [1]). The corresponding tangential
and matrix versions were later approached and solved
by different authors and in different ways and con-
texts, including operator theory and the lifting of
commutants [2, 3]," approximation of Hankel opera-
tors (4], Krein spaces [5], reproducing kernel Hilbert
spaces [6], system theory and state-space realiza-
tions [7], H* —control [8, 9], etc.. We describe here an
alternative approach for the solution of rational inter-
polation problems. The derivation is simple, straight-
forward and is based on a simple and well known ma-
trix identity, namely the Schur (or Jacobi) reduction
procedure. This is a recursive procedure that performs
the triangular factorization of an n x n matrix R. In
the case of structured matrices (i.e. matrices that
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are solutions of certain Stein or Lyapunov equations),
the Schur procedure reduces to an efficient (O(n?)) re-
cursive update of the so called generator matrix of R.
Each step leads to a new generator with one more zero
row than the previous one. We exploit this simple fact
and construct a transmission-line cascade that makes
evident the interpolation property. We may summa-
rize the proposed scheme as follows: use the interpola-
tion data to describe a convenient structured matrix,
apply the recursive triangularization procedure to the
corresponding generator matrix and construct the as-
sociated transmission-line cascade.

Let HSy, denote the Hardy space of p x ¢ ratio-
nal matrix-valued functions that are analytic and
bounded inside the open unit disc. A matrix val-
ued function § € Hgy, that is bounded by unity
(lISllec < 1) will be referred to as a function of Schur
type. We use the notation H% (z) to refer to the fol-
lowing block upper-triangular Toeplitz matrix

[ Alz) 7AM(:)  $43(z) ey A (z) T
A(z) 1Az . oy AlE=2)(2)
A(z)

O

%A(l)(z)

L A(z)
where A is a rational matrix function analytic at
z,k > 1 is a positive integer and AC¢)(z) denotes
the it* derivative of A at z. We also denote by
e = [ O1; 1 O ] the ** basis vector of the
n—dimensional space of complex numbers C'*". We
now state a general Hermite-Fejér interpolation prob-
lem that includes many of the classical problems as
special cases. We consider m points {f;}725"(not nec-
essarily distinct) inside the open unit disc and we as-
sociate with each f; a positive integer ; > 1 and two
row vectors u; and v;, partitioned as follows

u.‘=[ u(li) usn") ]y Vi :[ vg‘) ‘ug? ]
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where ugi) and vg"),(j =1,...,r)arel xpand 1 xgq
row vectors respectively.

Tangential Hermite-Fejér: Describe all Schur type
functions S € Hy, that satisfy vi = wMg(fi) for
0<i<m-1

This problem includes, among others, the following
well known special cases

e Scalar Carathéodory: m = 1,fo = 0,7 =
nipzqzlvu():[lo O]andvoz
[a0 a1 on-1 | . In this case, we are re-
duced to finding a scalar Schur function s such
that L':!Ql =oq; for i=0,1,...,n—1.

e Scalar Nevanlinna-Pick: m = n, f; distinct,
rn=1,p=¢g=1u =1land v, = o.In
this case, we are reduced to finding a scalar Schur
function s such that s(fi) = a;.

e Tangential NP: m = n, f; distinct,r; = 1,u; =
u; and v; = v;. In this case, we are reduced to
finding a p x ¢ Schur matrix function S such that
u,S(f,) = V.

2. SOLVABILITY

The first step in our solution consists in constructing
three matrices F, G and J directly from the interpola-
tion data: F' contains the information relative to the
points f; and the dimensions r;, G contains the infor-
mation relative to the direction vectors u; and v, and
J = diagonal{I,,—1,} is a signature matrix, where I,
denotes a p x p identity matrix. The matrices F' and
G are constructed as follows: we associate with each
fi a Jordan block F; of size r; x r;

fi

1 fi

Fi= .
1 fi

and two r; x p and »; X ¢ matrices U; and V; respec-
tively, which are composed of the row vectors associ-
ated with f;

u(li) ugi)

U, = and V; = :
o9 oD
Then F = diagonal{Fy, Fi,..., Fn-1} and
Us Vo
G = :
Uni Vet

Let n = Y75 ri and r = (p + g), then F and G are
n x n and n X r matrices respectively. We shall denote
the diagonal entries of F by {f;}isg (observe that F
reduces to a diagonal matrix when r; = 1 for all ). We
shall show in the next section that by applying a sim-
ple recursive procedure to F and G we obtain a cas-
cade structure that satisfies the interpolation condi-
tions. Meanwhile, we associate with the interpolation
problem the Lyapunov equation R—FRF* = GJG*,
where F and G are as defined above ( and the sym-
bol # stands for complex conjugation). Clearly, R is
unique since F is a stable matrix (|fi| < 1,Vi). This
construction allows us to give a simple proof for the
existence of solutions [10].

Theorem 1 (Solvability Condition) The tangen-
tial Hermite-Fejér problem is solvable if, and only if,
R is positive definite.

We say that R has a Toeplitz-like structure [11] with
respect to (F,G,J) and G is called the generator ma-
trix of R. We should stress at this point that we only
know F,G and J whereas the matrix R = [r,-,-]:;.':lo i
not known a priori. In fact, the recursive solution de-
scribed in the next section does not need R explicitly.

It only uses F,G and J.
3. RECURSIVE SOLUTION

If R, denotes the Schur complement of rgo in R, then
R, is also a Toeplitz-like matrix. To check this point,
we let lp and go denote the first column of R and the
first row of G respectively. Then lp = Flofg + GJg;.
Moreover, if we define do = roo = f—f%ﬁ:, then

1. [0 0
R — lody =[0 Rl] (1)

Let F; be the submatrix obtained after deleting the
first row and column of F. Using (1) we can check
easily that Ry — Fi R\ F; can be factored as G1JGj,
where

G

and hq and kg are r x 1 and = x r matrices respectively
that satisfy the embedding relation

[foelle s]m ul=[s 5] @

n-2
This shows that R; [rs)} o is indeed a Toeplitz-
,j=

like matrix with respect to (F1,Gi,J). This process

[ O1xr ] = FlohyJ + GIk3J @)
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may be repeated by defining the Schur complement
Ry of rg%,) in Ry and so on. In summary, if we let ;
and G; denote the first column and the generator of
the ¢** Schur complement R; respectively, then

1. O1xr
' Gipa

EERSITA AN
where g; is the first row of G, {f;,gi, hi, ki} satisfy
a relation similar to (3) with d; = r‘(,'o), and F; is the
(n — 1) x (n — i) submatrix obtained after deleting
the first row and column of Fj_;. We now examine
more closely the first-order discrete-time system that
appears on the right-hand side of (4), viz.,

o fi +welg;
zhiJ + wiJk;J

T4l =
Y =
where z} is the state and wy is a 1 x r row input vector

at time k. Let ©;(z) denote the corresponding r X 7
transfer matrix

0iz) = JKT+Ig [ - F]TTRT(5)

It follows from the embedding relation and from |f;| <
1 that ©;(z) is a J-lossless matrix function, that is
©;(z) is analytic in |z} < 1 and

{ 0;(2)JO!(2)=J on |z|=1
0;(2)JO!(2) < J In |zl < L

The cascade ©(z) = Og(2)01(2)...0n_1(2z) has an
intrinsic interpolation property, which follows directly
from the generator recursion (4). Using the embed-
ding relation (3) we readily conclude that

* * fO *
gOJkUJ + gngo 1— fofg hOJ
= goJkaJ + fodohBJ =0

9090(fo)

(This will also follow from the derivation in the next
section). Similarly, using (4) and (5) we conclude that
g1 = 9007(fo) + e1GOo(fo) and hence go®M(fo) +
e1GO(fo) = 0. This argument can be easily extended
and leads to the following result

Theorem 2 (Interpolation) Consider the i** Jor-
dan block F; and let s; be the total size of the previous
Jordan blocks (s; = Z;."l rj, so =0), then

=0
[ eG ennrG esi4ri-1G ]’H'(j)(f.-) =0 (6)

Notice that the row vector on the left hand-side of (6)
is composed of the r; row vectors in [ Ui Vi ] . If we
partition ©(z) accordingly with J

@11(2) @12(2)

o) = 021(2) O2(2)

then it follows from the last t&eorem that the Schur
matrix function S = —©1,05, satisfies the required
interpolation conditions. Moreover,

Lemma (Solutions) All solutions S to the tangential
Hermite-Fejér problem are given through a linear frac-
tional transformation of a Schur type matriz function
K € Hjg,

5() = - [©11(K(2) + ©12()] (O21 (K (2) + Oz ()"

4. FURTHER SIMPLIFICATIONS

Using the embedding relation (or the J-losslessness of
0i(2)) we verify easily that h; and k; are given by

1)1 Ti=fi . -1 1 Jgigi
c=ert{ L Jor$ k=07 L - —
hi =9 {d.‘l—ﬂf‘-' 9 A di1-nf;

where ©; is an arbitrary J-unitary matrix (©;J0] =
J) and || = 1. This allows us to express ©;(z) in
terms of f; and g; only

o) = {L+me) - 1252 e @

where B;(z) is a Blaschke factor

z—fi 1-7nff

1-2ff ni—fi

Notice that gg@iq{) =. 0 readily follows from (7).
We now remark that if G; is a generator of R; then
G;U; is also a generator for any J-unitar matrix U;.
Hence we can always assume that the leftmost ele-
ment of g; is nonzero (by choosing a J-unitary per-
mutation U;, for instance). So assume we fix ; = 1
and choose ©; (using elementary rotations or as de-
scribed below) such that ¢;©; is reduced to the form

9i0; = [ 6 0 . 0 ], where §; is a scalar (=
Vdi(1 = [fi[?)). In this case, ©;(z) and the genera-

tor recursion are further simplified to

oinma "4 2]

Bi(z) =

Oixr | _np. [0 O a1 0
[ )=ools L ]roeals o] ©

where &; = {=45(Fi — filn-i)(In-i — f7 F:)™'. The
generator recursion (8) has the following simple array
interpretation

o Multiply G; by ©; and keep the last r—1 columns;
e Multiply the first column of G;©; by ®;;

e These two steps result in Git1.

2378



Bi(z)—>

Figure 1: Internal structure of ©;(2).

Let J = 1@ —F and partition ¢; = [ gio  Yi ],
where gip is a scalar and y; isa 1 x (r — 1) row vec-
tor. If we define the row vector k; = g;o 4 E, then a
possible choice for ©; would be [11]

_ 1 —k; d; -0
o[ ][0 ]

where d; = (1 — k;Ek})~'/? is a scalar and ¢; is
an (r — 1) x (r — 1) matrix that satisfies ¢;Eq; =
(E — krk;)~!. Figure 1 depicts a section ©;(z). The
first column of G; goes through the top line and the
last (r — 1) columns propagate through the bottom
line. Figure 2 shows a scattering interpretation where
$(z) is the scattering matrix associated with ©(z).
The solution S is the transfer matrix from the top left
(1 x p) input to the bottom left (1 x ¢) output, with
a Schur type load (—K) at the right end. Using the
state-space description of the first order sections ©;(z)
we can verify that the cascade ©(z) is given by

©(z:) = {I- (1-21)JG*(I - z:F*)"'R7(I - rF)7'G} ©

—

S(z) 2(2)

et

—K(z)

Figure 2: Scattering interpretation.

where O is an arbitrary J-unitary matrix and 7| = 1.
Expressions similar to those of ©(z) are used in [7]
to solve interpolation problems. Note however, that
it involves the inverse of R explicitly, whereas our re-
cursive solution avoids this computation and uses only
the matrices F and G, which are constructed directly
from the interpolation data. The previous discussion
leads to the following procedure: use the interpolation
data to form F and G, apply the generator recursion
(8) and use {fi, g:} to construct the sections ©;(z) as
in figure 1. It is worth mentioning that this procedure

TTIT

T T —-

includes the recursions of Schur and Nevanlinna-Pick
as special cases [10].

5. CONCLUSION

We described a simple alternative approach for the
solution of rational interpolation problems, which is
based on a recursive construction of a cascade or
transmission-line structure. We also derived a state-
space realization for the cascade and remarked that
our solution does not require the computation of RL
The overall procedure requires O(rn?) operations (ad-
ditions and multiplications). We remark that the
derivation presented here can be easily extended to the
solution of time-varying interpolation problems [12].
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